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Abstract: Plants generally have the highest regenerative ability because they show a high degree of
developmental plasticity. Although the basic principles of plant regeneration date back many
years, understanding the cellular, molecular, and physiological mechanisms based on these
principles is currently in progress. In addition to the significant effects of some factors such
as medium components, phytohormones, explant type, and light on the regeneration ability of
an explant, recent reports evidence the involvement of molecular signals in organogenesis and
embryogenesis responses to explant wounding, induced plant cell death, and phytohormones
interaction. However, some cellular behaviors such as the occurrence of somaclonal variations
and abnormalities during the in vitro plant regeneration process may be associated with adverse
effects on the efficacy of plant regeneration. A review of past studies suggests that, in some cases,
regeneration in plants involves the reprogramming of distinct somatic cells, while in others, it is
induced by the activation of relatively undifferentiated cells in somatic tissues. However, this review
covers the most important factors involved in the process of plant regeneration and discusses the
mechanisms by which plants monitor this process.
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1. Introduction

The initiation of in vitro studies of plant cells and tissue culture dates back to 1902, when Gottlieb
Haberland presented a “totipotency” hypothesis that each cell has all the genetic information needed
to produce a perfect plant [1,2]. Differentiated cells in plants are able to re-enter the cell cycle,
proliferate and regenerate tissues and organs, and even become a complete plant, according to this
hypothesis. Several reports have shown the totipotent ability of plant cells through which the plant
can be regenerated, which in turn is widely used in several basic studies such as in micropropagation,
germplasm conservation, and formation of genetically modified plants [3,4]. Plants have powerful
regenerative abilities thanks to the property of developmental plasticity of their cells [5,6]. In vitro
plant regeneration is a process in which explants, after undergoing cell division and differentiation,
form organs and tissues throughout their growth period [7,8]. In vitro plant regeneration can
be performed via somatic embryogenesis or organogenesis [9]. Organogenesis is the process by
which new organs and even whole plants are usually formed in response to wounds from other
parts of the organs. In somatic embryogenesis, first, a structural cell similar to zygotic embryos
is formed, and then the entire plant is regenerated [6,10–13]. The potential for plant regeneration,
which has long been used to propagate clones, cuttings, and grafts, is the basis of ongoing research
and agricultural applications [14]. Micropropagation has been applied commercially worldwide,
although the capability of plant regeneration varies significantly in different genotypes [6,14–16].
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During the last several years, several agents regulating plant regeneration have been studied, such as
exogenously supplied phytohormones in vitro [17–19], explant type [5,20–22], physiological properties
of the donor plants [23,24], mineral uptake and their distribution patterns [25,26], changes in mevalonate
kinase activity [27], and reprogramming of differentiated somatic cells and activation of relatively
undifferentiated cells in somatic tissues [6]. Nontraditional inducers such as some amino acids [28]; light
intensity and quality [29]; weak electric current [30]; and some antibiotics, for example, cefotaxime [31],
have also been reported to affect in vitro plant regeneration. Rathore and Goldsworthy [30] passed very
weak electric current 1 microamp between the tissue and the culture medium and noticed a dramatic
increase in tobacco callus growth. Azmi et al. [32] reported the beneficial effects of a mixed light color
of LED (red and blue) on in vitro plant regeneration of Rosa kordesii. This review covers novel findings
of how plants adjust regeneration in terms of the cellular, molecular and physiological aspects and
discuss influence of developmental and environmental factors on plant regeneration efficiency.

2. Organogenesis

Plant shoots and roots are able to retain their apical meristem functions even after a part of their
meristems is removed. However, when the whole meristems are excised, plant cells of differentiated
tissues or organs have the ability to produce new shoots and lateral roots via organogenesis [6,8,16,33].
In vitro plant regeneration by organogenesis is the result of organ formation through dedifferentiation
of differentiated cells and reorganization of cell division to create particular organ primordia and
meristems after the vascular connection between the explant and the newly regenerating organ [34,35].

3. Somatic Embryogenesis

Somatic embryogenesis is one of the biotechnological techniques for multiplication of important
economic cultivars. This process is a type of plant cell totipotency in which embryos arise from somatic
or vegetative cells if no fertilization takes place [36,37]. Several factors such as the origin of the explant,
culture medium, and in vitro environmental conditions affect the success or failure of the somatic
embryogenesis response [36]. Somatic cells undergo embryogenesis stages by developing structures
similar to zygotic embryos without merging of gametes [38–40]. Somatic embryogenesis could be
well suited for mass propagation of endangered crop species [41] and for commercial production.
When somatic embryos are formed directly without a callus intermediate stage, this process is called
direct embryogenesis [6], and is useful for rapid plant regeneration and minimizing somaclonal and
chimeric variations [42]. Successful clonal propagation of elite genotypes requires a high percentage
of genetic homogeneity among all regenerates. Therefore, the genetic homogeneity of in vitro
regenerated plants is highly noticeable at an early stage of this process. Several strategies such as
morpho-physiological, biochemical, cytological, and DNA-based molecular markers approaches have
been employed to maintain the genetic constancy of the in vitro regenerated plantlets. Detection of
the genetic homogeneity in micropropagated plants using molecular techniques could be achieved
with polymerase chain reaction (PCR)-based techniques such as random amplified polymorphic DNA
(RAPD) and inter simple sequence repeat (ISSR) [43,44]. For plant crops that are difficult to breed
or have a poor genetic basis, somaclonal variation can be a very useful option for breeders as a new
option [45]. Indirect plant regeneration is carried out by organogenesis or embryogenesis in two steps.
In the first step, callus is induced, followed by the second stage, in which the shoot meristems or somatic
embryos are initiated from the callus tissues, resulting in an organ formation [6,46]. Choosing the
right explant, medium, phytohormones, genotype, carbohydrate, and gelling agent, as well as some
other agents such as light regime, temperature, and humidity, noticeably affects organogenesis and
embryogenesis processes [29]. Shoot clumps can be regenerated from shoot tips or bud stems that have
only one bud, various mature somatic tissues, pollen, and protoplasts [6,47,48]. Protoplasts possess
the ability to develop new cell wall and to regenerate complete plants when grown in an appropriate
culture medium. Crop improvement could be facilitated by genome editing in regeneration from
protoplasts [49]. By genome editing, it is possible to modify genome sequences as well as modify
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the arrangement of gene expression patterns in a pre-specified area of an organism. Genome editing
covers wide spectra of techniques applying either a site-specific recombinase (SSR) or site-specific
nuclease (SSN) system. Genome editing is speedy with a very low hazard of unforeseen effects, and can
be employed with any crop, even those that have complex genomes and are difficult to breed [50].
Modulation of phytohormone types, ratio, and concentration has been applied as an efficient approach
to optimize organogenesis [51,52].

Somatic embryos have been reported to regenerate from a different type of explants, such as
leaf explants [53,54], root explants [55], glandular trichomes [56], or haploid cells resulting from
cell meiosis of both male and female gametophyte [57], or even fully differentiated stomatal guard
cells [58]. Somatic embryogenesis is a more preferred pathway than organogenesis in mass propagation
owing to the higher proliferation rate, more convenient use of liquid culture medium, the handling
of a large number of embryos at a time, and more possibilities for applying bioreactors [59–61].
Homogeneous dispersion of nutrients and better uptake of medium constitutes by the explants is
one of the advantages of liquid culture compared with solid culture medium, which subsequently
causes further growth of the cultures in a suitable bioreactor system [62]. However, the most
important drawback of liquid culture is overproduction of regenerations showing a higher rate
of hyperhydricity [62]. Hyperhydricity can also be accelerated by exposing explants to different
stresses or unsuitable growth regulator treatments [37]. The direct somatic embryogenesis process
involves induction, maintenance of embryogenic cultures, embryo development and maturation,
embryo germination, and plant regeneration [63,64]. Since the first report on carrot in 1958 [65],
many plant species have been reported to produce somatic embryogenesis. Figure 1 shows morphology
of different stages during plant organogenesis in Nicotiana rustica. Although in vitro regeneration
techniques via somatic embryogenesis have been optimized for many crops, some important crop
species, such as Hemerocallis sp L. [66] and Corylus avellana L. [67], are still difficult to multiply in vitro.
Therefore, understanding the physiological, cellular, and molecular mechanisms of plant regeneration
is important to address unanswered fundamental questions in cell and developmental biology.
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Figure 1. Morphology of different stages during plant organogenesis in Nicotiana rustica. (A) Root
regeneration from callus tissue. (B) Shooty callus. (C) Embryo regeneration from callus tissue.
(D) Compact callus (E) Shoot regeneration from callus tissue (F) Shoot clumps regenerated from
a friable callus.
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4. Photoautotrophic Micro-Propagation

Most explants that have chlorophyll and photosynthesize can grow in a sugar-free medium or
photoautotrophic growing condition [68]. This tissue culture technique is also known as photosynthetic
micropropagation or inorganic micropropagation [69]. The high cost of production has limited the
widespread use of micropropagation. Most of these limitations could be attributed to the heterotrophic
characteristics of explants that require growth in a sugar-bearing culture medium. On the other
hand, high relative humidity, high ethylene concentration, as well as low CO2 concentrations around
explants grown in conventional tissue culture systems are other problems with heterotrophic cultures.
Therefore, autotrophic culture is the best option to solve these problems [68,70]. Reduced physiologic
and morphologic abnormalities, minimized biological contamination and prevented plant loss, ease of
rooting, and acclimatization in vitro and in vivo are some important advantages of photoautotrophic
micropropagation. Meanwhile, enhancement in cost for CO2 enrichment and lighting for an efficient
photoautotrophic growth of the plantlets are some of the disadvantages of photoautotrophic
micropropagation [70].

5. Application of Wide-Spectrum Light-Emitting Diodes in Micropropagation

Even in the case of heterotrophic explants that need a sugar source to grow in the culture medium,
the key role of light in the activity of genes and enzymes, as well as the growth of explants, cannot be
ignored [32,71]. So far, various light sources such as high-pressure sodium or fluorescent lamps have
been used in in vitro cultures [72]. Because fluorescent lamps (FL) come in many varieties and provide
a wide spectra of light (350–750 nm), they are used for many plant species, although their drawbacks
include high power consumption, unstable radiation parameters, and noticeable heat emission [73].
LED lighting is more cost effective than fluorescent lamps [74]. Miler et al. [75] reported the ability
to use several light-emitting diodes (LEDs) for the in vitro regeneration of some ornamental plant
species such as Chrysanthemum × grandiflorum, Gerbera jamesonii, Heuchera × hybrida, Ficus benjamina,
and Lamprocapnos spectabilis. Ramirez-Mosqueda et al. [76] tested five types of wavelengths in
plant regeneration in vitro. They concluded that blue light (460 nm) caused longitudinal growth of
regenerated shoots and improved chlorophyll synthesis in the explants.

6. Organogenesis in Response to Explant Wounding

Plant regeneration after tissue damage is termed as de novo organogenesis, in which organs such as
shoots and roots are regenerated from the wound location and detached organs [77]. Organogenesis via
tissue wounding includes three successive steps: (1) in the first step, signals are provided to stimulate
the regeneration process, (2) then phytohormone accumulation is performed, leading to (3) cell fat
transition [2,77]. Given that the regeneration process begins more than the cut end of the explants, the
main induction stimulus for the regeneration phenomenon could be attributed to wound stimuli [2,6,78].
Wounding causes an enhanced cytokinin biosynthesis, which in turn increases cell proliferation and
callus formation [79]. The wound created in the explants not only triggers the production of auxins to
induce cells to regenerate, but also activates signaling pathways that are responsible for the emergence
of root tips [77,80,81]. Recent reports have demonstrated that transcription factor genes are involved
in the wounding process and promotion of root rip emergence. Any factor that interferes with the
signal pathway negatively affects the emergence of adventitious root tips. Finally, it should be noted
that the wound has complex roles in the de novo organogenesis process and that genes regulate the
cellular environment for organ emergence [81].

7. Embryogenesis in Response to Explant Wounding

Somatic embryogenesis is the process in which ectopic embryos is arisen from asexual cells,
without gamete formation, fertilization, or seed development [82]. Phytohormones or abiotic
stresses usually affect embryogenesis from somatic tissues [83]. In addition to hormone-mediated
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somatic embryogenesis-induction, somatic embryos can also be accelerated by overexpression
of specific transcription factor (TF) genes, such as the homeodomain TF WUSCHEL (WUS),
the AP2 TFs PLETHORA 4/BABY BOOM (PLT4/BBM), PLT5/EMBRYO MAKER (PLT5/EMK),
the MADS box TF AGAMOUS-LIKE 15 (AGL15), the LEAFY COTYLEDON genes LEC1, LEC2,
and overexpression of the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1 (SERK1) [84–91].
Recently, Mozgova et al. [92] showed that polycomb repressive complex 2 (PRC2)-activity, known as
an epigenetic processor of developmental phase transitions in plants [93], inflicted an obstacle to
hormone-mediated transcriptional reprogramming to embryogenesis in vegetative tissue of Arabidopsis
thaliana. Discovering molecular mechanisms for controlling the somatic embryogenesis process will be
one of the most important approaches to identify the factors that control in vitro embryogenesis.

8. Cellular Origins and Plant Regeneration

The cellular behaviour studies are very important in plants to differentiate between embryogenic
and nonembryogenic calli [94]. Taha and Wafa [94] investigated cellular behaviour to detect the
somaclonal variations in vitro. However, cellular behaviour in regenerates and intact plants needs to
be evaluated to determine the occurrence of somaclonal variation in the plant regeneration process.

8.1. Changes in Cellular Behaviour during In Vitro Plant Regeneration

Plants possess a greater cellular plasticity than those observed in the other organisms,
which dramatically guarantees the cell’s ability to regenerate [6]. Recent findings on plant tissue and
organ regeneration indicate that a cell may commence follow four regeneration process including cell
death, division, dedifferentiation, and trans-differentiation. These studies have outlined comprehensive
perspectives of regeneration at the cellular level and help a lot to know the regenerative capacity of
plant cells [95].

8.2. Programmed Cell Death in Plants

Programmed cell death (PCD) in plants often occurs as a result of DNA damage, showing
autolytic features, and has a noticeable role in the induction of tissue and organ regeneration [96].
However, the underlying mechanisms responsible for these mechanisms remain largely unknown.
Induction of PCD takes place by some plant-specific transcription factors such as SUPPRESSOR OF
GAMMA RESPONSE 1 (SOG1) and ETHYLENE RESPONSE FACTOR115 (ERF115)-PHYTOCHROME
A SIGNAL TRANSDUCTION1 (PAT1), respectively [97,98]. The induced plant cell death accelerates
regeneration responses, which in turn changes the expression of genes involved in cell division process,
resulting in enhanced cell division [98].

Although it is not clear yet how regenerative cells are induced in response to the cell death,
mechanical disarray caused by cell death, affecting orientation in cell division of appending cells,
reinforces the possibility of mechanical regulation in regeneration process [99,100]. Any cellular
modifications to reduce specialization are called dedifferentiation [101], whereas transdifferentiation is
defined as the jump from one type of specialized cell to another type [102]. Nguyen and McCurdy [103]
asserted that dedifferentiation could be part of transdifferentiation. Because of the property of callus
as proliferating mass of dedifferentiated cells, dedifferentiation is strongly associated with callus
formation. Thus, the formation of callus can be considered as a kind of transdifferentiation [4].
However, identifying dedifferentiation and transdifferentiation remains unexplored, and must be
clarified in future. Besides, the question of whether differentiation and transdifferentiation contribute
to callus formation should be addressed at the cellular level on plant regeneration in the future [2].

8.3. Cell Fate Reprogramming and Pluripotency Acquisition

Pluripotency is defined as the ability of unique cells in the plant’s meristems to become an adult
organism in response to environmental agents [104]. As can be seen in Figure 2, pluripotent cells are
present in the root and shoot apices, where they create cells and tissues, but do not have the capability to
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create an embryo. Vice versa, under different circumstances, a somatic plant cell can dedifferentiate to
generate a totipotent embryogenic cell that has the capability to produce an embryo [105]. According to
Ikeuchi et al. [6], plants’ regeneration process is performed throughout two distinct cellular strategies.
One is by reactivating cells that are not sufficiently differentiated, and the other is by reprogramming
them into somatic cells. In both cases, regeneration relies on the phenomenon of cellular flexibility,
which can be widely specified as the capability to redefine cell fate. Recent findings have demonstrated
that finally differentiated cells can be reprogrammed into pluripotent cells, which corroborate the
reversibility of cell differentiation [104]. Therefore, modulation of signaling pathways may enhance
somatic cell reprogramming. However, the mechanisms by which somatic cells dedifferentiate into
pluripotency are still unknown and need to be addressed.
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8.4. Wound Responses and Signaling during Plant Regeneration

Wounding in the explant is the first incident in plant regeneration [79]. Wound signals such
as electric current, hydraulic pressure, Ca2+, reactive oxygen species (ROS), oligopeptide system,
oligosaccharides, jasmonic acid, salicylic acid, ethylene, abscisic acid, and changes in various metabolic
processes of plant metabolism play a very important role in the regeneration process [106,107].
The results of analysis of the genes downstream of wound signaling indicated that wounding
significantly affects plant regeneration [108,109]. However, information on how the wound signals
affect in vitro plant regeneration is still insufficient [77,109,110]. Ikeuchi et al. [79], using transcriptome
analysis and quantitative hormonal analysis, investigated how wounding causes callus formation
in Arabidopsis (Arabidopsis thaliana). They concluded that wounding changes the gene expression
involved in hormone biosynthesis, resulting in an enhanced accumulation of cytokinin, which is vital
for wound-induced callus formation. Chen et al. [109] reported the involvement of short-term and
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long-term wound signaling in plant regeneration. Short- term wound signaling has three stages of
signal delivery. Stage (1) lasts for a few hours and the wound signal diffuses swiftly from the wound
location to the mesophyll cells and activates YUCCA1 (YUC1) and YUC4 expression in there. In stage
(2), expression of YUCs transcription factors causes the production of auxin within 4 h, and then polar
transmission to regenerating cells around the wound location, which lasts for about 12 h after the
wounding. In stage 3, when auxin reaches regenerating cells, the expression of WUSCHEL RELATED
HOMEOBOX11 (WOX11) and WOX12 causes the cell fate transition to regenerate organs at around 1
to 2 days after wounding [109,111]. During the long-term wound signaling, YUC4 as well as a group
of NAC (NAM, ATAF1 and 2, and CUC2) transcription factor genes including NAC1, which are
present in the cells near to the wound location, are activated. The task of NAC1 is to control the
proliferation process through cell wall metabolism [109]. Expression of YUC4 transcription factors
results in a high auxin accumulation in the regenerating cells [109]. The correlation between activation
of NAC1 and YUC4 to produce auxin remains a mystery that needs to be clarified in the future [109].
Recently, Rymen et al. [112] also showed the main mechanism of epigenetics, which is based on
wound induced cell reprograming of wound healing in plants. They asserted the expression of some
wound-induced transcriptional factors such as WIND1, H3K9/14ac, and H3K27ac immediately after
wounding of explant. However, wounding possesses intricate biological impact and has multiple
tasks in plant regeneration, but how the wound re-activates cell proliferation and accelerates cellular
reprogramming is not very clear yet and needs to be addressed more than ever to clarify all aspects of
these process [79,109].

9. Molecular Basis of Plant Regeneration

9.1. Molecular Mechanisms Involved in Plant Regeneration

Recent progress in molecular techniques has led to a major perception of the underlying processes
of plant regeneration. Depending on the direct or indirect shoot regeneration, the plant cells do not
readily regenerate shoots, unless transferred to a callus or shoot induction medium. In terms of indirect
organogenesis, induced callus simulates lateral root meristem followed by shoot regeneration upon
being transferred to shoot induction medium. However, in direct plant regeneration, in the process
of regenerating a shoot in vitro, somatic cells first respond to phytohormones, then the responsive
cells begin to divide, and eventually new shoots appear [4,33,113]. Cytokines and auxins are the
most pervasive phytohormones, and either directly or indirectly accelerate the shoot regeneration
process. Molecular studies have also shown the presence of important genes in the pathway of
cytokinin signaling in plants [114]. Of the most important receptors for cytokinin are the histidine
protein kinases (AHKs), while the histidine phosphotransfer proteins (AHPs) are responsible for
the transfer of the signal from AHKs, the result of which may be activation or suppression of shoot
regeneration. Several regulatory genes, such as KNOTTED1 (KN1), SHOOT MERISTEMLESS (STM),
WUSCHEL (WUS), and CLAVATA 1-3 (CLV1-3), have been identified in shoot regeneration [115–118].
The shoot regeneration process can be considered as the result of interconnections among cytokinin
receptors, cell cycles, and development of shoot meristem [119,120]. Some transcription factors such
as CUPSHAPED COTYLEDON1 (CUC1) and CUC2 have been reported to be responsible for shoot
meristem regeneration during embryogenesis and are activated through expression of transcription
factors PLT3, PLT5, and PLT7 [121]. The expression of PLT1, PLT2, CUC, CUC2, and WIND1-4 is caused
by wounding results in the attainment of pluripotency at the wounding location of explants [122,123].
When the explants are transferred to the shoot regeneration medium, which is also enriched with
cytokines, the expression of transcription factor SHOOT MERISTEM REGULATOR WUSCHEL (WUS)
results in enhanced shoot regeneration [122,124]. Upon transferring on shoot-inducing medium,
some other transcription factors, such as ENHANCER OF SHOOT REGENERATION1 (ESR1) and
ESR2, which stimulate embryogenesis process and shoot regeneration, are induced by enhancing
CUC1 expression [125]. Root regeneration from explant has been reported to be the result of the
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expression of some transcription factors such as WUSCHEL RELATED HOMEOBOX11 (WOX11) and
WOX12. These transcription factors responsible for rooting induce the expression of LATERAL ORGAN
BOUNDARIES DOMAIN16 (LBD16), LBD29, and then WOX5 in response to auxin-supplemented
medium [6,111]. The family of LBDs and WOX5 also has a role in lateral root development [126].
Some families of the transcription factor AUXIN RESPONSE FACTOR (ARF) have been reported to
activate the expression of WOX11 in root regeneration of leaf samples [111].

9.2. Biochemical Changes during Plant Regeneration

Previous reports demonstrated the involvement of oxidative stress in plant regeneration
process [127,128]. Some of the important events in the plant regeneration process such as programmed
cell death, phytohormone signaling pathways, and differentiation of cells have been reported to
be influenced by reactive oxygen species (ROS) [129]. Although previous studies have pointed to
the dual role of ROS in regenerating plants that are both toxic and accelerating, very little has been
reported on the ROS effects on in vitro plant regeneration [130]. Employing antioxidants in plant
tissues that scavenge ROS negatively affects metabolic pathways in plant cells that are critical for organ
differentiation [130]. Overproduction of ROS has been found to be linked with shoot regeneration and
is needed in the early stages of shoot regeneration [130].

9.3. Somaclonal Variation during Plant Regeneration Process

Natural variation in vitro plant regeneration is a matter of concern to plant breeders.
The uniformity of obtained plants within clone propagation is desired in commercial
plant propagation [131]. However, induction of genetic variability in undifferentiated cells,
isolated protoplasts, callus, and tissues of in vitro obtained plants should not be overlooked [132,133].
Wide spectra of variation in regenerated plants have been shown in banana tissue culture [134,135].
The origin of variation arising from in vitro plant regeneration may be both genetic and
non-genetic [136]. Genetic variation induced in plant regeneration, called somaclonal variation,
is undesirable to propagate true-to-type plants from a selected genotype [45,137]. An understanding of
genetic variability for in vitro plant regeneration process is very beneficial for identifying novel factors
that improve the efficiency of regeneration [138,139]. The most important factors involved in variations
in tissue culture are wounding, explant sterilization, misbalance of media components such as sources of
phytohormones used, sugar source, illumination, and humidity [43,140–142]. Oxidative stress damage
during in vitro plant regeneration may also result in variation [143,144]. Type of tissue source is another
important factor that can cause many variations in the plant regeneration process [135]. The tissues with
higher differentiation properties such as leaf and root explants produce more variations than explants
having meristem such as shoot tips [145]. The existence of somatic mutations in donor plants (existence
of chimera in explants) is another source of variation in plant regeneration [146]. When regenerating
via axillary branching, plants show variation, while the cultures that pass through the callus stage
have a greater chance of variation [147]. Fast proliferation of a tissue in micropropagation process by
shortening the subculture period is one of the items contributing to reducing the rate of variations in
in vitro plant regeneration [148,149]. Meanwhile, the prolong subcultures of in vitro tissues enhances
changes in DNA methylation [150]. Tanurdzic et al. [143] showed that tissue culture may reactivate
silent involved genes, resulting in somaclonal variations. The occurrence of somaclonal variation is also
affected by external agents such as phytohormones (both concentration and the ratio of different plant
growth regulators), temperature, and light intensity of culture media [149–156]. It has been reported
that 2, 4- Dichlorophenoxyacetic acid (2, 4- d) resulted in enhanced DNA ploidy levels and methylation
events in in vitro plant regeneration cultures [157]. Among all factors affecting somaclonal variation,
plant genotype influence can undoubtedly be one of the most important factors influencing variation
arisen from in vitro plant regeneration [154]. Phenotypic, cytological, biochemical, and genetic or
epigenetic observations have been used to characterize somaclonal variation in plant regeneration
systems [133].
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The incidence of somaclonal variation in plant regeneration process has been reported to be the
result of alterations in chromosome number [158], point mutations [159], chromosome breakage and
rearrangement [160], DNA amplification [161], epigenetic variation [142], and separation of pre-existing
chimeras in tissue [141].

9.4. Regeneration Capacity in Response to Epigenetic Mechanisms

Epigenetic regulation has an essential role in cell differentiation, which is a characteristic process
involved in plant regeneration. DNA methylation has been reported as one of the most important
factors in phenotypic changes and is considered as one of the most important epigenetic mechanisms
that play a role in the plant regeneration process [162,163]. Obtaining true-to-type plants is the main
target of large-scale clonal multiplication. Therefore, evaluation of genetic stability using molecular
markers such as RAPD and ISSR must be included [164]. A recent literature review in the field of
epigenetics by Miguel and Marum [164] has shown highly transformative mechanisms of chromatin
remodeling in cell dedifferentiation and differentiation processes. The question to be addressed is
whether epigenetic mechanisms are capable of disrupting cellular programming, which is necessary
for plant regeneration [163]. Epigenetic events cause the expression of specific transcription factors
in the plant regeneration process. The results of several studies showed that cell re-programming is
associated with noticeable modifications in DNA methylation [163,165].

10. Physiological Responses of Plant Regeneration

Although the capability of plant cells to regenerate a perfect plant has long since been known,
the question that needs to be addressed is how a somatic cell can become a whole plant [166].
Regeneration, which involves a wide range of healing from a small cut in the plant to the formation
of an organ, or even a complete plantlet, results widely from physiological responses in plants.
However, the mode of recovery of these missing organs varies considerably among plant species [5,7].
When the proper physiological triggers phytohormones, some stresses including wounding or pathogen
infection are received by the plant, and somatic plant cells begin to create adventitious embryos,
roots, and shoots [78]. The regeneration of plants takes place in three stages. In the first stage,
plant tissue responds to embryogenesis or organogenesis stimuli in a process called dedifferentiation.
It then (second step) enters the induction phase, during which cells are identified to produce shoot,
root, or embryo. The last third step enters the realization stage, which results in the appearance of
shoots, roots, and embryos [167]. Various factors such as environmental constrains, biotic stresses,
and abnormalities affect the occurrence of in vitro plant regeneration, the most important of which
will be described later in this review.

10.1. Developmental and Environmental Constraints on Plant Regeneration

Success in plant regeneration depends on several items such as explant type,
nutrients, phytohormones, temperature, and illumination [168–170]. The regeneration capacity of
an explant varies according to the stage of growth in which the donor plant is located and generally
decreases with the aging of the plants [171]. The regeneration capacity of explants, obtained from
juvenile plants, is much more than mature plants [172,173]. However, decreased regeneration capacity
with age may be attributed to decreased responsiveness to phytohormones [174]. A significant
decrease in expression of a microRNA that controls transferring from the juvenile to adult phase
(miR156) in old plants results in the loss of regeneration capacity of the explants [173,174]. Light is
one of the important environmental agents controlling regeneration in plant cell, tissue, and organ
cultures [175]. Light intensity and quality are important factors that affect shoot regeneration in
micropropagation of several crops [176–178]. LED lighting has been shown to be a suitable option
for in vitro culture of various plant species. In addition to low costs, it provides better growth and
physiological development for plantlets [76]. The efficacy of phytohormones such as their regulation
and metabolism as well as adjustment of endogenous hormone levels is also affected by light [170,179].
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The regulation of endogenous hormonal levels and phytohormones efficacy are also influenced by
light [179]. Explant type, the constituents of media and genotype are important items affecting the
success of in vitro plant regeneration. Several other agents in in vitro regeneration are sugar sources,
gelling agent, and growth ingredients [180–182]. The process of in vitro plant regeneration begins with
the formation of callus and then ends with the induction of shoot formation. During these two stages of
the micropropagation process, the levels required by exogenous phytohormones in the culture medium
may vary. Therefore, the success of in vitro plant regeneration is dependent on explant response by
supplementation of phytohormones in the culture medium [183].

10.2. Biotic and Abiotic Stress Associated with Defense Responses in Regeneration Process

In vitro shoot induction has been reported to be influenced by abiotic stress [184].
Puijalon et al. [185] evaluated the regenerative capacity of rhizome explants in response to some
abiotic stresses such as warm water, hot air, cold water, and sodium chloride (NaCl). On the basis of
their own experiments, they reported positive effects of these stresses. Jose and Thomas [186] also
showed the positive role of abiotic stresses in shoot induction from rhizome segments of Curcuma caesia
in cultures. The methods of gene-profiling have detected some genes that act as molecular signatures
of in vitro plant regeneration. One of these genes discovered in the early step of shoot induction and
regeneration is RAP2.6L (At5g13330), a member of the ERF (ethylene response factor) subfamily B-4
of the ERF/APETALA2 transcription factor gene family. RAP2.6L apparently controls the expression
of many other genes involved in the process of shoot regeneration [113]. Ravindran et al. [187] also
reported the entity of a significant variability between different plant cultivars in terms of plant
regeneration and resistance to biotic and abiotic stresses. The role of nanoparticles (NPs) in plant
tissue culture has also been reviewed by Kim et al. [188]. Callus induction, organogenesis, somatic
embryogenesis, somaclonal variation, genetic transformation, and secondary metabolite production are
positively affected by NPs [188]. Although the benefit of NPs in the omission of microbial contaminants
in plant tissue cultures has been reported to depend on their dimensions, size, distribution, and
type [188], the mechanisms underlying acceleration or inhibition effects of NPs on each above
mentioned factor remain unclear and need to be clarified in the future.

10.3. The Stimulatory Effect of Antibiotics on Plant Regeneration in Tissue Culture

The medium supplemented with antibiotics such as β-lactam antibiotics and tetracycline has
been reported to result in higher regeneration capacity as compared with untreated explants [189,190].
Despite the successful application of antibiotics to suppress bacterial growth in vitro, excessive and
regular use of them is detrimental to the regeneration process and results in a reduced regeneration
ability of tissue cultures [191]. Antibiotics were reported either to hamper [192] or promote explant
growth and development [193,194]. The mechanism of action of antibiotics and their effects on the
regeneration process in plants is not yet clear. However, some antibiotics are thought to follow the
activities of phytohormones, and some even have structures similar to auxin. [192]. The sensitivity of
the explant being cultured in vitro may be specialized for any plant species and generally depends on
the growing conditions, type of culture, and culture system [192]. Therefore, before using any antibiotic
to prevent or minimize the growth of harmful microbes, the type and concentration of antibiotics
with a thorough knowledge of their microbiological activities as well as with the least toxic effects on
the regenerative process should be evaluated [195]. A stimulatory impact of some antibiotics such as
β-Lactam (carbenicillin), cefotaxime, and timentin on in vitro plant regeneration has been previously
reported [195–197].

10.4. Abnormalities in Plant Regeneration Process

In vitro plant propagation (micropropagation) is usually performed based on organogenesis
or somatic embryogenesis. However, the main difficulty in plant regeneration is the large
number of abnormalities of regenerated shoots and embryos that cannot be converted to normal
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plantlets [134,198,199]. The special conditions during in vitro culture result in the formation of
physiologically, morphologically, and anatomically abnormal plantlets, and the understanding of
these in vitro malformations is a precondition to expand an efficient plant regeneration protocol [198].
The signs of abnormalities are often characterized by a weak photosynthetic efficiency, poor stomata
performance, and a significant decrease in reduction of cuticle wax [198]. Genetic or epigenetic
modifications in the DNA are the main cause of abnormalities in somatic embryos (SE). Some external
agents such as phytohormones application, mutagens, or even stressful factors significantly cause
DNA modification. If the abnormality is the result of DNA modifications, it will be very difficult
to reverse. Meanwhile, abnormalities caused by epigenetic modification may be reversible and the
resulting abnormal embryos can regenerate to a perfect plantlet [43,134,199,200].

11. Cytokinin and Auxin Response to Enhance In Vitro Plant Regeneration

Despite the widespread use of micropropagation in many plant species that have great economic
value, the ability of explant used to regenerate an entire plantlet depends greatly on the type of plant
species used. Therefore, a comprehensive knowledge of the mechanisms by which the plantlet is
regenerated is very important. The ratio of auxins to cytokines, depending on the range of plant
species used for micropropagation, plays a very important role in the success of plant regeneration [14].
Signaling pathways in the plant in relation to the effect of phytohormones are one of the important
goals in the direction of genetic manipulation to increase the regenerative capacity of explants in
tissue culture conditions. Histidine-containing phosphotransfer (HPt) protein has been reported to be
responsible for transferring the phosphate signal that regulates the expression of the genes responsible
for cytokine regulation [201]. The enhanced expression of the genes responsible for cytokine regulation
causes hypersensitivity to cytokinin in the multiplication process. By increasing the capacity of explants
to respond to cytokinin, the genes responsible for cytokine regulation could be expressed as a tool to
dominate the recalcitrance of in vitro plant regeneration in some crop species [14,201].

12. Conclusions and Future Perspectives

What we can understand from reviewing past studies is that many of the events that occur during
the plant regeneration process can be controlled by manipulating signaling pathways related to the
interaction of phytohormones, explant wounding, and programmed cell death. Although the key
regulators of hormone signaling pathways have been previously discovered, more work is needed to
understand how they retrieve cell proliferative capacity. We need to address a few questions: how
explants understand and transmit endogenous and environmental signals, and how they induce or
maintain cell differentiation. Moreover, it would be useful to study different mechanisms at both the
molecular and physiological levels by which the explants regulate in vitro regeneration. The prospects
of gene editing in differentiation of recalcitrant plants are as follows: we are still faced with a challenge
of genetic dependence on in vitro plant regeneration via organogenesis, somatic embryogenesis,
androgenesis, and protoplast regeneration. A big question is, can we have a common culture medium
for most of the genotypes of different plants? The application of innovative tools with a multidisciplinary
approach to address issues of in vitro plant regeneration for wider applications in crop improvement,
commercial applications, and secondary metabolites should be investigated.
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