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Abstract: Dihydroartemisinin (DHA), an anti-malarial drug, has been shown to possess potent anti-
cancer activity, partly by inhibiting the mammalian target of rapamycin (mTOR) complex 1 (mTORC1)
signaling. However, how DHA inhibits mTORC1 is still unknown. Here, using rhabdomyosarcoma
(RMS) as a model, we found that DHA reduced cell proliferation and viability in RMS cells, but
not those in normal cells, which was associated with inhibition of mTORC1. Mechanistically, DHA
did not bind to mTOR or FK506 binding protein 12 (FKBP12). In addition, DHA neither inhibited
insulin-like growth factor-1 receptor (IGF-1R), phosphoinositide 3-kinase (PI3K), and extracellular
signal-regulated kinase 1

2 (Erk1/2), nor activated phosphatase and tensin homolog (PTEN) in the
cells. Rather, DHA activated AMP-activated protein kinase (AMPK). Pharmacological inhibition of
AMPK, ectopic expression dominant negative or kinase-dead AMPK, or knockdown of AMPKα at-
tenuated the inhibitory effect of DHA on mTORC1 in the cells. Additionally, DHA was able to induce
dissociation of regulatory-associated protein of mTOR (raptor) from mTOR and inhibit mTORC1
activity. Moreover, treatment with artesunate, a prodrug of DHA, dose-dependently inhibited tumor
growth and concurrently activated AMPK and suppressed mTORC1 in RMS xenografts. The results
indicated that DHA inhibits mTORC1 by activating AMPK in tumor cells. Our finding supports that
DHA or artesunate has a great potential to be repositioned for treatment of RMS.

Keywords: dihydroartemisinin; rhabdomyosarcoma; mTOR; AMPK; PTEN; raptor

1. Introduction

Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma, which often
occurs in the head, neck, bladder, vagina, uterus, arms, legs, and trunk [1]. Approximately
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80% of RMS patients are younger than 15 years old [1]. Histologically, RMS manifests
in two major types, embryonal (ERMS) and alveolar (ARMS) [2]. Morphologically, the
embryonic type resembles to the embryonic muscle cell precursor, whereas the alveolar
type has clusters of round cells similar to lung alveoli [1,2]. Approximately 80% of ARMS
tumors are characterized with the translocations or expression of the PAX3/7–FOXO1 fusion
transcript, resulting in overexpression of receptor tyrosine kinases such as fibroblast growth
factor receptor 4 (FGFR4), hepatocyte growth factor receptor (HGFR, also named MET), and
insulin-like growth factor 1 receptor (IGF-1R) [1,2]. In addition, insulin-like growth factor 2
(IGF-2) is upregulated by PAX3-FOXO1 in RMS, activating the IGF-1R pathway [2]. Hence,
the mammalian target of rapamycin (mTOR) pathway is frequently and constitutively
activated in ARMS tumors, which have higher propensity for metastasis [1,2].

RMS is generally treated with surgery, radiation therapy, and chemotherapy [1,3]. The
5-year survival rate for children having low-to-intermediate-risk RMS ranges from 50%
to 90%, while for high-risk patients (having metastatic or recurrent disease), the 5-year
survival rate is less than 30% [1,2]. The standard chemotherapy regimen for RMS is the
combination of vincristine, actinomycin D, and cyclophosphamide [1,3]. However, these
chemotherapeutic treatments for children have long-term side effects, such as secondary
cancers and infertility [1,3]. In recent clinical trials, targeted therapies and immunotherapies
have shown improvements in the outcomes in patients with RMS, but the clinical benefit
is still limited [4]. Therefore, there is a great need to develop novel systemic treatments,
which have better efficacy with long-term safety, for RMS patients.

mTOR is a central controller for protein synthesis, cell growth, proliferation, and
survival [5,6]. The dysregulation of the mTOR pathway correlates to tumor development
and progression, so mTOR has become a hot target for cancer therapy [5,6]. mTOR functions
as two complexes (mTORC1 and mTORC2) in mammalian cells [5,6]. mTORC1 consists
of mTOR, mLST8 (mammalian lethal with sec-13 protein 8), raptor (regulatory-associated
protein of mTOR), PRAS40 (proline-rich Akt substrate 40), and DEPTOR, whereas mTORC2
is composed of mTOR, mLST8, mSin1, rictor (rapamycin-insensitive companion of mTOR),
mSin1 (mammalian stress-activated protein kinase-interacting protein 1), protor (protein
observed with rictor), and DEPTOR [5,6]. Of note, raptor is essential for the assembly
of mTORC1 and for recruiting mTOR substrates [7]. mTORC1 senses growth factors,
nutrients (amino acids), energy, oxygen, and DNA damage, while mTORC2 primarily
senses growth factors [5,6]. Both mTORC1 and mTORC2 can be positively regulated by the
IGF-IR-phosphatidylinositol-3 kinase (PI3K), which is antagonized by phosphatase and
tensin homolog (PTEN) [5,6]. mTORC1 can also be positively regulated by the Ras-Raf-
MEK-Erk pathway [5,6]. In addition, mTORC1 is negatively regulated by AMP-activated
protein kinase (AMPK) [8]. In response to low energy levels, AMPK is activated, which
can phosphorylate tuberous sclerosis complex 2 (TSC2) at multiple sites (including S1387),
promoting the formation and activation of TSCs [8], which antagonizes Rheb (Ras homolog
enriched in the brain) by hydrolyzing GTP-Rheb to GDP-Rheb, thereby inhibiting Rheb-
mediated mTORC1 [5,6]. Besides, activated AMPK can also phosphorylate raptor (S792),
resulting in the inhibition of mTORC1 [9]. While p70 S6 kinase 1 (S6K1) and eukaryotic
initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) are two well-known substrates of
mTORC1, Akt (S473) is the best characterized substrate of mTORC2 [5,6].

Rapamycin and its analogs (e.g., temsirolimus and everolimus) (termed rapalogs) were
developed as the first generation of mTOR inhibitors [5,6]. Mechanistically, rapalogs do
not impair mTOR’s kinase activity per se but first form a complex with the FK506 binding
protein 12 (FKBP12) and then bind the FKBP12-rapamycin-binding (FRB) domain of mTOR,
disrupting mTORC1 assembly and thus inhibiting mTORC1 [5,6]. However, rapalogs alone
lack efficacy in treating most types of cancer, including RMS [5,6,10,11]. This is possibly
due to the fact that the phosphorylation of 4E-BP1 (cap-dependent translation) is largely
insensitive to rapalogs, and Akt (pro-survival) can be activated by rapalogs via a nega-
tive feedback mechanism [5,12–14]. Recently, mTOR kinase inhibitors (e.g., AZD8055 and
INK128), called the second generation of mTOR inhibitors, have emerged, which compete
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with ATP in the catalytic site of mTOR and inhibit both mTORC1 and mTORC2 [5,6]. How-
ever, prolonged treatment with these inhibitors can also result in re-activation of Akt [15],
highlighting resistance as a key problem that must be tackled by the new generation of
mTOR inhibitors [5].

Dihydroartemisinin (DHA) is a derivative of artemisinin originally isolated from the
plant Artemisia annua [16]. DHA is also the active metabolite of artemisinins, such as
artemisinin, artesunate, and artemether [16,17]. Artemisinins have been widely used to
treat malaria in children and adults showing high efficacy and safety [16–19]. Increasing
evidence has demonstrated that artemisinins also possess potent anticancer effects on
diverse tumor cell lines [19]. Artesunate, a water-soluble artemisinin derivative, has been
in clinical trials for treatments of lung, cervical, breast, and colon cancers [19]. Multiple
anticancer action modes of artemisinins have been described, including the induction of cell
cycle arrest, apoptosis, autophagy, as well as the inhibition of cell invasion/motility and an-
giogenesis [19]. Correspondingly, DHA has been shown to alter the expression/activity of
a variety of signaling molecules, such as MYC, cyclin-dependent kinases (CDKs), vascular
endothelial growth factor receptor (VEGF), focal adhesion kinase (FAK), and hypoxia-
inducible factor 1-alpha (HIF-1α) [19]. Recently, we and others have demonstrated that
DHA inhibits mTOR [20–34]. Since many of those molecules (e.g., MYC, CDKs, VEGF, FAK,
and HIF-1α) targeted by DHA are also directly or indirectly regulated by mTORC1 [5,6],
we proposed that mTORC1 may be a major target of DHA for its anticancer activity, and
DHA is a new inhibitor of mTORC1.

To the best of our knowledge, no study has determined how DHA inhibits mTORC1.
In this study, we evaluated the anticancer activity of DHA in RMS cells in cell culture and
in xenografts in mice. Using RMS as a model, we focused on determining the molecular
mechanism by which DHA inhibits mTORC1 in tumor cells.

2. Materials and Methods
2.1. Materials

DHA (purity: >98% by HPLC; TCI America, Portland, OR, USA) was dissolved in
dimethyl sulfoxide (DMSO) to prepare a stock solution (10 mM), aliquoted and stored
at −20 ◦C. [10−3H]-dihydroartemisinin (specificity activity: 2.5 Ci/mmol; concentration:
1.0 mCi/mL in a hexane:ethanol (v:v, 7:3) solution; radiochemical purity: 98.5%) was
obtained from Moravek Biochemical (Brea, CA, USA). Compound C (EMD Millipore,
Burlington, MA, USA) was dissolved in DMSO to prepare a 10 mM stock solution and
stored at−20 ◦C. RPMI 1640, Dulbecco’s modified Eagle’s medium (DMEM) (high glucose),
DMEM/F12, 0.05% trypsin-EDTA, and Matrigel membrane matrix were obtained from
Corning (Corning, NY, USA), and fetal bovine serum (FBS) was from R&D Systems (Min-
neapolis, MN, USA). For Western blotting or immunoprecipitation, the following antibodies
were used: Erk2, c-Jun, p-c-Jun (Ser63), HIF-1α, REDD1, IGF-1Rβ, p-IGF-1Rβ (Tyr1161),
mTOR, S6K1, S6, PI3K, Akt, β-actin, c-Myc, GAPDH (Santa Cruz Biotechnology, Dallas, TX,
USA), p-Erk1/2 (Thr202/Tyr204), p38, p-p38 (Thr180/Tyr182), p-S6K1 (Thr389), p-AMPKα

(Thr172), AMPKα, p-ACC (Ser79), ACC, p-S6 (Ser235/236), 4E-BP1, p-4E-BP1 (Thr37/46),
p-4E-BP1 (Thr70), PDK1, p-PDK1 (Ser241), PTEN, p-PTEN (Ser380/Thr382/383), p-PI3K
p85 (Tyr458)/p55 (Tyr199), p-Akt (Ser473), mLST8 (GβL) (Cell Signaling Technology, Dan-
vers, MA, USA), raptor, rictor (Bethyl Laboratories, Montgomery, TX, USA), β-tubulin
(Sigma-Aldrich, St. Louis, MO, USA), goat anti-mouse IgG-horseradish peroxidase, and
goat anti-rabbit IgG-horseradish peroxidase (Pierce, Rockford, IL, USA). All other chemicals
were obtained from Sigma-Aldrich (St. Louis, MO, USA) unless specified elsewhere.

2.2. Cell Lines and Culture

Human RMS (Rh30, RD, Rh18, Rh28, Rh36, and Rh41) and Ewing sarcoma cells (Rh1,
also named EW8) which were gifts from Dr. Peter J. Houghton, University of Texas Health
Science Center, San Antonio, TX, USA were grown in RMPI 1640 supplemented with
10% FBS. Human primary skeletal muscle cells (#PCS-950-010, American Type Culture
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Collection (ATCC), Manassas, VA, USA) were cultured in a Mesenchymal Stem Cell Basal
Medium (#PCS-500-030, ATCC) supplemented with Primary Skeletal Muscle Cell Growth
Kit (PCS-950-040, ATCC), while human dermal primary fibroblasts (#PCS-201-012, ATCC)
were grown in a Fibroblast Basal Medium supplemented with Fibroblast Growth Kit-Low
Serum (#PCS-201-041, ATCC); both of them were used within 6 passages. Mouse muscle
myoblasts (C2C12 and ATCC), raptor, rictor-inducible knockout (KO) mouse embryonic
fibroblasts (MEFs, SV40 large T-antigen-immortalized and expressing the Cre/LoxP system)
(gifts from Dr. Michael Hall, University of Basel, Switzerland), and 293A cells (Invitrogen,
Calsbad, CA, USA) were cultured in DMEM supplemented with 10% FBS. To induce the KO
of raptor or rictor, the MEFs were treated with 1 µM 4-hydroxytamoxifen (Sigma-Aldrich)
for 3 days [35]. All cell lines were cultured in a humid incubator (37 ◦C and 5% CO2) and
trypsinized with a 0.05% trypsin–EDTA solution for subculture or experiments.

2.3. Cell Proliferation and Viability Assays

Cell proliferation and viability were evaluated by cell counting and MTS assay, as
described previously [36]. Treatment with DMSO (vehicle) served as a control.

2.4. [3H]-DHA Labeling In Vivo

Rh30 cells were seeded in 100 mm culture dishes (3 × 106 cells/dish) for culture. The
next day, the cells were labeled with 10 µCi [3H]-DHA for 21 h. Subsequently, the cells
were briefly washed with PBS and lysed in an ice-cold CHAPS lysis buffer (40 mM HEPES,
pH 7.4, 120 mM NaCl, 1 mM EDTA, 10 mM pyrophosphate, 10 mM glycerophosphate,
50 mM NaF, 1.5 mM Na3VO4, 0.3% (w/v) CHAPS, and a cocktail of protease inhibitors
(dilution, 1:1000; Sigma-Aldrich). The cell lysates were sonicated for 20 s and centrifuged
at 13,000 rpm and at 4 ◦C for 3 min. The supernatants were transferred to fresh Eppendorf
tubes. The protein concentration in the supernatants was determined using a BCA kit
(Pierce). Supernatants with an equal amount (700 µg) of crude protein were incubated with
30 µL of protein A/G agarose beads and 3 µg of antibodies to goat anti-mTOR antibody
or normal goat IgG on a rotator overnight at 4 ◦C. The agarose beads were collected by
centrifugation at 3500 rpm and at 4 ◦C for 3 min and washed once with 1 mL of an ice-cold
CHAPS buffer and three additional washes with ice-cold PBS. The relative radioactivity
(cpm) of immunoprecipitated products was measured on a Beckman LS6500 scintillation
counter (Beckman Coulter, Fullerton, CA, USA).

2.5. Recombinant Adenoviruses, Lentiviral shRNAs, and Infection of Cells

Recombinant adenoviruses expressing green fluorescent protein (GFP) and MYC-
tagged dominant negative (DN) AMPKα1 (D157A) (Ad-AMPK-DN) were described previ-
ously [37]. Recombinant adenovirus expressing MYC-tagged kinase-dead AMPKα2 (K45R)
(Ad-AMPK-KD) [38] was a gift from Dr. Nicholas J. G. Webster (University of California,
San Diego, CA). For experiments, the cells were infected with and individual adenovirus at
a multiplicity of infection (MOI) of 5 for 24 h. Subsequently, the infected cells were used for
experiments. Cells infected with Ad-GFP served as control. The expression of MYC-tagged
AMPK-DN or AMPK-KD was determined by Western blotting with antibodies to c-Myc.

Lentiviral shRNAs to human raptor, rictor, AMPKα1, and GFP were described pre-
viously [39,40]. For use, monolayer cells, when grown to about 70% confluence, were
infected with an individual lentivirus in the presence of 8 µg/mL polybrene for 12 h twice
at an interval of 6 h. Uninfected cells were eliminated by exposure to 2 µg/mL puromycin
for 48 h before use.

2.6. Western Blotting

Western blotting was performed as described [21].
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2.7. Co-Immunoprecipitation of mTOR and In Vitro mTOR Kinase Assay

Rh30 cells were seeded in 100 mm culture dishes (3 × 106 cells/dish) and grown
overnight. The cells were then treated with DHA (0–30 µM) for 24 h. After aspirating the
used medium, the cells were briefly washed with PBS and lysed in an ice-cold CHAPS lysis
buffer, followed by immunoprecipitation with goat anti-mTOR antibody or normal goat
IgG (as a control). Finally, to detect the interaction of mTOR with raptor, rictor, and mLST8,
the immunoprecipitants were subjected to immunoblotting with antibodies to mTOR,
raptor, rictor, and mLST8, as described [41]. To detect the mTORC1 activity, the above
immunoprecipitants were utilized for the in vitro mTOR kinase assay, as described [41].

2.8. Molecular Docking

The molecular docking studies were performed using Genetic Optimization of Ligand
Docking (GOLD) 5.0 and LibDock [42,43]. The 3-D structures of mTOR and the protein
complex of FKBP12 and the FRB domain of mTOR were taken from the PDB database with
the PDB entries being 4JT5 and 3FAP, respectively [44,45], while the 3-D structure of the
protein complex of AMPK and A-769662 was taken from the PDB database (PDB entry:
4CFF) [46]. Discovery Studio 3.1 (Accelrys, San Diego, CA, USA) software package was
used to prepare the protein structures including adding hydrogen atoms to the protein,
removing water molecules, and assigning force fields (here the CHARMM force field was
adopted). The binding site was defined as a sphere containing residues that remained
within 9 Å (for mTOR) or 10 Å (for AMPK) of the ligand, an area large enough to cover the
ligand-binding region at the domain of proteins. The binding affinity was estimated using
LibDock score and/or GOLD score.

2.9. Study in Rhabdomyosarcoma Xenografts

To study the inhibitory effect of DHA on tumor growth in vivo, artesunate (ART), a
pro-drug of DHA, was used. CB17SC scid−/− female mice (Taconic Farms, Germantown,
NY) were maintained under barrier conditions, and experiments were conducted using
the protocols approved by the institutional animal care and use committee (ethical code
number: LSUHSC-S #P20-003; the date of approval: 30 August 2019). Human Rh30 cells
(6 × 106 cells resuspended in 100 µL of a 1:1 (v:v) solution of serum-free DMEM/matrigel)
were injected into the right flank of each mouse. Seven days later, the animals were
randomized into 5 groups (10 mice/group). Then, the mice were intraperitoneally (i.p.)
injected once daily with artesunate (dissolved in 5% Na2CO3 and diluted in 0.9% NaCl) at
doses of 25, 50, 100, or 150 mg/kg body weight) or with vehicle control, as described [47].
Tumor volume (calculated as: length × width2/2) was determined with a digital caliper
every 2–3 days. At the end of the experiment, all animals were sacrificed, and the tumors
were collected and analyzed.

To study the in vivo effect of DHA on AMPK and mTORC1, female C.B.17SC scid−/−

mice (5–6 weeks old) bearing Rh65 xenografts were treated i.p. with DHA (100 mg/kg
body weight). Following treatment for 2, 4, 8, and 24 h, the mice (3 mice per time point)
were sacrificed, and the tumor tissues were collected, frozen in liquid nitrogen and stored
at –80 ◦C for further analysis. Non-treatment with DHA served as a control. Tumor lysates
were analyzed by Western blotting with indicated antibodies.

2.10. Statistical Analysis

All data were expressed as mean values ± SD. Data were analyzed using Graph-
Pad Prism 6 software (GraphPad Software, La Jolla, CA, USA). Group variability and
interaction were compared using Student’s t-test or one-way ANOVA followed by Bon-
ferroni’s post-tests to compare replicate means. A level of p < 0.05 was considered to be
statistically significant.
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3. Results
3.1. DHA Inhibits Cell Proliferation and mTORC1 Signaling in RMS Cells

To reposition DHA for treatment of RMS, six RMS cell lines (Rh30, RD, Rh18, Rh28,
Rh36, and Rh41) were employed for the growth inhibition assay. As RMS develops
primarily from skeletal muscle cells, normal human primary skeletal muscle cells (HSMCs)
and mouse skeletal muscle cells (C2C12) were used as normal controls. As shown in
Figure 1A, RMS cell lines tested were sensitive to DHA, with the half maximal inhibitory
concentrations (IC50) = 1.89−4.02 µM. In contrast, normal skeletal muscle cells (HSMCs
and C2C12) were resistant to DHA (IC50 > 10 µM). Similar results were observed in
normal human primary dermal fibroblasts (HDFs). The results suggested that DHA, at
pharmacological concentrations (<10 µM), has little effects on normal cell growth and can
selectively target RMS tumor cells.
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deficiency of raptor or rictor in corresponding MEFs (Figure 2B). The KO of raptor inhib-
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Figure 1. Dihydroartemisinin (DHA) inhibits the proliferation of rhabdomyosarcoma (RMS) cells.
(A) Indicated cell lines were exposed to DHA (0−10 µM) for 6 days, followed by cell counting using
a Beckmann Coulter counter. The results are shown as mean values (n = 3). NS, not significant;
* p < 0.05; *** p < 0.001; difference versus vehicle control group. (B,C) Indicated cells were treated with
DHA at indicated concentrations for 24 h, followed by Western blotting with indicated antibodies.

mTOR is a central controller of cell growth, proliferation, and survival [5,6]. Next,
we wondered whether DHA reduction of cell proliferation is related to the inhibition
of mTOR. For this, Rh30 cells and HSMCs were treated with DHA (0–30 µM) for 24 h,
followed by Western blotting. In line with the above growth inhibitory effect (Figure 1A),
the treatment with DHA inhibited mTORC1-mediated phosphorylation of S6K1 and 4E-BP1
in a concentration-dependent manner in RMS (Rh30) cells, but not in normal cells (HMSCs)
(Figure 1B). Consistent with our previous findings in Rh1 and C2C12 cells [21], DHA
treatment did not impact mTORC2-mediated phosphorylation of Akt (S473) in both Rh30
cells and HSMCs (Figure 1B). Similar results were observed in other RMS cells (Rh18, Rh28,
Rh36, Rh41, and RD) (Figure 1C). Of note, the basal phosphorylation levels of S6K1 and
Akt were much higher in RMS cells than in normal cells (HSMCs) (Figure 1C), suggesting
that the mTOR signaling is hyperactive in RMS cells. The results highlight that DHA is a
novel inhibitor of mTORC1.
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Raptor and rictor are essential for the activity of mTORC1 and mTORC2, respec-
tively [5,6]. Loss of mTORC1 or mTORC2 function (KO of raptor or rictor) reduces the
growth rates of cells [35]. If mTORC1 is the major target for DHA-mediated RMS cell
growth suppression, depletion of raptor should confer resistance to DHA. To this end,
lentiviral shRNAs to raptor, rictor, and GFP (control) were employed [40]. Consistent with
our previous report [40], the infection of Rh30 cells with lentiviral shRNAs to raptor and
rictor downregulated the protein levels of raptor and rictor by 90% and 85%, respectively,
in the cells compared to in controls. Similar to KO of raptor or rictor in MEFs [35], the
knockdown of raptor or rictor in RMS cells also inhibited cell proliferation (Supplementary
Figure S1). Of interest, knockdown of raptor, but not rictor, rendered high resistance to
DHA-induced cell growth inhibition in Rh30 and RD cells (Figure 2A). To validate the
finding, SV40 large T-antigen-immortalized raptor and rictor-inducible KO MEFs [35] were
utilized. As expected, the treatment with 1 µM 4-hydroxytamoxifen for 3 days resulted in
the deficiency of raptor or rictor in corresponding MEFs (Figure 2B). The KO of raptor in-
hibited p-S6K1 (T389), while the KO of rictor inhibited p-Akt (S473) in the cells (Figure 2B),
indicating the loss of mTORC1 and mTORC2 in these MEFs, respectively. Following 72 h
treatment with DHA, raptor-WT (wild-type), rictor-WT, and rictor-KO MEFs were sensitive
to DHA (IC50 = 3.71–4.02 µM), whereas raptor KO MEFs were highly resistant to DHA
(IC50 > 20 µM) (Figure 2C). Collectively, these observations support our hypothesis that
DHA may execute its anticancer action primarily by targeting mTORC1 signaling.
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Figure 2. Disruption of mammalian target of rapamycin complex 1 (mTORC1), but not mammalian target of rapamycin
complex 2 (mTORC2), confers high resistance to DHA-induced cell growth suppression. (A) Rh30 and RD cells, infected
with lentiviral shRNAs to raptor, rictor, or GFP (control), were treated with DHA (0−10 µM) for 6 days, followed by cell
counting using a Beckmann Coulter counter. (B) Raptor or rictor-inducible knockout mouse embryonic fibroblasts (MEFs)
were treated with or without 4-hydroxytamoxifen (4-OHT) (1 µM) for 3 days, to generate raptor-WT, raptor-KO, rictor-WT,
and rcitor-KO cells. Western blotting was performed with indicated antibodies. (C) Indicated cells, seeded in 96-well plates
(all at 4 × 103 cells/well), were treated with DHA (0–20 µM) for 72 h, followed by MTS assay. Shown are mean values
(n = 3). NS, not significant; * p < 0.05; ** p < 0.01; *** p < 0.001, difference versus vehicle control group (A,C).
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3.2. DHA Does Not Bind to mTOR or FKBP12

To determine how DHA inhibits mTORC1 signaling, first of all, we investigated
whether DHA binds to mTOR. For this, Rh30 cells were labeled with 10 µCi [3H]-DHA
for 21 h, followed by immunoprecipitation with mTOR antibodies or normal IgG (con-
trol). No significant amount of [3H]-DHA was detected in the immunoprecipitates of
mTOR, compared to in normal IgG (Figure 3), suggesting that DHA does not bind to
mTOR directly.
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Figure 3. DHA does not directly bind to mTOR or FKBP12. Rh30 cells were pretreated with
in vivo labeled with 10 µCi [3H]-DHA for 21 h. The cell lysates were used for immunoprecipitation
with anti-mTOR antibodies or normal IgG (control). Shown is the relative radioactivity (cpm) of
immunoprecipitation products.

It is known that rapamycin firstly forms a complex with FKBP12 and then binds to the
FRB domain of mTOR, inhibiting mTORC1 [5,6]. Next, we wondered whether DHA, such
as rapamycin, inhibits mTORC1 by forming a complex with FKBP12. For this, molecular
docking was performed. We found that DHA had a possibility to bind the interface cavity
of FKBP12 and the FRB domain of mTOR, but the interaction of DHA with the protein
complex was much weaker than that of rapamycin (Figure 4A–D), consistent with the
calculated scoring function values (e.g., LibDock score: 29.72 for DHA vs. 101.40 for
rapamycin) (Table 1). Collectively, our results indicated that DHA does not bind to mTOR
or FKBP12 directly, suggesting that DHA inhibits mTORC1 through indirect mechanism(s).

Table 1. Scoring function values of dihydroartemisinin and rapamycin in molecular docking studies,
in which the agents were docked into the active pocket of FKBP12 (PDB ID: 3FAP).

Compound LibDock Score GOLD Score

Rapamycin 101.40 148.24

Dihydroartemisinin 29.72 92.98

3.3. DHA Does Not Alter the Phosphorylation of IGF-1R/PI3K/PTEN and Erk1/2

Since mTORC1 is positively regulated by the IGF-1R-PI3K-Akt and Ras-Raf-MEK-
Erk pathways but negatively regulated by PTEN [5,6], we further tested whether DHA
inhibits mTORC1 signaling indirectly by altering these upstream regulators in cells. The
treatment with DHA (0–30 µM) for 24 h did not obviously alter the phosphorylation of
IGF-1Rβ (Tyr1161), PI3K p85 (Tyr458), PDK1 (Ser241), and PTEN (Ser380/Thr382), as well
as total cellular levels of these proteins (Figure 5A) and Akt (Figure 1B). Similarly, DHA
did not apparently affect the phosphorylation or total protein level of Erk1/2 in the RMS
cells (Figure 5B). Of note, at high concentrations (10–30 µM), DHA slightly inhibited the
phosphorylation of p38 MAPK (p-p38) in Rh30 cells but moderately activated p-p38 in
RD cells (Figure 5B). In addition, DHA (30 µM) induced the phosphorylation of c-Jun
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(a substrate of JNK) in both Rh30 and RD cells (Figure 5B). Hence, these data imply that
DHA inhibits mTORC1, not by altering the phosphorylation of IGF-1R/PI3K/Akt, PTEN,
and Erk1/2.
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Figure 4. Predicted binding modes of dihydroartemisinin (A,B) and rapamycin (C,D) in the interface cavity of FKBP12 and
the FRB domain of mTOR. The 3-D structure of the protein complex of FKBP12 and the FRB domain was taken from the PDB
database (PDB ID: 3FAP). The calculated binding mode of DHA in the interface cavity of FKBP12 and the FRB domain of
mTOR is shown in (A,B). DHA, namely (3R,12aR)-octahydro-12H-3,12-epoxy[1,2]dioxepino[4,3-i] isochromen-10(3H)-one,
is sandwiched between FKBP12 and the FRB domain of mTOR. Two hydrogen bonds are formed between oxygen atoms of
DHA and residues ARG42 and TYR26 of FKBP12. The seven-membered ring and the two six-membered rings in DHA
form hydrophobic interactions with residues LYS44, PHE46, TYR194, TRP190, PHE128, THR187, and ILE90 in the protein
complex of FKBP12 and the FRB domain of mTOR. For comparison, the binding mode of rapamycin in the interface cavity
of FKBP12 and FRB domain of mTOR (C,D). Obviously, rapamycin forms a much better interaction with FKBP12 than DHA
does. Three hydrogen bonds are formed between rapamycin and FKBP12: the first one corresponds to that formed between
the carbonyl group of rapamycin and the ILE56 residue in FKBP12, and the other two are between two hydroxyl groups
of rapamycin and residues ASP37 and GLN53, respectively. Rapamycin also forms good hydrophobic interactions with
residues TRP190, TYR194, LEU120, PHE197, SER124, GLY129, PHE128, TYR82, LEU56, VAL55, TRP59, PHE39, TYR26,
PHE46, and Phe99 in mTOR. Collectively, although DHA has the possibility to bind the interface cavity of FKBP12 and the
FRB domain of mTOR, the interaction of DHA with the protein complex is much weaker than that of rapamycin, consistent
with the calculated scoring function values (see Table 1).
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Figure 5. DHA does not alter the phosphorylation of IGF-1R/PI3K/PTEN and Erk1/2 in tumor cells. (A,B) Rh30 or RD
cells were treated with DHA (0−30 µM) for 24 h, followed by Western blotting with indicated antibodies.

3.4. DHA Does Not Induce HIF-1α/REDD1 Expression, but Triggers AMPK Phosphorylation

As the HIF1-REDD1 and AMPK pathways negatively regulate mTORC1 [8,9,48,49],
next, we asked whether DHA inhibits mTORC1 signaling by activating these two pathways.
To this end, tumor cells were treated with DHA (0–30 µM) for 24 h, followed by Western
blotting. The results showed that the treatment with DHA did not induce the expression of
HIF-1α or REDD1 (regulated in development and DNA damage responses 1) in Rh30 cells
(Figure 6A). As a positive control [37], the treatment with ciclopirox olamine (CPX) induced
the robust expression of HIF-1α and REDD1. Interestingly, DHA treatment induced the
phosphorylation of the catalytic subunit of AMPK (p-AMPKα and T172) in Rh30 cells in a
dose-dependent manner (Figure 6B). Similar results were also observed in Rh1, Rh18, Rh28,
Rh36, Rh41, and RD cells (Figure 6C,E). Since DHA did not inhibit mTORC1 in normal
HSMCs (Figure 1B), we also tested whether DHA affects p-AMPKα (T172) in this cell line.
As shown in Figure 6D,E, treatment with DHA (0−30 µM) for 24 h had no evident impact
on p-AMPKα in HSMCs. The results suggest that DHA inhibits mTORC1 possibly by
activating AMPK.
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Figure 6. DHA does not induce HIF-1α/REDD1 expression, but triggers AMPK phosphorylation. (A)
Rh30 cells were treated with DHA (0–30 µM) for 24 h, followed by Western blotting with indicated
antibodies. Ciclopirox olamine (CPX) served as a positive control for the induction of HIF1α and
REDD1. (B–E) Indicated cell lines were treated with DHA at indicated concentrations for 24 h,
followed by Western blotting with indicated antibodies.
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3.5. DHA-Induced Activation of AMPK Contributes to the Inhibition of mTORC1

To investigate the relationship between the DHA-induced inhibition of mTORC1 and
the activation of AMPK, a time-course experiment was performed. When Rh1 cells were
treated with DHA (5 µM) for 0–12 h, the phosphorylation level of AMPKα increased in a
time-dependent manner. The phosphorylation of AMPKα was modestly induced at 8 h
and robustly induced at 12 h, which matched well with the inhibition pattern on mTORC1
(Figure 7A). The results suggest that DHA-induced mTORC1 inhibition may be associated
with activation of AMPK.
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Figure 7. DHA-induced activation of AMPK contributes to inhibition of mTORC1. (A) Rh1 cells were
treated with DHA (5 µM) for indicated time, followed by Western blotting with indicated antibodies.
(B) Rh1 cells were pretreated with or without Compound C (CC) (5 µM) for 2 h, and then exposed
to with or without DHA (5 µM) for 24 h, followed by Western blotting using indicated antibodies.
(C) Rh30 cells were infected with recombinant adenovirus expressing myc-tagged dominant negative
(DN) AMPK (Ad-AMPK-DN) or GFP (Ad-GFP) for 24 h, and then treated with DHA (0−30 µM) for
another 24 h, followed by Western blotting with indicated antibodies. (D) Rh30 cells, infected with
lentiviral shRNA to human AMPKα1 or GFP, were treated with DHA (0−30 µM) for 24 h, followed
by Western blotting with indicated antibodies.

To validate whether DHA-induced activation of AMPK contributes to inhibition of
mTORC1, Rh1 cells were pre-treated with or without compound C (a selective inhibitor
of AMPK) for 2 h and then exposed to DHA (5 µM) for 24 h. As predicted, pretreatment
with compound C remarkably attenuated DHA-induced p-AMPKα (Figure 7B). Of interest,
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the inhibition of AMPK profoundly prevented DHA from inhibiting the phosphorylation
of S6K1 and S6 (Figure 7B). Similar results were observed in Rh30 cells (Supplemen-
tary Figure S2). These data support that AMPK activation is involved in DHA-induced
mTORC1 inhibition.

To corroborate the above finding, Rh30 cells were infected with a recombinant aden-
ovirus expressing DN AMPKα (Ad-AMPK-DN), kinase-dead AMPKα (Ad-AMPK-
KD) [37,38], or GFP (Ad-GFP, control) for 24 h, and then treated with DHA for another
24 h. As anticipated, ectopic expression of AMPK-DN or AMPK-KD, but not GFP, at-
tenuated DHA-induced phosphorylation of ACC (S79), a substrate of AMPK (Figure 7C;
Supplementary Figure S3), suggesting that both Ad-AMPK-DN and Ad-AMPK-KD were
working well in the cells. Importantly, expression of AMPK-DN or AMPK-KD did ren-
der high resistance to the inhibitory effect of DHA on mTORC1 in the cells (Figure 7C;
Supplementary Figure S3). Furthermore, similar results were observed in Rh30 cells when
AMPKα1 was knocked down with lentiviral shRNA to AMPKα1 (Figure 7D). Together, our
results indicate that activation of AMPK plays a critical role in DHA-induced inhibition
of mTORC1.

3.6. DHA Dissociates Raptor from mTOR and Inhibits mTORC1 Activity

Rapamycin inhibits mTORC1 through the rapamycin-FKBP12 binding to mTOR,
which results in the dissociation of raptor from mTOR, thereby inhibiting the mTORC1
function [7]. Having observed that DHA did not bind to mTOR (Figure 3), we further
investigated whether DHA disrupts mTORC1. For this, Rh30 cells were treated with
or without DHA (3 µM) for 24 h, or rapamycin (100 ng/mL, positive control) for 2 h,
followed by immunoprecipitation with antibodies to mTOR or normal IgG (negative
control). By immunoblotting, as expected, rapamycin did not obviously affect the binding
of mTOR to mLST8 or rictor but dramatically reduced the interaction of mTOR with
raptor (Figure 8A). Interestingly, DHA acted in the same way, although 3 µM of DHA did
not cause the dissociation of raptor from mTOR so potently as 100 ng/mL of rapamycin
(Figure 8A). The effect of DHA on the mTOR–raptor complex (mTORC1), but not the
mTOR–rictor complex (mTORC2), was in line with our finding that DHA inhibits mTORC1-
mediated phosphorylation of S6K1 and 4E-BP1 but does not affect mTORC2-mediated
phosphorylation of Akt (Figure 1B).

As raptor is essential for the mTORC1 function [5,6], we further assessed the effect of
DHA on the mTORC1 activity by in vitro mTOR kinase assay using recombinant 4E-BP1
protein as a substrate. As expected, the treatment with rapamycin (100 ng/mL) for 2 h
strongly inhibited the mTORC1 activity in Rh30 cells, as the phosphorylation of 4E-BP1 on
T37/46 and T70 was inhibited by approximately 40% and 70%, respectively (Figure 8B,C).
Of interest, the treatment with DHA (3 µM) for 24 h inhibited the mTORC1 activity as
potently as rapamycin (Figure 8B,C).

3.7. Artesunate Inhibits Tumor Growth, Suppresses mTORC1 and Activates AMPK in
RMS Xenografts

Artesunate, a pro-drug of DHA, has been in clinical trials for treatments of lung, colon,
breast, and cervical cancer in adults [19]. To assess the potential of DHA for treatments
of RMS, we evaluated the anticancer activity of artesunate in Rh30 xenografts in SCID
mice. The results showed that treatments with artesunate (i.p. once daily at 25, 50, 100,
and 150 mg/kg body weight) for 32 days in a dose-dependent manner inhibited the tumor
growth (volume) of Rh30 xenografts in mice, by 23.6, 50.8%, 70.7%, and 80.3%, respectively,
compared to the vehicle treatment (Figure 9A; Supplementary Figure S4). Artesunate
treatments displayed similar inhibitory effects on the tumor weight (Figure 9B). Of note, no
obvious toxicity was observed in all the treated groups except for the 150 mg/kg group, in
which the average body weight of mice decreased slightly but not significantly (Figure 9C).



Cells 2021, 10, 1363 13 of 20

Cells 2021, 10, x FOR PEER REVIEW 14 of 21 
 

 

plex (mTORC2), was in line with our finding that DHA inhibits mTORC1-mediated phos-
phorylation of S6K1 and 4E-BP1 but does not affect mTORC2-mediated phosphorylation 
of Akt (Figure 1B). 

As raptor is essential for the mTORC1 function [5,6], we further assessed the effect of 
DHA on the mTORC1 activity by in vitro mTOR kinase assay using recombinant 4E-BP1 
protein as a substrate. As expected, the treatment with rapamycin (100 ng/mL) for 2 h 
strongly inhibited the mTORC1 activity in Rh30 cells, as the phosphorylation of 4E-BP1 
on T37/46 and T70 was inhibited by approximately 40% and 70%, respectively (Figure 
8B,C). Of interest, the treatment with DHA (3 μM) for 24 h inhibited the mTORC1 activity 
as potently as rapamycin (Figure 8B,C). 

 

Figure 8. DHA dissociates raptor from mTOR and inhibits mTORC1 activity. (A,B) Rh30 cells were 
treated with or without DHA (3 μM) for 24 h or with rapamycin (Rapa, 100 ng/mL, positive control) 
for 2 h, followed by immunoprecipitation (IP) using antibodies to mTOR or normal IgG (control). 
The immunoprecipitates were then subjected to immunoblotting (IB) with indicated antibodies or 
were used for the in vitro mTOR kinase assay by incubating with recombinant 4E-BP1 protein (as a 
substrate) at room temperature for 30 min, followed by Western blotting with indicated antibodies. 
(C) Semi-quantitative data (mean ± SD) of three independent experiments for (B). a indicates the 
difference with the control group of p-4E-BP1 (T37/46) (p < 0.05); b indicates the difference with the 
control group of p-4E-BP1 (T70) (p < 0.05). 

3.7. Artesunate Inhibits Tumor Growth, Suppresses mTORC1 and Activates AMPK in RMS 
Xenografts 

Artesunate, a pro-drug of DHA, has been in clinical trials for treatments of lung, co-
lon, breast, and cervical cancer in adults [19]. To assess the potential of DHA for treat-
ments of RMS, we evaluated the anticancer activity of artesunate in Rh30 xenografts in 
SCID mice. The results showed that treatments with artesunate (i.p. once daily at 25, 50, 
100, and 150 mg/kg body weight) for 32 days in a dose-dependent manner inhibited the 
tumor growth (volume) of Rh30 xenografts in mice, by 23.6, 50.8%, 70.7%, and 80.3%, re-
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for 2 h, followed by immunoprecipitation (IP) using antibodies to mTOR or normal IgG (control).
The immunoprecipitates were then subjected to immunoblotting (IB) with indicated antibodies or
were used for the in vitro mTOR kinase assay by incubating with recombinant 4E-BP1 protein (as a
substrate) at room temperature for 30 min, followed by Western blotting with indicated antibodies.
(C) Semi-quantitative data (mean ± SD) of three independent experiments for (B). a indicates the
difference with the control group of p-4E-BP1 (T37/46) (p < 0.05); b indicates the difference with the
control group of p-4E-BP1 (T70) (p < 0.05).

To study the in vivo effects of DHA on AMPK and mTORC1, SCID mice bearing with
Rh65 xenografts were treated i.p. with DHA (100 mg/kg body weight). At 2, 4, 8, and
24 h of post-treatment, the mice were sacrificed, and the tumor tissues were collected. Our
Western blotting analysis revealed that treatment with DHA for 8 h remarkably inhibited
p-S6 (S235/236) and p-4E-BP1 (T70) but did not apparently affect p-Akt (S473) in the tumors
(Figure 9D), in line with our in vitro results (Figure 1B). Interestingly, DHA treatment also
time-dependently induced p-AMPK (T172) in vivo (Figure 9D), also consistent with the
in vitro data (Figure 7). The results underline that artesunate or DHA has a great potential
for RMS therapy.
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Figure 9. Artesunate inhibits tumor growth, suppresses mTORC1 and activates AMPK in RMS xenografts. (A–C) C.B.17SC
scid−/− female mice (5–6 weeks old) bearing Rh30 xenografts were treated intraperitoneally (i.p.) with artesunate at the
indicated doses or vehicle (0.9% NaCl) once daily. Tumor volume (A) and body weight (C) were measured at the indicated
time. At the end of the experiment, the mice were sacrificed, and the tumor tissues were dissected and weighed (B). The
data are expressed as the mean ± SD (8–9 mice per group). NS, not significant; a p < 0.05; b p < 0.05; c p < 0.001, difference
with the control group (0 mg/kg of artesunate). (D) C.B.17SC scid−/− female mice (5–6 weeks old) bearing Rh65 xenografts
were treated i.p. with DHA (100 mg/kg). After the treatment for the indicated time, the mice were sacrificed, and the tumor
tissues were collected and frozen in liquid N2. Western blotting was performed with indicated antibodies. Control means
non-treatment with DHA; T1, T2, and T3 represent tumors #1, #2, and #3, respectively.

4. Discussion

Increasing evidence suggests that DHA exerts its anticancer activity primarily by
inhibiting mTORC1 signaling in tumor cells [20–24]. However, how DHA inhibits mTORC1
is unknown. mTOR can be inhibited due to the binding of compounds (either allosterically
by rapalogs or directly by mTOR kinase inhibitors, e.g., INK128 and AZD8055) [5,6].
In addition, mTOR can be inhibited indirectly via multiple mechanisms, including the
inhibition of the IGF-1R-PI3K-Akt and Ras-Raf-MEK-Erk pathways and the activation of
the HIF1-REDD1 and AMPK pathways [5,6]. Recently, Du et al. has shown that DHA
induces autophagy of leukemia cells partly by inhibiting p-mTOR, p-S6K1, and p-S6 and
activating p-AMPK in leukemia (HL60 and THP-1) cells [26], but whether DHA-induced
mTORC1 inhibition is a consequence of AMPK activation has not been resolved. Here, for
the first time, we present evidence that DHA inhibits mTORC1 neither by directly binding
to mTOR or FKBP12 nor by indirectly inhibiting the IGF-1R-PI3K-Akt and Erk pathways
or activating PTEN, HIF-1α, and REDD1. Instead, DHA inhibits mTORC1 by activating
the AMPK pathway in tumor cells. Furthermore, DHA is able to induce the dissociation of
raptor from mTOR and inhibit the activity of mTORC1.

Current chemotherapeutic treatments for pediatric RMS may cause long-term side
effects, such as secondary cancers and infertility [1,3]. Artemisinins have been widely used
for treatment of malaria in children and adults for decades, and their safety is clinically
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proven [16–18]. Especially, artesunate, a pro-drug of DHA, has been in clinical trials for
treatment of lung, colon, breast, and cervical cancer in adults [19]. Therefore, we explored
whether DHA can be repositioned for treatment of RMS. Here, our in vitro and in vivo data
indicate that DHA is able to potently inhibit the growth of RMS by inhibiting mTORC1
signaling. Our findings support that DHA has a great potential for treatment of RMS.

Here, we found that DHA preferably targets RMS tumor cells, but not normal cells
(Figure 1A). The possible reasons are discussed here. One the one hand, it has been
documented that the PAX3/7–FOXO1 fusion in RMS tumor cells results in constitutively
active mTOR signaling [1–3]. RMS cells, unlike normal cells (normal HSMCs), mouse
skeletal muscle cells (C2C12), and normal HDFs, had hyperactive mTOR signaling (see
Figure 1C), so they are apparently addictive to mTOR signaling for growth, proliferation,
and survival. This may be one of the major reasons why DHA preferably targets RMS
cells but not normal cells. On the other hand, as shown in Figure 6, in response to DHA,
AMPK can be activated in RMS cells, but not in normal cells. This may be partly related
to the differential effects of DHA on the cellular levels of ATP in RMS cells and normal
cells. It is well known that AMPK can be activated in response to energy stress [5,6]. In
our study, we observed that treatment with DHA for 18 h reduced the cellular ATP level
in Rh30 cells (Supplementary Figure S5C). Of note, the 24 h treatment with 30 µM of
DHA reduced the intracellular ATP level by 80% (compared to the control) in tumor cells
(Rh30), whereas the same treatment only reduced the ATP level by ~30% in normal cells
(C2C12) (Supplementary Figure S5D), in line with tumor-selective effects of DHA on cell
proliferation/viability and mTORC1. At this stage, we could not rule out other possibilities,
such as differential expression levels of drug efflux transporters (e.g., P-glycoprotein and
multidrug resistance proteins).

In this study, we noticed that the treatment with artesunate dose-dependently inhib-
ited the tumor growth of Rh30 xenografts in mice. The treatment with artesunate (50 and
100 mg/kg) potently inhibited the tumor growth (by 58% and 65%, respectively; p < 0.01),
but had no marked effect on the body weight of the animals, reinforcing the good safety of
artesunate. However, we have to acknowledge that single treatment with artesunate, even
at 150 mg/kg, failed to result in tumor regression (Figure 9), implying that combination
treatments are necessary. Given that the standard chemotherapy for RMS is the combi-
nation of vincristine, actinomycin D, and cyclophosphamide [1,3], it is worthy to further
study whether artesunate synergizes with these chemotherapeutic agents in RMS.

Here, we found that DHA (0−30 µM) did not influence the phosphorylation of Akt
(S473) in RMS (Rh18, Rh28, Rh36, Rh30, Rh41, and RD) cells (Figure 1), which is consistent
with our previous observation in Ewing sarcoma (Rh1) cells [21]. Rapamycin has been
shown to inhibit mTORC1 but induces p-Akt (S473) in RMS cells [40]. These findings
suggest that the effect of DHA on p-Akt is different from that of rapamycin. It is known
that rapalogs inhibit mTORC1 but activate Akt through the S6K1-IRS1 negative feedback
mechanism [12–14]. Rapalogs-activated Akt is regarded as a major drawback contributing
to their mild anticancer activity in most clinical settings, as activated Akt can promote
cancer cell survival [5,6]. A number of clinical trials of artesunate are ongoing for treatments
of various cancers [19]. Since rapalogs alone lack efficacy in treatments of most types of
cancer, including RMS [5,6,10,11], it would be interesting to determine whether DHA or
artesunate, as an anti-cancer agent, is clinically superior to rapalogs.

Of note, a recent report has shown that a treatment with 40 µM of DHA reduces the
protein levels of HIF-1α and p-Akt (S473) in prostate LNCaP cells [30]. This is in contrast
to our results that a treatment with 0.3–30 µM of DHA did not alter the levels of HIF-1α
(Figure 5A) and p-Akt in both Rh30 (Figure 1B) and Rh1 cells [21]. Whether the discrepancy
is due to different concentrations of DHA used remains to be determined. We have noticed
that curcumin at high concentrations (>20 µM), which is clinically irrelevant, is able to
inhibit both mTORC1 and mTORC2 [41].

It has been described that AMPK activation induces phosphorylation of p53 on serine
15 [50] and p53 activation can inhibit mTORC1 [51]. In the present study, we found that
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DHA was able to inhibit mTORC1 in multiple cell lines, of which Rh30, RD and Rh1 cells
expressed mutant p53 alleles (Rh30 Arg273→Cys; RD Arg248→Trp; Rh1: Tyr220→Cys),
losing the function of p53 [21]. Thus, our results suggest that the AMPK-p53 pathway
is dispensable for DHA-induced mTORC1 inhibition. Since activated AMPK can also
inhibit mTORC1 by activating the formation of TSC1/2 complex and/or phosphorylating
raptor (S792) [8,9], to better understand how DHA inhibits mTORC1, further research is
required to define whether the AMPK-TSC and AMPK-raptor pathways are involved in
DHA-induced mTORC1 inhibition.

A new question is that how DHA activates AMPK. Our molecular docking indicates
that although DHA has the possibility to bind the interface cavity of the carbohydrate-
binding module (CBM, also known as the glycogen-binding domain) and the kinase
domain of AMPK, the interactions of DHA with the protein complex are much weaker than
those of A-769662 (a known AMPK activator) [46], consistent with the calculated scoring
function (GOLD scores: 44.73 for DHA vs. 75.77 for A-769662). Further research is needed
to confirm whether DHA is able to bind to α, β, or γ subunit of AMPK or not.

AMPKα (T172) can be activated by liver kinase B1 (LKB1) in response to low levels of
energy (ATP), by transforming growth factor β-activated kinase 1 (TAK1) due to increased
cytokines and/or by calmodulin-dependent kinase kinase β (CaMKKβ) upon elevated
intracellular Ca2+ levels [52–54]. Besides, in response to various stimuli (e.g., oxidative
stress, glucose, tumor necrosis factor-α, and palmitate), AMPKα (T172) can be dephos-
phorylated and inactivated by protein phosphatase 1 (PP1) [55], protein phosphatase 2A
(PP2A) [56–58], protein phosphatase 2B (PP2B, also calcineurin) [59], protein phosphatase
2C (PP2C) [58], and protein phosphatase 5 (PP5) [60]. In our study, we noticed that the
treatment with DHA (0–30 µM) for 24 h did not alter intracellular Ca2+ levels in Rh30
and RD cells. Of interest, 8 h or 24 h treatments with DHA (0−30 µM) induced ROS in
Rh30 cells in a dose-dependent manner (Supplementary Figure S5A,B). In addition, the
treatment with DHA (10 or 30 µM) for 18–24 h significantly reduced the cellular ATP levels
in Rh30 and RD cells (Supplementary Figure S5C,D). Therefore, it would be interesting to
figure out whether DHA-induced activation of AMPK is mediated by any of these kinases
and/or phosphatases.

In the present study, we also observed that DHA induced the dissociation of raptor
from mTOR (Figure 8A). AMPK-mediated phosphorylation of both TSCs and raptor does
not cause disassembly of mTORC1 [5,6]. It has been shown that GRp58/ERp57 is involved
in the assembly of mTORC1 and positively regulates mTORC1 signaling at the cytosol
and the cytosolic side of the ER [61]. Further research is needed to address whether DHA
disrupts mTORC1 by targeting GRp58/ERp57.

5. Conclusions

Here, we showed that DHA inhibited mTORC1 in tumor cells not through direct
binding to mTOR or FKBP12, but via indirect mechanisms. Apparently, DHA altered
neither the phosphorylation of IGF-IR/PI3K/Akt/PTEN and Erk1/2, nor the expression of
HIF1α/REDD1 in tumor cells. Instead, DHA inhibited mTORC1 by activating the AMPK
pathway (Figure 10). Additionally, DHA was able to induce dissociation of raptor from
mTOR and inhibit the activity of mTORC1. To our knowledge, this is the first study to
unveil how DHA inhibits mTORC1 in tumor cells. In addition, our in vitro and in vivo data
demonstrate that DHA has a great potential for RMS treatment. To facilitate repurposing
this anti-malaria agent for RMS treatment, further research is warranted to determine
whether artesunate (alone or in combination with other anticancer agents) is more effective
than rapalogs in mouse tumor models.
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