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Surgical resection, chemotherapy and radiotherapy were, for many years, the only
available cancer treatments. Recently, the use of immune checkpoint inhibitors and
adoptive cell therapies has emerged as promising alternative. These cancer
immunotherapies are aimed to support or harness the patient’s immune system to
recognize and destroy cancer cells. Preclinical and clinical studies, based on the use of
T cells and more recently NK cells genetically modified with chimeric antigen receptors
retargeting the adoptive cell therapy towards tumor cells, have already shown remarkable
results. In this review, we outline the latest highlights and progress in immunotherapies for
the treatment of Diffuse Large B-cell Lymphoma (DLBCL) patients, focusing on CD19-
targeted immunotherapies. We also discuss current clinical trials and opportunities of
using immunotherapies to treat DLBCL patients.

Keywords: monoclonal antibodies, antibody-drug conjugates, bispecific T cell engagers, genetic modification,
engineered T cells, CAR-T cells, CAR-NK cells
INTRODUCTION

The 2016 World Health Organization Classification of Tumors defines Diffuse Large B-Cell
Lymphoma (DLBCL) as a disease originating from mature B-cells, for a large proportion of
which there are no clear and accepted classification criteria. Despite the DLBCL heterogeneity, the
neoplastic cells typically express pan-B-cell markers CD19, CD20, CD22, CD79a, PAX5 (1), paving
the way for the introduction of targeted therapies. Among these, the use of the anti-CD20
monoclonal antibody rituximab represented the cornerstone. Rituximab is a chimeric
monoclonal antibody, whose murine variable regions bind to CD20 on B-cells, while the human
constant regions mediate effector mechanisms (2, 3), such as complement-dependent cytotoxicity
(CDC) and antibody-dependent cellular cytotoxicity (ADCC). Large randomized trials comparing
standard chemotherapy alone to the addition of rituximab showed a clear survival advantage for the
combined immunochemotherapy approach (4–6), leading to the association of chemotherapy to
rituximab as the current standard of care for DLBCL patients (7). Despite the successful history of
anti-CD20 immunotherapy in DLBCL, approximately 40-50% of patients ultimately do not respond
to frontline treatment (8). Several mechanisms of resistance have been hypothesized, including
CD20 loss, expression of CD20 variants lacking the determinants recognized by rituximab, and
polymorphisms of FcgRIIIA negatively affecting effector cell functions (3), making the identification
org February 2022 | Volume 13 | Article 8374571
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of alternative targets for immunotherapy a definitive need.
Among pan-B-cell markers, CD19 is an attractive target due to
both its broad presence through B-cell ontogeny and its
functional role. CD19 is a 95 kDa, type I transmembrane
glycoprotein whose expression starts early in B-cell maturation,
concurrently with immunoglobulin gene D-J regions rearrangement
in Pro-B cells, and ends with terminally differentiated plasma cells
(9). The almost ubiquitous expression among B-cell lymphopoiesis
of CD19 underlines its fundamental role in B-lineage functionality
and commitment (9). In a murine model of B cell lymphoma,
Chung and coworkers demonstrated a correlation between CD19
mRNA levels and the oncogene MYC expression, suggesting a role
of CD19 in lymphomagenesis and arguing that CD19 ligation
through targeted agents could represent a strategy to disrupt
MYC signaling and interfere with oncogenesis (10). At present,
four classes of drugs have been designed to target CD19:
unconjugated monoclonal antibodies (mAb), antibody-drug
conjugates (ADC) and molecules that specifically recruit T-cells,
including bispecific T cell engagers (BiTE) and chimeric-antigen
receptors (CAR).
MONOCLONAL ANTIBODIES

Inebilizumab (MEDI-551) is a humanized, a-fucosylated anti-CD19
antibody developed from the murine HB12b mAb through a two-
step process: 1) HB12b humanization and Fab rearrangement,
respectively to reduce immunogenicity and optimize CD19-affinity
and 2) fucose removal to increase affinity for human CD16/
FcgRIIIA, optimizing antibody-dependent cell cytotoxicity (ADCC)
performed by Natural Killer (NK) cells and macrophages (11).
Interestingly, subsequent observations underlined the role of F/V
158 FcgRIIIA polymorphisms in NK cell-mediated killing: in an in-
vitro assay, heterozygosity for the high-affinity FcgRIIIA (namely,
158V allotype) was sufficient for efficient B-cell leukemia cells killing,
while homozygosity for the weak-binding allotype FcgRIIIA (i.e.
158F allotype) was associated with the absence of activity (12).
Despite a phase 1 trial showing both a good safety profile and some
evidence of activity of single-agent inebilizumab treatment for B-cell
malignancies, including DLBCL (NCT01957579), subsequent
combination studies failed their endpoints, included a phase 1b/2
trial performed using inebilizumab in combination with an anti-PD1
mAb (NCT02271945).

Tafasitamab (MOR208) is an engineered antibody characterized
by two amino acid substitutions, S239D/I332E enhancing FcgR and
C1q binding and, therefore, effector cells recruitment (ADCC) and
complement cascade activation (CDC) (13). In contrast to a-
fucosylated antibodies, the S239D/I332E modification increases
the affinity to all activating FcgR receptors (i.e. FcgRI, FcgRIIA,
and FcgRIIIA) (14) irrespective of the FcgRIIIA-V/F allotype (15). A
phase 2a trial with the single-agent tafasitamab showed promising
activity in 35 patients affected by DLBCL (NCT01685008).
Refractoriness to rituximab or FcgRIII-158F allotype did not
impact tafasitamab treatment efficacy (16). Several combination
trials, mainly with lenalidomide or bendamustine, are testing
Frontiers in Immunology | www.frontiersin.org 2
tafasitamab both in the relapsed and refractory (R/R) patients and
first-line setting. The phase 2 L-MIND trial evaluatedMOR208 plus
lenalidomide for R/R DLBCL (NCT02399085), focusing on the
synergic NK cell-mediated-ADCC observed when MOR208 is
combined to lenalidomide (17), a potent NK cell activator (18). In
this trial, 60% of the patients achieved a response and the median
progression-free survival was 12.1 months (19). Moreover, an
updated analysis showed activity even in high-risk categories (i.e.
previously refractory) and beyond the second line (20). Based on L-
MIND results, the tafasitamab-lenalidomide combination achieved
the FDA approval for the R/R DLBCL. Currently, the phase 3
randomized, frontMIND trial (NCT04824092) aims to test
tafasitamab plus lenalidomide in combination with the first-line
chemotherapy regimen R-CHOP.
ANTIBODY-DRUG CONJUGATES

Denintuzumab mafodotin (SGN-CD19A) is a humanized anti-
CD19 monoclonal antibody conjugated with monomethyl
auristatin F (MMAF), a synthetic analogue of the natural
antimitotic agent dolastatin 10. As a tubulin-binding molecule,
dolastatin exerts its cytotoxic effect through the inhibition of
microtubule assembly and tubulin-dependent GTP hydrolysis,
leading to cell cycle arrest and apoptosis (21). MMAF differs
from another auristatin derivative, monomethyl auristatin E
(MMAE), for a C-terminal modification which is aimed to limit
membrane permeability and reduce bystander and off-target
toxicity (22). A phase 1 study (NCT01786135) demonstrated the
safety of SGN-CD19A in the clinical setting of R/R B-cell NHL,
with 30% of evaluable patients achieving a complete response
(23). Two subsequent studies with denintuzumab mafodotin in
combination with chemotherapy were interrupted with no
further development (NCT02592876; NCT02855359).

Loncastuximab tesirine (ADCT-402): upon ligation, CD19 is
rapidly internalized, making it an ideal target for immune-
conjugates, which carry highly cytotoxic molecules directly
within the cell. ADCT-402 is composed of the humanized anti-
CD19 antibody RB4v1.2 linked with tesirine (SG3249), a drug-
linker which delivers, through lysosomal degradation, the
pyrrolobenzodiazepine (PBD) dimer warhead SG3199. SG3199
forms a covalent bond with the minor groove of DNA (24)
through a minimal distortion of the DNA helix, hence slowing
DNA repair and promoting intracellular persistence (25).
Moreover, once released by damaged CD19+ cells within the
medium, its high permeability allows bystander cytotoxicity,
even among CD19– cells (26). Interestingly, loncastuximab
might not preclude a subsequent CD19-targeted therapy: a
small series of 14 patients who failed loncastuximab conserved
CD19 expression and responded to anti-CD19 CAR-T cells (27).
A phase 1 study (NCT02669017) in patients affected by R/R B-
cell NHLs has shown a good safety profile and encouraging
activity (28), confirmed by the phase-2 LOTIS-2 trial
(NCT03589469), where single-agent loncastuximab achieved
an overall response rate (ORR) of 48%, half of which in
February 2022 | Volume 13 | Article 837457
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complete remission (CR) (29). Loncastuximab is being tested
even in combination with targeted molecules such as ibrutinib,
venetoclax or durvalumab (NCT03684694; NCT05053659;
NCT03685344) in the R/R setting, as well as a first-line agent,
together with chemotherapy (NCT04974996).
BISPECIFIC T CELL ENGAGERS

Blinatumomab (MT103): Bispecific T cell engagers (BiTE)
represent the attempt to engage T cells in a polyclonal fashion,
thus overcoming limits of clonal-specific response. Blinatumomab
is a bispecific antibody composed of four variable domains,
oriented to form two single-chain antibodies (scFvs),
respectively directed against CD19 and CD3 (30). A short
amino acidic linker keeps the two scFvs together and allows
sufficient flexibility for the crosslink (31). Pre-clinical data with
blinatumomab highlighted that T cells, once recruited, are much
more potent effectors than NK cells and monocytes/macrophages;
moreover, both CD8+ and CD4+ T cells can exert cytotoxic
functions, independently of CD28 co-ligation or IL-2 exposition/
exposure (31). The phase 2 study in R/R DLBCL (NCT01741792)
showed remarkable activity and suggested a refinement in its
administration to avoid neurotoxicity (32), a complication already
emerged during phase 1 (NCT00274742). The phase 2/3 trial
(NCT02910063) evaluated blinatumomab as a second-salvage
strategy through a dose-escalating approach, to avoid toxicities.
Despite efficacy (ORR: 36%) in a highly unfavorable cohort, only
46% of patients completed the first cycle, mainly due to
concomitant disease progression (33); the dose-escalating
approach might have hampered efficacy in patients with a
rapidly progressive disease. As a consolidation strategy after the
rituximab-chemotherapy-based first-line, blinatumomab was
remarkably able to convert positive minimal residual disease
(MRD) to negativity (NCT03023878) (33).

TNB-486 CD19/CD3: cytokine releasing syndrome (CRS) and
neurotoxicity can represent life-threatening complications of
CAR-T cells and BiTE therapies, limiting their use especially in
frail patients. TNB-486 is a fully human, CD19/CD3 bi-specific
antibody specifically designed to reduce the cytokine release
from activated CD3+ cells upon engagement. The molecule is
constituted of a high-affinity anti-CD19 heavy chain and a low-
affinity anti-CD3 light chain, the latter with low-activating
potential. In vitro models have demonstrated that the cytokine
secretion (i.e., IL-2, IFN-g, IL-6, IL-10, and TNF) by CD3+ cells is
minimal even at saturating doses for tumor lysis (34, 35). A phase
1 study (NCT04594642) is currently testing TNB-486 for R/R B-
cell non-Hodgkin lymphoma in patients who have received 2 or
more prior lines of therapy.
CAR-CD19 ENGINEERED T CELLS

Chimeric Antigen Receptor – T Cells
Several aspects impact CAR-T cells biology, generating
differences in expansion, persistence, and toxicity. Current
Frontiers in Immunology | www.frontiersin.org 3
evidence about relevant biological variables will be analyzed,
together with a final update on the commercially approved
products for DLBCL.

Chimeric Construct
The extremities of an anti-CD19 CAR construct, in extenso the
extracellular scFv CD19 binding-region FMC63 and the
intracellular CD3z signaling tail, are “fixed components” in the
majority of products. Differences involve the hinge and the
costimulatory domain (CD) which, respectively, optimize
antigen-reach and prevent early exhaustion upon antigen-
ligation. The combination of CD8a-derived hinge &
transmembrane (TM) region with the 41BB CD (8-8-41BB
CAR, adopted for tisagenlecleucel) is common. Alternatives are
a full CD28 sequence (28-28-28 CAR, adopted for axicabtagene)
or a combination of IgG4, CD28, and 41BB (IgG4-28-41BB,
adopted for lisocabtagene). The incorporation of CD28 drives to
a pronounced expansion, a favorable effector:target ratio and a
faster tumoricidal activity, counterbalanced by a prolonged
persistence for 41BB (36). In this view, CAR-T dynamics
might be driven by downstream metabolic pathways: CD28
signaling leads to anaerobic glycolysis, typical of effector T-
cells, 41BB to mitochondrial fatty-acid oxidation, and central-
memory differentiation (37). A higher pro-inflammatory
cytokines release might increase complications in CD28-based
products (38). Interestingly, a clinical trial testing a 28-28-41BB
product showed rates of inflammatory and neurological
complications superimposable to 28-28-28 CAR-Ts, suggesting
that the hinge-TM region, rather than the costimulatory domain,
might be involved in mediating CAR-T-associated toxicity (38).

Manufacturing Process
It is composed of mononuclear cells apheresis and manipulation
into the final product. Despite apheresis cryopreservation allows
major flexibility, concerns may rise about post-thaw viability.
Panch et al. confirmed a reduction of viable T-cells 2 days after
thawing; nevertheless, in the presence of a sufficient apheresis,
anti-CD19 CAR-T generation was not hampered (39). With
regards to the final product, measures can be taken to control the
CAR-T subsets composition and ratios. Sommermeyer et al.
demonstrated that naïve (TN) CD4 and central memory
(TCM) CD8 CAR-T cells have, separately, high anti-CD19
activity. Thus, hypothesizing a synergism, with CD4 producing
IL-2 that activate and expand CD8 cells, they demonstrated that
a fixed 1:1 CAR-T ratio of CD62L+/CD45RO− CD4 TN and
CD62L+/CD45RO+ CD8 TCM has the strongest activity against
CD19 tumors (40).

Lymphodepletion
The lymphodepleting therapy consists in a course of
chemotherapy, administered shortly before the CAR-T
infusion to create a favorable immunological environment.
Indeed, lymphodepletion increases chemotactic factors
(MCP-1) and homeostatic cytokines (IL-2, IL-7 and IL-15),
promotes eradication of regulatory T-cells and myeloid-derived
suppressor cells, and the induction of costimulatory molecules. A
combination of fludarabine and cyclophosphamide is the most
February 2022 | Volume 13 | Article 837457

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Gambella et al. Anti-CD19 Immunotherapies for DLBCL
employed regimen, relying on early trials where the addition of
fludarabine to cyclophosphamide improved CAR-T expansion
and persistence (41–43). Moreover Hirayama et al. demonstrated
an association between higher doses of cyclophosphamide and a
favorable cytokine profile (defined as day 0 MCP-1 and peak IL-7
concentrations) (44).

Commercially Available Anti-CD19
CAR-T Products
Tisagenlecleucel (CTL019)
Tisagenlecleucel represents the first-in-class, autologous anti-
CD19 CAR-T against DLBCL. Its approval followed the results
of the phase 2 trial JULIET (NCT02445248) in R/R DLBCL. The
manufacturing process consists in the lentiviral transduction of
unselected T-cells, cryopreserved after collection (45). The
JULIET trial tested tisagenlecleucel in 93 patients affected by
R/R DLBCL, ineligible for or progressed after hematopoietic
stem-cell transplantation. Half of the infused patients achieved a
response, 40% of which as a complete remission. Promisingly,
65% of treatment-sensitive patients conserve a response (46). A
trial update (47) and real-life experiences (48) support original
data. Several trials involve tisagenlecleucel, included primary
CNS lymphoma (NCT04134117) and pediatric R/R B-cell non-
Hodgkin lymphoma (NCT03610724). The randomized, phase 3
BELINDA trial (NCT03570892) failed its aim to test
tisagenlecleucel earlier as a second-line strategy (49). A phase 3
trial (NCT04094311) is investigating out-of-specification
tisagenlecleucel for commercial release.

Axicabtagene Ciloleucel (KTEX19)
Axicabtagene manufacturing relies on the manipulation of a
fresh apheresis and a gamma-retroviral transduction (50).
KTEX19 was approved following the phase 1/2 study ZUMA-1
(NCT02348216), which exhibited remarkable results in a cohort
of heavily pre-treated patients: 82% achieved a response, 54% a
complete remission. Interestingly, responses were not negatively
impacted by high-risk variables such as high IPI score, bulky
disease and refractoriness to the previous line. A recent update
showed that one-third of patients still in response at 24 months
no longer had circulating CAR-T cells, suggesting that responses
are not dependent on CAR-T persistence over time. Two
multicenter trials are testing axicabtagene for high-risk DLBCL
in an earlier setting: the ZUMA-7 (NCT03391466) as a second
line, and the ZUMA-12 (NCT03761056) as a frontline treatment,
respectively. Recent data from the ZUMA-7 demonstrated
axicabtagene superiority in terms of overall response and risk
of progression/death, in a comparison with a standard second
line treatment comprehensive of high-dose chemotherapy
followed by autologous transplant (51).

Lisocabtagene Maraleucel (JCAR017)
JCAR017 is a fixed 1:1 ratio of CD4 and CD8 cells (40). The
manufacturing process, through which CD4 and CD8 T cells are
separately activated and transduced through a lentiviral vector,
leads to an enrichment in less differentiated, predominantly
memory T-cells (52). The phase 1 TRANSCEND trial
Frontiers in Immunology | www.frontiersin.org 4
(NCT02631044) demonstrated high clinical activity (Response
Rate 73%, Complete Remission 53%) with a low incidence of
moderate/severe CRS and neurological events. The trial allowed
the recruitment of secondary CNS lymphoma: in this subgroup,
lisocabtagene achieved a 50% remission rate without fatal
neurological events (53). A pooled analysis from 3 clinical
trials (NCT02631044; NCT03744676; NCT03483103) in the
outpatient setting provided encouraging data, with 46% of
patients not requiring hospitalization after infusion (54). The
TRANSFORM trial, aimed to compare lisocabtagene with high-
dose chemotherapy followed by autologous stem-cell
transplantation in a second-line setting, demonstrated a
significant improvement in the probability of remission and a
prolongation in event-free survival, in patients with early relapse
or refractory disease (NCT03575351). Despite the need for a
longer follow-up, an improvement in overall survival seems to
emerge (55).
TOWARDS CAR-NK CELLS

In order to overcome the hurdle of manufacturing timelines and
the poor fitness of autologous T cells, two factors that can affect
the CAR-T therapy efficacy, ongoing clinical trials
(NCT03666000, NCT03939026 and NCT04416984) are testing
allogeneic CAR-T products. In particular, treatment with
PBCAR0191, an anti-CD19 CAR-T product in which
endogenous TCR is disrupted by gene editing to prevent
GvHD, together with an intensified lymphodepletion, has
shown clinical benefit in the majority of NHL patients, yielding
high rates of overall and complete response with promising
activity in both CD19 CAR naïve subjects and those who
progressed following auto-CD19 CAR therapy (56, 57). Other
ongoing studies are testing ALLO-501/ALLO-501A, alternative
allogeneic anti-CD19 CAR-T products modified by gene editing
to disrupt the T-cell receptor alpha constant gene and the CD52
gene, respectively to reduce the risk of GvHD and allow the use
of anti-CD52 mAb to delay host T cell reconstitution and graft
rejection, have provided encouraging results (58, 59).

However, CAR-NK cells represent a more appealing
alternative strategy to reduce the disadvantages related to the
production and use of anti-CD19 CAR-T cells.

CAR-NK cells can be prepared in advance to be rapidly
available on demand and, most likely, less capable of inducing
CRS and neurotoxicity. Notably, CAR-NK cells can kill tumor
cells even in a CAR-independent manner by their native
receptors (including NCRs, NKG2D, DNAM-1, and activating
KIRs), counteracting tumor escape mechanism due to lack of
CAR-targeted antigen. Clinical-grade CAR-NK cells can be
manufactured on a large scale starting from multiple sources,
including NK92 cell line, peripheral blood mononuclear cells
(PBMCs), umbilical cord blood (UCB), and induced pluripotent
stem cells (iPSCs) (60–65).

The use of NK92 cell line can be advantageous for its
unlimited ability to expand in vitro, even after repeated freeze/
thaw cycles, but disadvantageous for their lack of some relevant
February 2022 | Volume 13 | Article 837457
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NK receptors (including CD16), its potential tumorigenicity risk,
and its low in vivo proliferation due to the irradiation needed
before the infusion in the patient (66).

Differently, PBMC-derived NK cells may represent a good
source for CAR-NK cell production (63, 67). Indeed, upon CAR-
transduction NK cells maintain the expression of the main native
activating receptors (NCRs, NKG2D, DNAM-1, CD16), can be
administered without irradiation and, in a large fraction, exhibit
a mature phenotype with high cytotoxicity. Moreover, each
CAR-NK product obtained from a single donor can be used
for the treatment of more patients in HLA-mismatched
conditions. Finally, the limited lifespan of CAR-NK cells in the
circulation and the reduced risk for GvHD allow repeated CAR-
NK cells administrations (68).

Similarly, CAR-NK cells can also be produced from UCB NK
cells, but, the limited amount of NK cells derived from a single
UCB unit and the lower anti-tumor cytotoxicity of UCB-NK
cells, mainly related to their less mature phenotype, represent
obstacles (69, 70).

Finally, iPSCs have recently become an attractive source of
CAR-NK cells for their unlimited proliferative capacity (71, 72).
Indeed, CAR-engineered iPSCs can be induced to differentiate in
vitro into hematopoietic progenitor cells and then into CAR-NK
cells (72). Notably, from a limited number of iPSCs it is possible
to obtain a large number of CAR-modified NK cells, even
characterized by a homogeneous phenotype (73). However,
even in this case, iPSCs-derived NK cells are usually expressing
an immature phenotype (i.e. low KIRs/CD16 and high
NKG2A expression).

In recent years, there has been a rapid increase in clinical
trials using CAR-NK cells and investigating their possible
application as therapeutic approach against hematological
malignancies, including DLBCL (Table 1). Phase 1 and 2 of
the pioneering clinical trial NCT03056339 enrolling 11 patients
with R/R CD19+ malignancies, of which 2 DLBCL patients,
showed promising results (74) and indicated the feasibility of
adopting CAR-NK therapy for patients with high-risk B cell
lymphoma and leukemia. Indeed, no patient infused with anti-
CD19 CAR-NK cells, manufactured by transducing UCB derived
NK cells (64), had shown neurotoxicity events, CRS, and GvHD.
Moreover, 8 out of 11 patients (73%) had a clinical response, and
7 out of 11 (63%) achieved a CR. The maximum tolerated dose
was not reached even with the higher infusion of CAR-NK cells
(107 CAR-NK cells per kilogram of body weight) and CAR-NK
cells were detectable at low level for up to 1 year after infusion.
Frontiers in Immunology | www.frontiersin.org 5
Others active clinical trials (NCT04245722, NCT04555811,
NCT04887012) are registered to investigate the use of CAR-NK
targeting CD19 derived from manufacturing iPSCs, however
detailed results are not yet available. First evidences on the use
of an anti-CD19 iPSCs-derived CAR-NK product (FT596 by Fate
Therapeutics) in preclinical studies and clinical trials
(NCT04245722, NCT04555811) suggest safety and well
tolerability of the product (75, 76). FT596 is a CAR-NK
product derived from iPSCs engineered to express a non-
cleavable CD16 and IL-15 receptor fusion to promote
additional functional activation (71). Its safety in advanced
lymphoma treatment is under investigation both as
monotherapy and as combined therapy with obinutuzumab or
rituximab. A case of a heavily pre-treated DLBCL patient was
enrolled in the first dose cohort of the study (lower infusion of
CAR-NK cells - 30x107cells) (77). A partial response has been
observed upon infusion of one dose of FT596 that got better after
a second infusion as proved by further decrease of tumor size and
metabolism. The positive response to treatment wasn’t
compromised by dose related toxicities and severe adverse
effects, events of any grade of CRS, immune effector cell-
associated neurotoxicity syndrome (ICANS), or GvHD (77)
(https://ir.fatetherapeutics.com/news-releases/news-release-
details/fate-therapeutics-reports-fourth-quarter-2020-
financial-results).

Only a few months ago, the first clinical trial targeting CD19+

R/R B cell malignancies using CAR-NK cells obtained by
engineering peripheral blood NK cells from healthy donors has
been approved (NCT05020678). The purpose of this phase 1
study is to identify the optimal treatment dose with NKX019
product of Nkarta Therapeutics (https://ash.confex.com/ash/
2021/webprogram/Paper146602.html). NKX019 expresses a
CD19-targeted CAR, OX40 costimulatory domain, CD3z
signaling moiety, and a membrane-bound form of IL-15
(mbIL-15) (78). Equipping CAR-NK cells with on-board
cytokines, such as IL-15, lays the foundations for new
therapeutic options aimed at improving clinical efficacy by
enhancing both persistence and cytotoxicity against tumor
cells (79).
DISCUSSION

The optimization of mAbs production and cell therapies
development have shown remarkable results and changed the
TABLE 1 | Anti-CD19 CAR-NK mediated active clinical trials including DLBCL patients.

Identifier NK cell origin Construct Location First Posted Status

NCT03056339 CB-NK cells CAR.CD19-CD28-zeta-2A-iCasp9-IL15 USA 2017 Active, not recruiting
NCT04245722 iPSC (FT596) CAR.19-NKG2D-2B4-CD3z-IL15RFhnCD16 USA 2020 Recruiting
NCT04555811 iPSC (FT596) CAR.19-NKG2D-2B4-CD3z-IL15RFhnCD16 USA 2020 Recruiting
NCT04887012 iPSC

(CAR-NK019)
Full construct undeclared
(CAR.CD19, IL15 and modified CD16)

China 2021 Recruiting

NCT04796675 CB-NK cells Full construct undeclared
(CAR.CD19 and IL15)

China 2021 Recruiting

NCT05020678 PB-NK cells (NKX019) CAR.CD19-OX40-CD3z-mIL-15 USA/Australia 2021 Recruiting
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clinical history of many tumor patients, even affected by DLBCL
(Figure 1). The identification of stably expressed tumor-
associated antigens to be targeted by immunotherapies and the
improvement of the CAR structure are relevant issues to be
explored in the next future. In this regard, simultaneous dual
antigen targeting by tandem CARs could represent a way to
overcome antigen loss by tumor cells and the subsequent,
antigen escape-mediated relapse. The first clinical trial
(NCT03097770) designed to evaluate the effect of an
autologous, bispecific anti-CD19/anti-CD20 CAR-T in R/R B-
cell lymphoma has shown its safety and ability to induce a
durable antitumor response, possibly due to a superior immune-
synapsis stability and the mitigation of antigen-negative escape
by tumor cells (80).

Contemporarily with the improvement of anti-tumor efficacy,
there is an urgent need to reduce the risk of significant,
potentially life-threatening consequences of CRS and ICANS,
which currently affect available CAR-T therapies. In this context,
it has been demonstrated that activated monocytes and
macrophages are the major source of IL-1 and IL-6 production
Frontiers in Immunology | www.frontiersin.org 6
during CRS and play a key role in the amplification of the
inflammatory response (81). Currently, there is an effort to
elaborate strategies aimed to target pro-inflammatory cytokines
and their pathways contemporarily with CAR-T infusion with a
prophylactic or pre-emptive purpose (NCT04432506,
NCT04359784, NCT04148430) (82).

Furthermore, the choice of the adoptive immune cells to be
modified with CAR is a critical field of investigation. In this
context, NK cells represent an attractive source for genetically
modified cellular immunotherapies (69, 83, 84). Unlike T cells,
allogeneic NK cell infusions have reduced risks for GvHD and
can be used to produce “off-the-shelf” products eliminating the
need for a personalized product that is necessary for T cell-based
therapies. Moreover, therapeutic approaches combining cell
therapies with drugs, such as immune checkpoint inhibitors or
ADCC triggering immunotherapies, could be exploited in order
to target multiple tumor-associated antigens (85, 86) and further
improve clinical outcomes.

In conclusion, we have many tools at our disposal, and others
will certainly be developed in the coming years, that we can
FIGURE 1 | Milestones achieved over the years regarding the evolution of immunotherapeutic strategies for the treatment of DLBCL patients. From allogenic bone
marrow transplantation to the use of monoclonal antibodies, Bi-specific T-cell engagers (BiTEs) and T or NK cells engineered with chimeric antigen receptors (CARs).
This figure has been created using BioRender.
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combine to further improve the clinical outcomes of patients
affected by aggressive and still lethal cancers.
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