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Abstract: Cissus rotundifolia Lam. is used as a medicinal herb and vegetable. Flavonoids are the
major components for the therapeutic effects. However, flavonoids constituents and expression
profiles of related genes in C. rotundifolia organs are unknown. Colorimetric assay showed the highest
flavonoid concentration in roots compared to the stem and leaf. Widely target-based metabolome
analysis allowed tentative identification of 199 compounds in three organs. Flavonols and flavones
were the dominant flavonoids subclasses. Among the metabolites, 171 were common in the three
organs. Unique accumulation profile was observed in the root while the stem and leaf exhibited
relatively similar patterns. In the root, six unique compounds (jaceosidin, licoagrochalcone D, 8-
prenylkaempferol, hesperetin 7-O-(6”malonyl) glucoside, aureusidin, apigenin-4′-O-rhamnoside)
that are used for medicinal purposes were detected. In total, 18,427 expressed genes were identified
from transcriptome of the three organs covering about 60% of annotated genes in C. rotundifolia
genome. Fourteen gene families, including 52 members involved in the main pathway of flavonoids
biosynthesis, were identified. Their expression could be found in at least one organ. Most of the
genes were highly expressed in roots compared to other organs, coinciding with the metabolites
profile. The findings provide fundamental data for exploration of metabolites biosynthesis in C.
rotundifolia and diversification of parts used for medicinal purposes.

Keywords: Cissus rotundifolia; flavonoids; metabolites; biosynthesis

1. Introduction

Cissus rotundifolia Lam., a species of Cissus genus within the grape family, native
to Africa, is widely used as a vegetable and medicinal herb [1–4]. As the leaves are rich
in proteins, fatty acids, crude fibers, and minerals [5], C. rotundifolia is regarded as a
probable source of healthy food. Due to its anti-diabetic and anti-parasitic properties,
preparations derived from, leaves, stems, or a whole plant of Cissus rotundifolia Lam.
are used as conventional remedies for diabetes, obesity, malaria, allergies, and bacterial
infections [6–8].
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To further understand its medicinal active ingredients and toxicity, the chemical
constituents of C. rotundifolia, especially phenolic components, were extracted and stud-
ied [9,10]. Said et al. [10] found that methanolic extract of C. rotundifolia had significant
central and peripheral analgesic effects, and their inhibitory effect on paw edema was
better than indomethacin, while the total flavonoids in the extract accounted for 42.5% of
the total phenolic content. Flavonoids possess a wide range of pharmaceutical properties,
such as anti-tumor, antioxidant, anti-inflammatory, and anti-viral properties, as well as
inhibitory properties against blood clots [11–16]. In medicinal plants, flavonoids subclasses,
such as flavones, have been isolated from variable tissues and their medicinal traits have
been reported. In Dracaena cambodiana and Dracaena cochinchinensis, which are used in
Chinese traditional medicine, flavonoids and related metabolites have been isolated, ex-
hibiting antibacterial and growth inhibitory properties [17–19]. Additionally, a flavanone
isolated from Bauhinia variegata Linn. was reported to be effective against human cancer cell
lines [20]. Recently, Alqahtani [21] pioneered and characterized three infrequent C-glycosyl
flavones in C. rotundifolia and determined that 1-O-(4-coumaroyl)-β-D-glucopyranose was
chiefly responsible for the glucose uptake stimulation. Therefore, it can be speculated that
C. rotundifolia flavonoids are among the metabolites leading to their use in the pharma-
ceutical field. However, to our knowledge, there is limited information available about
flavonoids and their biosynthesis process in C. rotundifolia.

As a consequence of the wide range of importance in biological systems and the
medical field, the flavonoids biosynthesis pathway in plants has been widely explored [22].
Although there are several important features regarding modifications or decorative re-
actions of flavonoids still unrevealed, the main trunk biosynthesis pathway is, by and
large, conserved across plant species [23]. Flavonoids are synthesized from phenylanine in
the phenylpropanoid pathway [24–26]. This pathway and flavonoids diversification are
regulated by different transcription factors, such as MYBs, bHLH (basic helix-loop-helix),
WD40 proteins, and WRKYs [27,28], through regulation of expression for genes involved
in this metabolic pathway [29], including phenylalanine ammonia-lyase (PAL), cinnamate-
4-hydroxylase (C4H), 4-coumarate: CoA ligase (4CL), chalcone synthase (CHS), chalcone
isomerase (CHI), dihydroflavonol 4-reductase (DFR), flavonoid 3′-hydroxylase (F3′H),
isoflavone synthase (IFS), flavonoid 3′,5′-hydroxylase (F3′5′H), flavonol synthase (FLS), an-
thocyanidin synthase (ANS), anthocyanidin reductase (ANR), and UDP-glucose: flavonoid
3-O-glucosyltransferase (UFGT). Among these genes, the FLS gene family (FLS1 and FLS2),
encoding for key branching enzymes, were characterized in O. caudatum [30]. Their func-
tionality was reported in activating the conversion of dihydroflavonols to flavonols, as well
as in the hydroxylation of flavanones to dihydroflavonols.

The development and integration of contemporary -omic technologies, including
proteomics, transcriptomics, and metabolomics have enhanced understanding of metabo-
lites biosynthesis mechanism at the molecular level [31,32]. Metabolomics represents the
physiological events at the cellular level through the exploration of cellular metabolites and
has been applied in the detection of low molecular weight metabolites, such as flavonoids
in model plants, crops, and fruits [33–37]. However, associating the metabolome to the
genome is challenging, even in model plants with plentiful genomic resources [38].

Flavonoids are a diverse group of plant secondary metabolites and have been widely
characterized. However, molecular characterization of flavonoids in the Cissus genus is
limited despite the wide range of medicinal applications of its members. For instance,
C. quandrangularis is widely used in the treatment of bone fractures and body weight
management, C. hypoglauca for sore throats, C. assamica to neutralize snake venoms, C.
rubiginosa for anti-diarrhea, and C. rotundifolia for blood sugar management [4]. In the
current work, through the integration of metabolomics and transcriptomic analysis, eluci-
dation of flavonoids components, associated variations in accumulation and expression of
corresponding genes, were explored in three organs (root, leaf, and stem) of C. rotundifolia.
The expression patterns for flavonoids-related genes were also examined in the organs.
This study aims to reveal metabolic variations across organs of C. rotundifolia providing a
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valuable foundation for further exploration of the species and other members in the genus
in modern pharmaceuticals.

2. Results
2.1. Total Flavonoids Content Estimation

To determine the accumulation of flavonoids across C. rotundifolia organs, the concen-
tration of total flavonoids in leaf, stem, and root was measured by colorimetric methods.
The results (Figure 1) showed that root had the highest concentration of total flavonoids,
up to 88.11 mg (RE)/g (DW), followed by the stem (24.82 mg (RE)/g (DW) and leaf
(15.39 mg (RE)/g (DW).

Figure 1. Total flavonoids content for C. rotundifolia organs. Flavonoids content was expressed as the
rutin equivalent mg/g of the dry weight. The data were expressed as mean ± SD for three replicates.
The letters indicate a significant difference at p < 0.05.

2.2. Flavonoids Profiling in C. rotundifolia

A total of 199 compounds were tentatively identified in the 3 organs, including 50
flavonols, 42 flavones, 32 flavone C-glycosides, 17 anthocyanidins, 17 flavanones, 11 fla-
vanols, 8 flavanonols, 6 flavanone C-glycosides, 5 isoflavones, 5 chalcones, 1 aurone, and 5
phenolic acids (Figure 2A). Organ-specific identification of the metabolites was also carried
out identifying metabolites that were shared across organs as well as those unique to
specific organs. In total, 177 metabolites were shared across the three organs with the leaf
having no unique metabolite (Figure 2B). In stem, the two unique metabolites were tricetin,
and homoeriodictyol. On the other hand, six root-specific compounds were detected,
including jaceosidin, licoagrochalcone D, 8-prenylkaempferol, aureusidin, apigenin-4′-
O-rhamnoside, and hesperetin-7-O-(6”-malonyl)glucoside. A comparison of metabolites
abundance across the organs revealed a unique pattern, in which metabolites with higher
abundance in root had variable abundance in stem and leaf tissues. On the other hand,
stem and leaf seemingly shared similar patterns in metabolites, abundance (Figure 3A).
Details of the detected metabolites including the ion abundance and retention time, are
highlighted (Table 1 and Supplementary file S1).
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Figure 2. Flavonoids and phenolic acids tentatively identified. (A) An integrated view of the
identified compounds. The numbers correspond to the compounds in the subclass. (B) Metabolites
unique or shared among the C. rotundifolia organs. The numbers represent the compounds in
each section.

Figure 3. Accumulation profile for tentatively identified compounds. (A) Heatmap showing the
hierarchical cluster analysis for metabolites identified in C. rotundifolia tissues. The colors indicate the
metabolites relative abundance with red indicating high values and green for metabolites with lower
abundance. (B) Stacked bar graph showing the annotation of the identified DAMs between organs.
The y-axis represents the number of compounds and the colors indicate the different subclasses.

Using Pearson’s correlation coefficient, the repeatability among the intragroup samples
was evaluated (Supplementary Figure S1). The rate of contribution of the first two primary
principal components was evaluated in PCA. As expected, the three tissues were separated
into distinct clusters. The results suggest that standard reproducibility for the tissues and
methods used was acceptable allowing further qualitative and quantitative analyses.

2.3. Identification of Differentially Accumulated Metabolites (DAMs)

The metabolites with fold change ≥2 or fold change ≤0.5 between different organs
were selected. In instances where biological duplication was detected in the sample
grouping, metabolites with variable importance in the projection (VIP) ≥1 were selected.
VIP value indicates the influence intensity of the difference between the corresponding
metabolites in the classification of samples in each group in the model. Generally speaking,
the metabolites with VIP ≥ −1 were significantly different. The comparison was carried
out across the three C. rotundifolia organs.
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Table 1. A list of 30 flavonoids tentatively identified in C. rotundifolia tissues.

Metabolite Name Precursor Ion
(Q1) (Da)

Product Ion
(Q3) (Da)

Retention
Time (min) Main Fragments (Da)

Diosmetin (5,7,3′-Trihydroxy-4′-
methoxyflavone)

299.06 256.04 6.1 256.04, 284.03, 299.05, 299.13, 299.06

Quercetin-3-O-galactoside
(Hyperin) 463.1 300.03 4.2 300.03, 301.03, 463.09

Catechin gallate 441.3 289.08 4.2 124.02, 125.03, 169.02, 193.01, 203.07,
245.08, 289.08, 331.05, 441.08

Kaempferol-3-O-rhamnoside
(Afzelin)(Kaempferin) 431 284.04 5 229.05, 227.04, 255.03, 284.04, 285.05,

431.11

Epiafzelechin 275.1 139.04 4.2 107.05, 111.04, 121.06, 139.04, 149.06,
145.06, 173.06, 191.07, 275.09

Delphinidin 303.05 137.02 4.8 137.02, 153.02, 165.02, 129.05, 257.04

Isoorientin-7-O-(6”-p-
coumaroyl)glucoside 757.2 637.16 4.2 147.04, 291.08, 309.09, 329.07, 353.07,

431.1, 449.11, 577.13, 637.15, 757.20

Kaempferol-3-O-
rutinoside(Nicotiflorin) 593.16 285 4.3 285.04, 593.15

Kaempferol-3-arabinopyranoside 419.1 133.05 5 133.05, 287.06

Epicatechin 291 123.05 3.8 119.05, 123.05, 139.04, 147.04, 165.06,
161.06, 179.07, 207.07, 291.09

Isohemiphloin 433.12 313.07 4.2 125.02, 152.99, 211.06, 271.06, 331.07,
343.08, 359.15, 433.23, 433.11, 433.2

Calycosin 285 225.06 5.5 225.09, 242.06, 269.04, 270.05, 285.08

5-Hydroxy-6,7,8,3′,4′-
pentamethoxyflavone

389.1 359.08 7.2 341.08, 359.07, 389.12

Pratensein 301.07 269.04 6.4 167.04, 181.07, 258.05, 269.08, 286.05,
301.07

Aureusidin 287.05 153.02 5.6 153.02, 287.06

5-Hydroxyauranetin 389.1 359.07 7 341.06, 359.07, 389.12

Epigallocatechin 305 219.07 3 125.02, 137.02, 167.03, 165.02, 179.03,
219.07, 221.05, 305.07

Gallocatechin 307 163.04 2.8 123.04, 139.04, 163.04, 177.05, 195.06,
233.06

Kaempferol
(3,5,7,4′-Tetrahydroxyflavone)

285.05 229.05 6.2 151.00, 185.06, 211.04, 229.05,

Naringenin-7-O-glucoside (Prunin) 433 151 4.8 119.05, 151.00, 177.02, 255.03, 271.06,
284.03, 301.03, 417.08, 433.11

Luteolin-8-C-glucoside (Orientin) 449.1 329.07 4 287.06, 299.06, 329.07, 353.07, 383.08,
413.09, 431.10, 449.11

Avicularin(Quercetin-3-O-α-L-
arabinofuranoside) 435.08 303 4.5 303.05, 257.04, 229.05

Quercetin-3-O-arabinoside
(Guaijaverin) 433.08 255.03 4.7 151.00, 179.00, 255.03, 271.02, 300.03,

301.04, 433.08

Isoorientin-7-O-glucoside 611.1 329.07 3.5 299.06, 319.04, 329.07, 383.08, 431.10,
449.11, 465.10, 611.15

Vitexin-7-O-(6”-p-
coumaroyl)glucoside 741.2 415.1 4.4 147.04, 309.11, 313.07, 337.07, 415.10,

433.11, 741.20

Luteolin-7-O-rutinoside 595.16 287.05 4.3 287.06, 449.11

Phloretin 273.08 123.04 6 119.05, 123.04, 167.03, 273.08

Kaempferol-3,7-O-dirhamnoside
(Kaempferitrin) 579.2 433.11 4.3 287.05, 433.11

Quercetin 303.04 229.05 5.6 153.02, 165.02, 229.05, 257.04, 285.04

Kaempferol-3-O-arabinoside
(Juglanin) 417.1 284.03 4.9 227.04, 255.03, 284.04, 285.04, 417.09
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In total 72, 83, and 86 differentially accumulated metabolites were identified for
leaf–vs–stem (L–vs–S), root–vs–leaf (R–vs–L), and root–vs–stem (R–vs–S) respectively
(Supplementary Figure S2). In L–vs–S DAMs, flavones (18) were the majority followed by
flavone C–glycosides (16), and flavonols (11) subclasses. In R-vs-L, flavone C–glycosides
(22) followed by 21 flavonols were detected and there were 15 flavones among others.
Flavonols (24) and flavone C–glycoside (20) were the subclasses with large representation
in root–vs–stem DAMs (Figure 3B).

2.4. Transcript Sequencing and Mapping

Using the Illumina sequencing platform, mRNA libraries were generated for leaf,
stem, and root tissues of C. rotundifolia. The quality of the reads was checked, eliminating
low-quality reads and the adapter sequences. A summary of the sequencing statistics
has been highlighted in supplementary Table S1. The Q-20 values averaged about 96%,
while the GC content ranged between 44% and 47%. Moreover, read mapping ranged
between 84.9–86.6% for leaf, 70–70.5% for root, and 86.5–86.9% for stem (Supplementary
Table S2). A total of 18,427 expressed genes were identified from the transcriptome data of
the three tissues, which covered about 60% of the total annotated genes in the C. rotundifolia
genome (from our research group; the Cissus rotundifolia genome project was deposited at
the National Genomics Data Center (https://ngdc.cncb.ac.cn/; to be released on 1 January
2022, (Accessed on: 25 October 2021)) under the BioProject number PRJCA005006).

2.5. Functional Annotation of Identified Genes

Using the eggNOG platform, functional annotation of identified genes was carried
out. A total of 17,282 (93.8%) C. rotundifolia transcriptome-expressed genes were annotated
to COG, KEGG, and GO functional categories. In total, 48.9% (9010 genes) of all genes
were characterized into GO terms in the three main ontologies, with 17,109 GO functional
terms (Supplementary Figure S3a). The main classes in the major ontologies are listed in
supplementary file S2.

Based on the clusters of orthologous groups of proteins database (COG), a total of
17,282 C. rotundifolia genes were annotated into 25 COG functional groups. Among the 25
COG classes, most of the genes were classified under function unknown (S) (Supplementary
Figure S3b). As was suggested by Galperin et al. [39], the category for uncharacterized
proteins (S) is an important indicator of the progress in the integration of experimental
characterization and digital profiling of protein families. To identify the active biochemical
pathways in C. rotundifolia and improve the understanding of biological functions and
gene interactions, KEGG analysis was carried out. A total of 7452 genes were assigned to
233 KEGG pathways, including metabolism (A091000), which was the dominant pathway
(Supplementary file S3).

2.6. Candidate Genes Involved in Flavonoids Biosynthesis

An analysis of C. rotundifolia transcriptome revealed multiple transcripts that have
been identified to encode enzymes involved in flavonoids metabolism. Most of these genes
have higher expression in root compared to leaf and stem (Figure 4B), which is consistent
with total flavonoids content. A brief schematic chart was developed (Figure 4A) using
the KEGG database and modifying the flavonoids biosynthesis pathway previously de-
scribed [40]. Generally, the initial process of flavonoids metabolism involves the conversion
of phenylalanine through coumaroyl-CoA to chalcones/naringenin by the activation of sev-
eral enzymes that include phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase
(C4H), 4-coumarate CoA ligase (4CL), and chalcone synthase (CHS) through the phenyl-
propanoid pathway. Through the action of shikimate O-hydroxycinnamoyltransferase
(HCT), among other enzymes, coumaroyl-CoA can also be converted to eriodictyol. An-
other enzyme, chalcone isomerase (CHI), catalyzes the cyclization of chalcone naringenin to
naringenins or flavanones, while flavanone 3-hydroxylase (F3H), flavonoid 3′-hydroxylase
(F3′H), and flavonoid 3′5′-hydroxylase (F3′5′H) are involved in the hydroxylation of fla-

https://ngdc.cncb.ac.cn/
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vanones to various flavonol classes. Additionally, flavonol synthase (FLS) also plays a key
role in the conversion of flavanones to the respective flavonols. The number of key genes
encoding for the identified enzymes has been highlighted in Table 2 and compared with
those identified in D. cambodiana. Similar to D. cambodiana [40], no transcripts encoding for
flavone synthase (FNS) were detected from our RNA sequencing analysis.

Figure 4. A schematic representation of phenylpropanoid and flavonoids biosynthesis in C. rotundifo-
lia. (A) Proposed biosynthetic pathway modified from literature and the KEGG pathway database.
The numbers in the brackets after each gene name denotes the number of the respective genes in C.
rotundifolia. (B) Heat map representation for flavonoids biosynthetic-related gene expression patterns.
PAL: phenylalanine ammonia-lyase; C4H: cinnamic acid 4-hydroxylase; 4CL: 4-Coumaric acid: CoA
ligase; CCR: cinnamoyl-CoA; HCT: shikimate-O-hydroxycinnamoyltransferase; CHS: chalcone syn-
thase; CHI: chalcone isomerase; F3H: flavanone 3-hydroxylase; F3′5′H: flavonoid 3′,5′-hydroxylase;
FLS: flavonol synthase; DFR: dihydroflavanol 4-reductase; LDOX/ANS: leucoanthocyanidin dioxyge-
nase/anthocyanidin synthase; ANR: anthocyanidin reductase; LAR: leucoanthocyanidin reductase;
FNS: flavone synthase.

Table 2. Summary of annotated central genes involved in flavonoids biosynthesis in C. rotundifolia and D. cambodiana as
previously reported [40].

Enzyme Gene Designation No. of Annotated
Sequences (C. rotundifolia)

No. of Annotated Sequences
(D. cambodiana)

Phenylalanine ammonia-lyase PAL 7 6
Cinnamic acid 4-hydroxylase C4H 4 1
4-Coumaric acid: CoA ligase 4CL 8 18
Chalcone synthase CHS 1 10
Chalcone isomerase CHI 7 6
Cinnamoyl-CoA CCR 2 -
Flavanone 3-hydroxylase F3H 1 7
Flavonoid 3′,5′-hydroxylase F3′5′H 1 -
Shikimate-O-
hydroxycinnamoyltransferase HCT 6 -

Flavonol synthase FLS 5 10
Dihydroflavanol 4-reductase DFR 1 16
Leucoanthocyanidin
dioxygenase/anthocyanidin synthase LDOX/ANS 2 -

Anthocyanidin reductase ANR 1 -
Leucoanthocyanidin reductase LAR 6 1
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In addition to the phenylalanine branch of flavonoids biosynthesis, an anthocyanin
branch through the action of dihydroflavonol 4-reductase (DFR) catalyzes the conversion
of both dihydroquercetins and dihydromyricetin to either leucocyanidins or leucodel-
phinidins. In our study, enzymes that are involved in this branch of biosynthesis were
identified and include dihydroflavanol 4-reductase (DFR), anthocyanidin reductase (ANR),
and leucoanthocyanidin dioxygenase (ANS/LDOX).

2.7. Validation of RNA-Seq Data Using qPCR

The results from RNA-seq were validated using qPCR to determine the correlation
in expression from the two techniques. In this study, 12 genes involved in flavonoid
biosynthesis were selected for validation (Supplementary Table S3). The primers used were
designed using NCBI Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/
(Accessed on: 25 October 2021)). The primer details have been highlighted in supplemen-
tary Table S4. The qPCR analysis was performed using a 7500 Fast Real-Time PCR system
(Applied Biosystems, Waltham, MA, USA) in a total of 10 µL reaction volume. The Ct value
was determined using the instrument’s software, and the relative quantification of gene
expression was monitored after normalization using actin (CRGY0219113) as the internal
standard. A comparison of the genes expression patterns obtained from RNA-seq and
qPCR was carried out, and the reliability of the RNA-seq was confirmed by the consistency
in the expression trends detected by the two data sets (Supplementary Figure S4).

2.8. Candidate Transcription Factors Related to Flavonoids Biosynthesis

Several enzymatic and regulatory proteins related to flavonoids biosynthesis were
identified and characterized. They included MYB proteins that were involved in the
earlier steps in the pathway, regulating flavonol biosynthesis. In the late stages of the
pathway leading to the production of anthocyanins and proanthocyanins, a complex
of MYB, bHLH, and WD40 proteins (MYB-bHLH-WD40) activated the related genes.
Our analysis identified 262 MYB, 70 bHLH, and 169 WD40 protein transcripts that were
expressed in the three organs. Their expression profiles were examined, and distinct
patterns were observed. Higher expression profiles were observed in roots when compared
with both stem and root tissues for the three protein families (Supplementary Figure S5).
The expression profiles for the transcription factors exhibited a pattern similar to that of
flavonoids and the related genes in the three C. rotundifolia organs.

2.9. Differential Gene Expression between Tissues of C. rotundifolia

To understand the differences in expression of genes across three organs from C.
rotundifolia, we used the FPKM (fragments per kb per million fragments) method to digi-
tally profile the expression of genes between leaf, stem, and root [41]. The profiling was
carried out for root–vs–stem (R–vs–S), leaf–vs–stem (L–vs–S), and root–vs–leaf (R–vs–L).
Differentially expressed genes (DEGs) were reported as those with more than at least a
two-fold- change between organs and with a p-value ≤ 0.05. Most of the DEGs were
identified between root and leaf while a comparison between leaf and stem indicated the
least number of DEGs (Figure 5).

2.10. GO Enrichment and KEGG Pathway Analysis for Differentially Expressed Genes

The identified DEGs were annotated into the three main GO ontologies. The GO anno-
tation details for the DEGs are highlighted in supplementary Table S5. KEGG analysis for
DEGs identified between organs was carried out. Many of the DEGs were associated with
metabolic pathways, including secondary metabolites (B09110), which are an important
part of medicinal plants (Supplementary Figure S6).

Functional characterization of DEGs into GO terms and KEGG pathways improved
our inference about gene expression patterns across the tissues. Basic functions were the
dominant GO terms identified across the board when gene expression levels were compared
between organs. Organ-specific KEGG enrichment was observed. DEGs in leaf were

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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annotated into photosynthesis-related pathways, such as photosynthesis and phenylanine
metabolism, and carotenoid biosynthesis, among others. DEGs in root were highly enriched
in secondary metabolite pathways, including flavonoids (00941), isoflavonoids (00943),
and phenylpropanoid (00940), suggesting more flavonoids concentration in the root.

Figure 5. Statistics of differentially expressed genes across three C. rotundifolia tissues. R, S, and L
represent root, stem, and leaf respectively.

3. Discussion

Although C. rotundifolia is widely used as traditional medicine, and its extract has also
been shown to have anti-diabetic and antioxidant properties, there are few studies on the
specific active ingredients of its extract. The extract of C. rotundifolia leaves using different
solvents, including methanol, acetone, and ethanol, have shown high phenolic content
and antioxidant activity [9]. By analyzing the correlation of antioxidant activities and
total phenols, Al-Mamary [42] postulated that the antioxidant activities of C. rotundifolia
were not only related to total phenol content but also related to structures of phenolic
compounds and primarily related to their hydroxylation and methylation patterns. Using
methanolic extracts from aerial non-flowering tissues of C. rotundifolia, Said et al. [43]
identified 27 compounds that were dominated by 16 phenolics. Among the identified
phenolics, flavanols were the majority. The total flavonoids content from their study using
above-ground tissues was 1.35 mg (QE)/g (DW). In our study, the total flavonoids contents
were 24.82 mg (RE)/g (DW) and 15.93 mg (RE)/g (DW) for stem and leaf, respectively.
The roots had the highest concentration of total flavonoids, suggesting higher potential
compared to the other organs. Our results for leaf and stem were in the same range as
those reported in Cissus quadrangularis and Cissus adnata aerial parts [44–46]. On the other
hand, seven metabolites were identified by Alqahtani et al. [21], including cissoic acid,
which belongs to a rare class of secondary metabolites, and cissuxinoside, which they char-
acterized as a new sucrose diester. Further, their study identified and characterized three
uncommon C-glycosyl flavones. In this study, 194 flavonoids were tentatively identified
in C. rotundifolia, which was more than four times the number of metabolites previously
identified in leaves [9]. We explored flavonoids in C. rotundifolia tissues, including roots
that recorded the highest flavonoids concentration and found 8 tissue-specific metabolites
(Figure 2B). In general, above-ground tissues are used for medicinal preparation in C.
rotundifolia, reporting analgesic, anti-ulcerative, and anti-inflammatory properties [10].
However, unique metabolites identified from roots in our study indicated potential use, for
example jaceosidin [47] for antidiabetic properties, 8-prenylkaempferol for osteogenesis
properties [48], and aureusidin for anti-inflammatory properties, among others. Roots
and other underground plant parts have been examined in other medicinal plants and
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compounds with therapeutic activities reported [49]. Therefore, we postulate that root
tissues of C. rotundifolia can also be sources for medicinal preparations.

Flavonols, flavones, and flavone C-glycosides were the subclasses with most of the
compounds detected in all the organs in this study (Figure 2B). Isoflavones have been
associated with pharmacological effects in human medicine, including in weakening
menopausal hot flashes [50]. Generally, isoflavones are mainly available in legumes confer-
ring protective roles to plants and nodules. However, from our analysis, five isoflavones
with a wide range of pharmaceutical properties, ranging from antioxidants anti-diabetic
to anti-mutagenic, were detected, including, calycosin [51], formononetin 7-O-glucoside
(Ononin) [52], and pratensein [53].

Cissus rotundifolia is a valuable medicinal plant. From our analysis, the species is
enriched with flavonoids. However, limited information has hindered its exploration at
the molecular level. In our study, we provide a transcriptome assembly for C. rotundifolia
and examine the genes related to flavonoids biosynthesis. Digital expression patterns for
candidate genes involved in flavonoids biosynthesis were studied using FPKM (Figure 4B).
Flavonoids biosynthesis-related genes showed unique expression patterns in leaves, stems,
and roots.

Anthocyanidins form an important component of metabolites, playing a key role in
plants response to abiotic stress, as well as in human health, and anthocyanidin reductase
(ANR) is a vital enzyme in their biosynthesis [54]. High expression levels for genes encoding
for enzymes that participate in the flavonoids biosynthesis, such as DFR and ANS, have
been associated with a higher accumulation of anthocyanins [55]. Our analysis detected
two genes encoding for ANS and one for DFR. The three genes were highly expressed
in root compared to other tissues, suggesting their activity in the root, which had the
highest flavonoids concentration among the organs. In Dendrobium officinale, two CHSs
were expressed in all of the tissues, but the expressions were especially high in leaves,
while five DFRs were highly expressed in stems, one in leaves and one in roots, and one
of the two LARs was specifically expressed in stems, and the other one was expressed in
leaves [56]. In grapevine, the mRNA of CHS3 accumulated primarily within the berry skin
of red cultivars throughout coloration, whereas those of CHS1 and CHS2 accumulated
within the leaves and berry skin of both the white and red cultivars [57].

Through a reaction associated with both CHS and CHI, the genes encoding these en-
zymes were reported to be critical in flavonoids biosynthesis and correlated with flavonoids
accumulation [58,59]. A single CHS encoding gene was identified in our study with the
highest expression levels in roots. Moreover, seven CHI encoding genes were identified,
and their expression levels were generally high in the root tissues. The variation in tran-
scription profile for genes encoding these enzymes across tissues of C. rotundifolia could
therefore imply their important role in flavonoids metabolism. Additionally, FLS is a key
enzyme in the conversion of dihydroflavonol to flavonol, thereby associated with the
accumulation of flavonols and their composition [60]. Expression levels for FLS in our
study were variable, with three genes exhibiting higher levels in the leaf while root had
two genes had higher expression levels for FLS encoding genes. The variable expression
levels of FLSs across the three tissues could be suggested to have contributed to the higher
abundance or the diverse flavonol compounds (Figure 2A). Expression levels of other genes
involved in flavonoids biosynthesis have also been linked with flavonoids accumulation
levels [61]. From our analysis, no gene encoding FNS was detected. This is possibly due to
a lack of similarity sequences or due to small-sized transcript fragments, which could not
be detected. Generally, from our study, flavonoids biosynthesis-related genes were highly
expressed in root and lowly expressed in leaf. The combined expression of genes encoding
for these enzymes may partly be associated with the variable concentration of flavonoids
and related metabolites in the tissues of C. rotundifolia.

Transcription factors modulate the expression of genes related to biosynthesis, as
well as accumulation of secondary metabolites, and are therefore critical in the molecular
examination of metabolites accumulation and synthesis [62]. Flavonoids biosynthesis has
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been reported to be regulated by a complex of transcription factors comprising MYB, bHLH,
and WD40 families of transcription factors [63,64]. Examining flavonoids biosynthesis
and accumulation across tissues of Anoectochilus roxburghii, MYB transcription factors
encoding genes were identified and correlated to the observed differential expression and
accumulation of flavonoids-related genes [65]. In E. konishii, MYB unigenes were identified,
and their expression patterns were related to the observed accumulation of metabolites in
different tissues. Specifically, consistent expression patterns were reported for a MYB and
FLS gene, suggesting their role in the observed tissue-specific accumulation of rutin [66].
In our analysis, we identified transcription factor families, including bHLH, MYB, and
WD40. In the root tissues, the three transcription factors were generally highly expressed
when compared with either leaf or stem tissues (Supplementary Figure S5). It can therefore
be suggested that these transcription factors also could have contributed to the observed
flavonoids accumulation patterns across tissues of C. rotundifolia.

4. Materials and Methods
4.1. Plant Materials

Mature stem cuttings of C. rotundifolia were collected from Kenya around the Cheran-
gani hills forest reserve. The duplicate voucher specimens SAJIT Z0041 were deposited
in the Herbarium of Wuhan Botanical Garden, CAS (HIB) and in the Herbarium of the
National museums of Kenya (NMK). The stem cuttings were propagated in pots in the
greenhouse for 60 days, with adequate watering and nutrients under natural lighting
conditions. Mature tissues were collected, rapidly cleaned, and immediately frozen in
liquid nitrogen, after which they were stored at −80 ◦C until use for metabolome anal-
ysis and RNA extraction. For total flavonoids content determination, after cleaning, the
samples were sliced into smaller sections and dried in the oven. The dry material was
milled and sifted through a 40 mesh filter and stored in tubes for use in total flavonoids
content determination. All materials for the study of C. rotundifolia were obtained from a
single individual main rootstock. Three replicates were collected from each tissue for RNA
extraction and metabolomics.

4.2. Metabolome

Sample preparation for metabolomics, extraction, identification as well as quantifica-
tion of the compounds was carried out following conventional procedures developed by
Wuhan Metware Biotechnology Co., Ltd. (https://www.metware.cn/ (Accessed on: 25
October 2021)). The repeatability and reliability of the extraction and detection methods
were evaluated by analyzing the overlapping of total ion current (TIC) by using quality
control samples. The quality control sample was prepared by combining all sample extracts
into a combined sample and was injected after every 10 experimental samples.

4.2.1. Sample Preparation and Extraction

The frozen samples were freeze-dried before grinding using a freeze-dryer (SCIENTZ-
100F/A; Ningbo Scientz Biotechnology Co., Ltd. Ningbo, China). Freeze-dried samples
were crushed using a mixer mill (MM 400, Retsch) with a zirconia bead for 1.5 min at 30
Hz. In total, 100 mg powder was weighed and extracted overnight at 4 ◦C with 1.0 mL
70% aqueous methanol. Following centrifugation at 10,000× g for 10 min, the extracts were
absorbed, (CNWBOND Carbon-GCB SPE Cartridge, 250 mg, 3 mL; ANPEL, Shanghai,
China, https://www.anpel.com.cn/ (Accessed on: 25 October 2021)) eluted, and filtrated
(SCAA-104, 0.22µm pore size; ANPEL, Shanghai, China, https://www.anpel.com.cn/
(Accessed on: 25 October 2021)) before LC-MS analysis.

4.2.2. HPLC Conditions

The sample extracts were analyzed using a LC-ESI-MS/MS system (HPLC, Shim-
pack UFLC SHIMADZU CBM30A system, https://www.shimadzu.com.cn/ MS, Applied
Biosystems 4500 Q TRAP, www.appliedbiosystems.com.cn/ (Accessed on: 25 October

https://www.metware.cn/
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2021)). The analytical conditions were as follows: HPLC: column, waters ACQUITY UPLC
HSS T3 C18 (1.8 µm, 2.1 mm × 100 mm); solvent system, solvent A (water, 0.04% acetic
acid) solvent B (acetonitrile, 0.04% acetic acid); gradient program, 100:0 V(A)/V(B) at 0
min, 5:95 V(A)/V(B) at 11.0min, 5:95 V(A)/V(B) at 12.0 min, 95:5 V(A)/V(B) at 12.1 min,
95:5 V(A)/V(B) at 15.0 min; flow rate, 0.40 mL/min; temperature, 40 ◦C; injection volume:
5 µL. The effluent was alternatively connected to an ESI-triple quadrupole-linear ion trap
(Q TRAP)-MS.

4.2.3. ESI-Q TRAP-MS/MS

Linear ion trap (LIT) and triple quadrupole (QQQ) scans were acquired on a triple
quadrupole-linear ion trap mass spectrometer (Q TRAP; API 4500 Q TRAP LC/MS/MS
System), equipped with an electrospray ionization (ESI) Turbo Ion-Spray interface, oper-
ating in a positive and negative ion mode and controlled by Analyst 1.6.3 software (AB
Sciex). The ESI source operation parameters were as follows: an ion source, turbo spray;
source temperature 550 ◦C; ion spray voltage (IS) 5500 V; ion source gas I (GSI), gas II
(GSII), curtain gas (CUR) was set at 55, 60, and 25.0 psi, respectively; the collision gas
(CAD) was high. Instrument tuning and mass calibration were performed with 10 and
100 µmol/L polypropylene glycol solutions in QQQ and LIT modes, respectively. QQQ
scans were acquired as multiple reaction monitor (MRM) experiments with collision gas
(nitrogen) set to 5 psi. Declustering potential (DP) and collision energy (CE) for individual
MRM transitions were done with further DP and CE optimization. A specific set of MRM
transitions were monitored for each period according to the metabolites eluted within
this period.

4.2.4. Qualitative and Quantitative Analysis of Metabolites

Qualitative analysis of primary and secondary MS data was carried out by comparison
of the accurate precursor ions (Q1), product ions (Q3) values, the retention time (RT), and
the fragmentation patterns with those obtained by injecting standards using the same
conditions if the standards were available (Sigma-Aldrich, St. Louis, MO, USA, http://
www.sigmaaldrich.com/united-states.html (Accessed on: 25 October 2021)) or conducted
using a self-compiled database MWDB (MetWare biological science and Technology Co.,
Ltd. Wuhan, China) and publicly available metabolite databases if the standards were
unavailable. Repeated signals of K+, Na+, NH4+, and other large molecular weight
substances were eliminated during identification. The quantitative analysis of metabolites
was based on the multiple reaction monitoring (MRM) mode. In the quadrupole (Q Trap),
the precursor ions (parent ions) of the target compound were first selected. To eliminate
the interference by non-target substances, the precursor ions were ionized by the collision
chamber forming other fragment ions. Fragment ions were screened through the triple
quadrupole, to select the specific fragment ion while eliminating the interference of the
non-target ions. The characteristic ions of each metabolite were screened through the
QQQ mass spectrometer to obtain the signal strengths. Integration and correction of
chromatographic peaks for similar metabolites in different samples were performed using
MultiQuant version 3.0.2 (AB SCIEX, Concord, ON, Canada). The corresponding relative
metabolite contents were represented as chromatographic peak area integrals. The analysis
was carried out in triplicates for each set sample.

4.3. Determination of Total Flavonoids Content (TFC)
4.3.1. TFC Extraction

Flavonoids extraction was carried out using the methods described by AL-Bukhaiti
et al. [9] for phenolic extraction with minor modifications. The method is based on the
spectrometric determination of the complex formed when flavonoids react with aluminium
chloride for quantification and have widely been accepted. In summary, 1 g ground material
was mixed with 50 mL methanol (90%), soaked for 3 h, and subjected to ultrasonic-assisted
extraction. Following ultrasonic treatment, centrifugation was carried out at 11,000× g

http://www.sigmaaldrich.com/united-states.html
http://www.sigmaaldrich.com/united-states.html


Metabolites 2021, 11, 741 13 of 18

for 10 min and the supernatant was obtained. The extraction process was repeated three
times, and the collected solution was combined. Filtration of the supernatant was carried
out using Whatmann filter paper, and the resulting extract was stored for use in TFC
determination.

4.3.2. Determination of TFC

The total flavonoids content (TFC) was determined using the colorimetric method as
described by Zuo et al. [67], with some modifications. Briefly, 80 µL of twice diluted crude
extract was mixed with NaNO2 (80 µL 5% W/V) solution and then shaken for 6 min. AlCl3
(80 µL 10% W/V) was added and allowed to stand for 6 min. Then, NaOH (400 µL 4%
W/V) solution was added and allowed to react for 15 min. Afterward, the absorbance of
the reaction mixture was read at 510 nm with UV/VIS spectrophotometer with methanol
used as the blank. TFC of each sample was determined from a rutin standard curve, and
the results were expressed in mg of rutin in 1 g dry material.

4.4. Transcriptomics
4.4.1. Total RNA Extraction, RNA Library Construction, and Sequencing

Using the three tissues from C. rotundifolia, RNA was separately extracted using
a general plant total RNA extraction kit (BioTeke Corporation., Ltd. cat. NO RP3301,
Wuxi, China) following the methods by Chomczynski and Sacchi [68]. The extracted RNA
samples were quantified using a NanoDropTM OneC spectrophotometer (Thermo Fisher
Scientific Inc. Waltham, USA.) and the quality was confirmed by agarose gel electrophoresis.
The RNA integrity number (RIN) for the samples was 7.8 for stem and leaf and 7.6 for
root tissue. To generate libraries for Illumina sequencing, Oligo(dT)-attached magnetic
beads were used to purify mRNA. Purified mRNA was fragmented into small pieces
with fragment buffer at an appropriate temperature. First-strand cDNA was generated
using random hexamer-primed reverse transcription, followed by second-strand cDNA
synthesis. Afterward, A-Tailing Mix and RNA Index adapters were added by incubating to
end repair. The cDNA fragments obtained from the previous step were amplified by PCR,
and products purified by Ampure XP Beads, then dissolved in EB solution. The product
was validated on the Agilent Technologies 2100 bioanalyzer for quality control. The double-
stranded PCR products from the previous step were heat-denatured and circularized by
the splint oligo sequence to get the final library. The single-strand circular DNA (ssCir
DNA) was formatted as the final library. The final library was amplified with phi29 to
make a DNA nanoball (DNB) which had more than 300 copies of one molecular. DNBs
were loaded into the patterned nanoarray and paired-end 150 base reads were generated
on the MGISEQ-2000 platform (BGI-Shenzhen, China). Raw data was submitted to the
NCBI sequence read archive (SRA) database (https://dataview.ncbi.nlm.nih.gov/object/
PRJNA728209?reviewer=oeqs1aq76g906vji4doppnf225 (Accessed on: 25 October 2021)).

4.4.2. RNA-Seq Data Analysis and Functional Annotation

Raw sequencing data were first filtered by Trimmomatic (version 0.38), low-quality
reads were discarded, and the reads contaminated with adaptor sequences were trimmed.
Clean reads were then mapped to the reference genome of C. rotundifolia (deposited at
the Genomic Data Center, BioProject PRJCA005006) using TopHat software (version 2.1.1)
with default parameters. Reads mapped to the exon regions of each gene were counted by
Cufflinks (version 2.2.1) and then fragments per kilobase per million fragments (FPKM)
were calculated.

Genes differentially expressed between groups were identified using the Cuffdiff
(version 2.2.1). A p-value cutoff of 0.05 and a fold-change cutoff of 2 were used to judge
the statistical significance of gene expression differences. Gene ontology (GO) (https:
//wego.genomics.cn/ (Accessed on: 25 October 2021)), Clusters of Orthologous Groups
of proteins (COG), and Kyoto encyclopedia of genes and genomes (KEGG) annotation
for expressed genes were implemented by eggNOG software. The visualization of GO
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annotation was by WEGO 2.0 (https://wego.genomics.cn/ (Accessed on: 25 October 2021))
while COG functional groups were visualized using GraphPad Prism version 8.0.0 for
Windows (GraphPad Software, San Diego, CA, USA).

4.4.3. RNA-Seq Data Validation Using qPCR

Total RNA was extracted using a general plant total RNA extraction kit (BioTeke
Corporation Co., Ltd. Cat. # RP3301, Wuxi, China). DNA was removed from the RNA
sample using the RQ1 RNase-Free DNase kit (Promega Cat. # M6101, Beijing, China)
following the manufacturer’s instructions. First-strand cDNA synthesis was carried out
using HiScript® III 1st Strand cDNA Synthesis Kit (Vazyme Biotech Co., Ltd. Cat # R312-01,
Nanjing, China) following the manufacturer’s instructions in a 20 µL total reaction volume.
The qPCR analysis was performed using a 7500 Fast Real-Time PCR system (Applied
Biosystems, MA, USA) in a total of 10 µL reaction volume using ChamQ universal SYBR
qPCR Master Mix (Vazyme Biotech Co., Ltd., Vazyme code: Q711-02, Nanjing, China). The
amplification conditions were 50 ◦C for 20 s, 95 ◦C for 10 min, 40 cycles of 95 ◦C for 15 s,
and 60 ◦C for 1 min. Three biological and two technical replicates per sample were carried
out, and Actin was used as the internal standard. The Ct value was determined using the
instrument’s software, and the relative quantification of gene expression was monitored
after normalization using Actin. The relative transcription levels were calculated using the
∆∆Ct method [69], and leaf was considered as the control tissue for normalized relative
expression.

5. Conclusions

In this study through metabolomic approaches, 194 flavonoids were tentatively iden-
tified in C. rotundifolia. Additionally, 18,427 expressed genes from leaf, stem, and root
transcriptome were identified and mapped onto the C. rotundifolia genome. Regulatory
mechanisms involved in flavonoids accumulation were also explored across the tissues
through comparative analysis of metabolite accumulation and the expression profile for
flavonoids-related biosynthesis genes. In addition to the enzymes involved in the central
flavonoids biosynthesis pathway, which we suggest may have influenced flavonoids accu-
mulation in different tissues of C. rotundifolia, we hypothesize that transcription factors may
also have contributed to the variable flavonoid concentration across tissues. To our knowl-
edge, no prior report has been made on differences in flavonoids accumulation among
different tissues of C. rotundifolia that are used variably for medicinal value. Our study
provides valuable information about flavonoids metabolites and contributes to molecu-
lar research in Cissus rotundifolia, as well as other members in this genus and facilitates
exploration of their medicinal uses.

Supplementary Materials: S1: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11110741/s1. Table S1: Flavonoids metabolites in the tissues of C. rotundifolia. The
table represents the compound identification details including retention time, molecular ions and
fragmentation. Differentially accumulated metabolites are also included, Table S2: GO details for
major sub-ontologies for expressed genes in C. rotundifolia transcriptome, Table S3: KEGG details for
expressed genes for C. rotundifolia, Table S4: qPCR primers. The primers were designed using NCBI
Primer-BLAST. PAL, phenylalanine ammonialyase; C4H, Cinnamate 4-hydroxylase; CHS, chalcone
synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; 4CL, 4-Coumaric acid: CoA ligase;
FLS, flavonol synthase. Table S5: Statistics for GO annotation of DEGs identified in C. rotundifolia,
Figure S1: Overall qualitative and quantitative analysis of metabolomic data. PCA analysis for the 3
C. rotundifolia tissues. The x-axis represents the first primary principal component while the y-axis
represents the second primary principal component. Distinct patterns were observed within different
tissues, Figure S2: Differentially accumulated metabolites (DAMs) among leaf, stem, and root for C.
rotundifolia. (a) Volcano plot representing DAMs in L-vs-S; (b) DAMs in R-vs-L; (c) DAMs in R-vs-S.
The spots represent the DAMs; red for up-accumulated, green for down-accumulated while black for
those not significantly changed, Figure S3: Functional annotation of C. rotundifolia transcriptome. (a)
Gene Ontology (GO) Classification. The three main categories were identified (cellular components,
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molecular function, and biological process). The left y-axis represents the gene percentage while
the right y-axis indicates the number of genes in the categories. (b) COG terms. The genes were
classified into 25 functional categories. The letters represent respective functional categories, Figure
S4: RNA-seq validation by qPCR. The histograms indicate the qPCR results for 12 selected genes
involved in flavonoid biosynthesis in 3 organs of C. rotundifolia. The error bars represent the mean SD
of three biological replicates, Figure S5: Transcription factors expression profile. The expression major
transcription factor families involved in flavonoid biosynthesis were analysed. (a) bHLH transcription
factors, (b) MYB transcription factors, (c) WD40 transcription factors, Figure S6: Classification of C.
rotundifolia identified DEGs to KEGG pathways. (a) Leaf-vs-Stem; (b); Root-vs-Leaf (c) Root-vs-Stem.
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