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Abstract

Background: In the majority of familial breast cancer (BC) families, the etiology of the disease remains unresolved. To
identify missing BC heritability resulting from relatively rare variants (minor allele frequency≤ 1%), we have performed whole
exome sequencing followed by variant analysis in a virtual panel of 492 cancer-associated genes on BC patients from BRCA1
and BRCA2 negative families with elevated BC risk.

Methods: BC patients from 54 BRCA1 and BRCA2-negative families with elevated BC risk and 120 matched controls were
considered for germline DNA whole exome sequencing. Rare variants identified in the exome and in a virtual panel of
cancer-associated genes [492 genes associated with different types of (hereditary) cancer] were compared between BC
patients and controls. Nonsense, frame-shift indels and splice-site variants (strong protein-damaging variants, called PDAVs
later on) observed in BC patients within the genes of the panel, which we estimated to possess the highest probability to
predispose to BC, were further validated using an alternative sequencing procedure.

Results: Exome- and cancer-associated gene panel-wide variant analysis show that there is no significant difference in the
average number of rare variants found in BC patients compared to controls. However, the genes in the cancer-associated
gene panel with nonsense variants were more than two-fold over-represented in women with BC and commonly involved
in the DNA double-strand break repair process. Approximately 44% (24 of 54) of BC patients harbored 31 PDAVs, of which
11 were novel. These variants were found in genes associated with known or suspected BC predisposition (PALB2, BARD1,
CHEK2, RAD51C and FANCA) or in predisposing genes linked to other cancer types but not well-studied in the context of
familial BC (EXO1, RECQL4, CCNH, MUS81, TDP1, DCLRE1A, DCLRE1C, PDE11A and RINT1) and genes associated with different
hereditary syndromes but not yet clearly associated with familial cancer syndromes (ABCC11, BBS10, CD96, CYP1A1, DHCR7,
DNAH11, ESCO2, FLT4, HPS6, MYH8, NME8 and TTC8). Exome-wide, only a few genes appeared to be enriched for PDAVs in
the familial BC patients compared to controls.
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Conclusions:We have identified a series of novel candidate BC predisposition variants/genes. These variants/genes should
be further investigated in larger cohorts/case-control studies. Other studies including co-segregation analyses in affected
families, locus-specific loss of heterozygosity and functional studies should shed further light on their relevance for BC risk.

Keywords: Familial breast cancer, Missing heritability, BRCA1 and BRCA2-negative, Whole exome sequencing, Candidate
breast cancer predisposing genes/variants

Background
Breast cancer is the most common cancer and the leading
cause of cancer deaths among women in the world [1].
About 10–20% of all BC patients occur in a familial con-
text, with multiple family members affected across genera-
tions [2]. Familial BC susceptibility resulting from
deleterious germline variations located on chromosome
17q21 was brought to light through linkage analysis for the
first time in 1990 [3]. Since then, many highly penetrant rare
variants (with a relative risk of above 10-fold) in BRCA1
(OMIM 113705), BRCA2 (OMIM 600185), TP53 (OMIM
191170), PTEN (OMIM 601728), STK11 (OMIM 602216)
and CDH1 (OMIM 192090) to moderately penetrant rare
variants (with a relative risk of 2 to 4-fold) in CHEK2
(OMIM 604373), PALB2 (OMIM 610355) [4], BARD1
(OMIM 601593), ATM (OMIM 607585), BRIP1 (OMIM
605882) have been reported. The exact penetrance associated
to pathogenic variants in several of these genes is still under
investigation. These genes were identified through linkage
analysis, positional cloning and/or candidate gene sequen-
cing [5–17]. Furthermore, with the advent of DNA
microarray technology, many low penetrant common
variants (with a relative risk often much less than
twofold) were unraveled through genome-wide asso-
ciation studies [18]. More recently, thanks to dra-
matic advances in the speed and scale of next-
generation sequencing (NGS) technologies combined
with sophisticated computation algorithms and a
sharp decrease in sequencing cost, a path for the
discovery of additional candidate BC predisposing
variants has been opened. To name a few, variants
in XRCC2 (OMIM 600375), FANCC (OMIM
613899), BLM (OMIM 604610) and PPM1D (OMIM
605100) have been more recently reported as candi-
date variants with a BC risk through NGS technolo-
gies [19–21]. The aggregate currently known
variants with high, moderate and low penetrance in
familial BC susceptibility genes only account for up
to 25–50% of all the high-risk BC families. This
missing heritability in the remaining 50–75% of BC
families [16, 22] reflects both the complexity of the
BC genetic architecture and the challenges in iden-
tifying remaining BC predisposing variants for de-
livering timely screening, preventive intervention,
and precision treatment.

Several studies have revealed that variants in famil-
ial BC susceptibility genes like BRCA1, BRCA2,
TP53, PALB2, CDH1, PTEN (OMIM 601728),
PIK3CA (OMIM 171834), STK11 (OMIM 602216),
RINT1 (OMIM 610089) and NF1 (OMIM 613113)
are not only associated with BC predisposition, but
also with a number of other malignancies [7, 9, 23–
29]. In the current study, we hypothesized that in
BRCA1 and BRCA2-negative families with elevated
BC risk, the analysis of a large array of genes previ-
ously associated to (hereditary) cancer syndromes or
cancer in general, could likely lead to the identifica-
tion of additional candidate BC predisposing genes/
variants. Thus, firstly, we identified all rare variants
both exome-wide and cancer-associated gene panel-
wide (492 genes) in 54 BC patients from BRCA1 and
BRCA2-negative families with elevated BC risk and
compared their relative incidence in 120 geographic-
ally matched controls. Secondly, all nonsense, frame-
shift indels and splice-site variants detected in BC
patients within the 492 genes of the panel, which we
estimated to possess the highest probability to pre-
dispose to BC, were validated on an independent se-
quencing platform (Roche Junior).

Methods
Sample selection
A total of 57 BC patients and 120 controls were consid-
ered for this study. Among the BC patients (Add-
itional file 1), 54 were from unrelated BRCA1 and
BRCA2-negative families with elevated BC and/or ovar-
ian cancer (OC) risk (i.e. families with two or more af-
fected first-degree relatives) and with a median age at
diagnosis of 51 years (range: 36–72). The remaining
three BC patients were included as “blinded internal
positive controls”, each harboring a known germline
variant in BRCA1 (NM_007300.3:c.5096G > A), BARD1
(NM_000465.3:c.1921C > T) or PALB2 (NM_024675.3:c.
1571C > G). All geographically matched unrelated con-
trols considered in this study (patients consulted at the
same hospital), sequenced according to the same wet lab
protocol for cardiac arrhythmias, were unselected for
personal or familial history of cancer. The overview of
the process of sample preparation, sequencing, analysis
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and variant validation workflow is presented in
‘Additional file 2’.
Patient recruitment and blood sampling were per-

formed according to the ethical procedures approved by
the institutional ethics committee of the UZ Brussel.
Peripheral blood was collected after obtaining a written
informed consent for a broad genomic analysis covering
also incidental findings in genes predictive for other dis-
eases. Genomic DNA was prepared using Chemagic
Magnetic Separation Module I (Chemagen) according to
the manufacturer’s recommendations.

A virtual panel of cancer-associated genes
After identification of rare variants in whole exomes, we fur-
ther choose to prioritize variants present in a panel of 492
genes possibly/likely associated with (hereditary) cancer
[hereafter called cancer-associated gene panel (CAGP)
(Table 1 and Additional file 3)]. These genes are pooled to-
gether from seven gene lists: the well-known cancer suscepti-
bility genes reported by Rahman et al. [30], various BC gene
panels reported by Easton et al. [17], genes from
BROCA-Cancer Risk Panel (Version 6) [31], Fanconi An-
aemia pathway genes reported by Kanchi et al. [32], human
DNA repair genes reported by Wood et al. [33], human can-
cer predisposition genes (GeneRead DNAseq Targeted Panel
V2) from Qiagen and genes from the familial cancer data-
base (FaCD, retrieved on 17/02/2015) [34]. Out of the 492
genes from our CAGP, 177 (36%) genes are contributed by
at least two gene lists and are mostly known to be cancer
susceptibility genes. The remaining 315 (64%) genes are pri-
vate to a single gene list, mostly from Wood et al. (114
genes) and FaCD (167 genes). Some of these latter genes are
not yet clearly associated with (hereditary) cancers (Table 1).

Target-enrichment and next-generation sequencing
For each of the BC patients and controls, one μg of
DNA was fragmented using adaptive focused acoustics
(Covaris) in order to obtain fragments of approximately
250 base pairs. After DNA end repair and adenylation,
oligonucleotides adapters for paired-end sequencing
(Illumina) were ligated to both ends of the fragments.
Two hundred nanogram of ligated DNA of selected size
was PCR amplified and subsequently captured by
hybridization for 65 h with the Roche SeqCap EZ Hu-
man Exome v3.0 (Roche) Capture Library. After further
selection of the targeted fragments through multiple
steps of washing, the captured probe-selected DNA was
cluster amplified on the Illumina cBot according to
manufacturer’s protocol (Illumina), using five samples
per flow cell lane in order to get sufficient DNA for the
subsequent sequencing run. Sequencing was performed
on a HiSeq1500 (Illumina) with a paired-end module,
generating 125 base reads.

Sequence alignment, variant calling and annotation
Primary processing including base calling, read filtering and
adapter trimming were performed using the standard Illu-
mina pipeline. High quality reads for each sample were
mapped to the human genome reference assembly GRh37/
hg19 (https://www.ncbi.nlm.nih.gov/grc/human/issues/HG-
37, build 37.2, Feb 2009) using BWA-MEM [35] (http://bio-
bwa.sourceforge.net/, version 0.7.10-r789) with the default
setting. After marking PCR duplicates with Picard (https://
broadinstitute.github.io/picard/, version 1.97), the GATK
pipeline [36] (https://software.broadinstitute.org/gatk/, ver-
sion 3.4–46) with GATK Best Practices guideline was
followed for local indel-realignment, base recalibration, vari-
ants calling (HaplotypeCaller), variant recalibration and vari-
ant filtration. The variants obtained thereafter were annotated
with ANNOVAR [37] (http://annovar.openbioinformatics.org/
, version 2015-12-14) to refGene database and population da-
tabases (1000g2015aug_eur,1000g2015aug_all, esp6500siv2_ea,
esp6500siv2_all, exac03nontcga, snp132NonFlagged and
GoNL [38]) in addition to ljb26_all, a database for variant
function prediction scores. All the databases were obtained
from ANNOVAR website except GoNL (http://www.nlge-
nome.nl/, release 5).

Variant filtration and classification
In-house Python script was used for variant filtration in
three steps. Firstly, variants were only retained if they
passed VQSLOD (tranche sensitivity threshold of 99.9%)
and are located in the exons or at the splice-sites (±2 bp
from the exon-intron border). In addition, we required a
10X absolute read depth at the variant position, at least
two reads harboring the variant and a variant allele ratio
between 20 and 80% along with a minor allele frequency
(MAF) ≤1% in any of the population databases (men-
tioned earlier). Further, we assumed that those variants
present in > 10% both in BC patients and controls most
likely resulted from sequencing or alignment errors or
they should be common variants exclusively in our study
population (and thus missed by the MAF restriction).
Thus, these variants were removed. Furthermore, mis-
sense variants were classified as “probably damaging”
(pph2-prob ≥0.957), “possibly damaging” (0.453 ≤
pph2-prob≤0.956), or “benign” (pp2_hdiv ≤0.452) ac-
cording to PolyPhen-2 (HDIV) [39] in silico prediction
scores. Secondly, exome-wide variants that passed all the
filters in the first stage were selected for their presence
in genes of the CAGP. Lastly, frame-shift indels, non-
sense and splice-site variants (hereafter collectively
called potentially Protein Damaging Allelic Variants
(PDAVs) as they have the highest probability to
cause loss of protein function and thus to be associ-
ated to BC predisposition) that are present in genes
of the CAGP were further validated.
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Variant validation
For validation of the PDAVs obtained from the Illumina plat-
form using capture-based library enrichment system, an or-
thogonal approach using amplicon-based library enrichment
on a 454 platform from Roche (Junior) was performed. Pri-
mer pairs were designed in order to amplify DNA fragments
(amplicons) that contain the desired variants. One primer of
the primer pair was designed towards intronic regions, when
possible, to avoid amplification of processed pseudogenes. In
addition, BLAST of the target sequence was performed in
order to choose only primer pairs that specifically amplify
the target region meanwhile avoiding non-specific or
pseudo-gene amplification. Furthermore, primers binding to
target sequences containing SNPs with a MAF > 1% were
avoided. For variant analysis, SeqNext software (JSI medical
systems) was used.

Results
Exome coverage
On average, about 1.0 × 108 unique good quality reads
were generated per exome both for BC patients and con-
trols. About 87% of these reads from BC patients (con-
trols: 86%) could be aligned to the reference genome
covering 94% (controls: 95%) [BC patients range: 77–96%,
controls range: 90–96%] of the exome with at least 10X
target bases coverage. The median of ‘mean depth cover-
age’ at target region was about 107X and 101X [BC pa-
tients range: 46X-295X, controls range: 64X-148X] across
all the BC patients and controls, respectively (Add-
itional file 4). Coverage in CAGP was very similar to the
coverage in exome both for BC patients and controls.

Exome- and CAGP-wide variant enrichment in BC patients
versus controls
Exome-wide, a total of 3,316,630 variants (average: 61,419
variants/BC patient) were called in 54 BC patients (3 internal
positive controls excluded) and 7,413,256 variants (average:
61,777 variants/control) were called in 120 controls. After
exhaustive variant filtering (as described in methods), 22,724
variants (average: 421 variants/BC patient) were retained in
BC patients. Among them, 8153 single nucleotide variants
(SNVs) were synonymous, 432 were in-frame indels, 543
were frame-shift indels, 162 were splice-site SNVs, 303 were
nonsense SNVs and 5182 + 2227 + 5722 were missenses
SNVs (predicted as “probably damaging”, “possibly dam-
aging” and “benign” by PolyPhen-2, respectively). Similarly,
in the controls we retained 51,219 variants (average: 427
variants/control) after filtering consisting of 17,891 syn-
onymous SNVs, 981 in-frame indels, 1052 frame-shift
indels, 420 splice-site SNVs, 768 nonsense SNVs and
11,929 + 5197 + 12,981 missenses SNVs (predicted as
“probably damaging”, “possibly damaging” or “benign”, by
PolyPhen-2, respectively). An overview of these data is
presented in ‘Additional file 5’.

Subsequently, we investigated whether an exome-wide en-
richment can be observed in the number of variants when
comparing BC patients to controls (Student’s t-test or
Welch’s t-test). No significant difference was observed in the
average number of variants between BC patients and con-
trols either by pooling all the variant types together (BC pa-
tients: controls; 420.81: 426.83, p= 0.3071) or by separately
analyzing each sub-type of variants [synonymous SNVs
(150.98: 149.09, p= 0.5058), in-frame indels (8.00: 8.18, p=
0.7043), splice-site SNVs (3.00: 3.50, p= 0.1053) and the mis-
sense SNVs [“probably damaging” (95.96: 99.41, p= 0.0628),
“possibly damaging” (41.24: 43.31, p= 0.0866) and “benign”
(105.96: 108.18, p= 0.3215)], except for frame-shift indels
(10.06: 8.77, p= 0.0199) and nonsense SNVs (5.61: 6.40, p=
0.0446), (Additional file 6).
In the next step, we only considered the variants present

in the 492 cancer-associated genes from the CAGP panel
(see methods). In the BC patients, after filtering, we retained
240 synonymous SNVs, 8 in-frame indels, 13 frame-shift
indels, 6 splice-site SNVs, 14 nonsense SNVs and 195 + 94 +
215 missenses SNVs (predicted as “probably damaging”,
“possibly damaging” and “benign”, respectively). In the con-
trols we retained 589 synonymous SNVs, 21 in-frame indels,
23 frame-shift indels, 20 splice-site SNVs, 13 nonsense SNVs
and 398 + 174 + 417 missense SNVs (see Additional file 5).
When comparing the average number of variants in
BC patients versus controls, we observed that the
average number of nonsense SNVs was more than
twice higher in BC patients [BC patients: controls;
0.26:0.11; ratio = 2.39; p = 0.0287 (0.0688 with Welch
correction)], whereas no obvious enrichment could be
observed in the other sub-types of variants (see Add-
itional file 6).
To investigate further whether specific genes are more fre-

quently mutated in our BC patients compared to controls,
we selected exome wide all the genes harboring high impact
mutations (PDAVs) in at least two BC patients (see Add-
itional file 7). Among the 95 genes selected, five (FAM11B,
GRAMD2, SP100, USP45 and ZNF534) can be considered
candidate BC predisposing genes as they were mutated in
three BC patients (out of 54) but not in any of the 120 con-
trols (Additional file 8). Two other good candidate genes are
ASPH and C17orf80 as they harbored PDAVs in respectively
five and four BC patients and only one control sample (Add-
itional file 8). All PDAVs found in these 7 candidate BC pre-
disposing genes were visually verified using the Integrative
Genomics Viewer (IGV) [40].

Validation of PDAVs within the CAGP
PDAVs resulting in dramatic changes in protein structure
and function have the highest chance to be associated with
BC predisposition. Those PDAVs that were detected in BC
patients, passed the filters, and are located within the genes
of the CAGP, were further validated on an independent
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sequencing platform (see methods) and were also reviewed
manually using IGV [40]. Thirty-one out of 33 PDAVs
present in 24 out of 54 BC patients (~ 44%) passed the valid-
ation step (Table 2), of which 11 PDAVs are not reported in
dbSNP147. Among the BC patients with a PDAV, eighteen
harbored a PDAV in a single gene, five harbored PDAVs in
two genes and one harbored a PDAV in three genes. Fur-
thermore, all five splice-site SNVs (Additional file 9) were
considered disruptive by the in silico web-based tool
“Human Splicing Finder” [41] (http://www.umd.be/HSF3/,
release 3.0). Three of the 26 genes harboring PDAVs in the
BC patients were also found mutated in the control samples,
suggesting that these genes (ABCC1, BBS10 and PDE11A)
are not involved in cancer predisposition (compare Add-
itional files 10 and 11), In addition, the pathogenic variants
present in the three internal positive control samples in-
cluded in this study were also identified.

Discussion
It is expected that exome-wide NGS analysis of a germline
DNA sample will reveal many variants when compared to a
haploid reference genome, even when only rare variants
(MAF ≤ 0.01) are taken into consideration. However, when
comparing the total number of variants detected in two indi-
viduals of the same ethnicity we do not expect to find signifi-
cant differences. We confirmed this assumption by (using
the same wet bench and dry bench approaches) comparing
the average number of variants found in persons belonging
to two groups living in the same area (patients recruited in
the same hospital): BC patients belonging to elevated risk
BC families and controls not selected for personal or familial
history of cancer but for cardiac arrhythmias. The ratio of
average number of observed (rare) variants in both groups is
very close to one for all types of variants (Fig. 1 (red) and
Additional file 6) except for splice site and nonsense variants
(0.86 and 0.88, respectively), probably because of the rela-
tively small number of splice site and nonsense variants de-
tected per BC patient and control. When focusing
exclusively on the genes of the CAGP, similar observations
were obtained (Fig. 1 (blue) and Additional file 6) except for
the category of nonsense variants, where more than a
two-fold excess of nonsense variants was detected in BC pa-
tients compared to controls (ratio = 2.39). Although a larger
sample size is a minimal requirement to reach statistical sig-
nificance, our data suggest that the nonsense variants found
in excess in the genes of the CAGP among the BC patients
(compared to controls) are implicated in the molecular
mechanism modulating BC risk(about 50% of these non-
sense variants). If the increased number of nonsense variants
seen in BC patients is associated with increased cancer risk,
one would expect that these nonsense variants will be more
frequently identified in genes functionally correlated with the
cancer predisposition process. To verify this assumption, the
PANTHER over-representation Test (Released 20,171,205)

[42] was used with a false discovery rate (FDR) < 0.05. This
over-representation test compares a test gene list to a refer-
ence gene list and determines whether a particular class of
genes (e.g. those associated to a specific biological process) is
overrepresented or underrepresented. We found that genes
involved in the DNA repair process, namely inter-strand
cross-link repair (FDR: 4.94E-02), double-strand break (DSB)
repair via nonhomologous end joining (FDR: 4.35E-02),
non-recombinational repair (FDR: 4.42E-02), DSB repair
(FDR: 8.35E-02) were overrepresented in BC patients while
not in the controls. Indeed, four nonsense variants (out of
14) found in BC patients were found in genes involved in
the DSB repair process while only one such variant (out of
13) was found among the controls. It remains unclear for us
why the same phenomenon is not observed with the frame-
shift indels. It is possible that false positive indel calls masked
a possible enrichment of the true positive frameshift indels.
Our exome wide analysis revealed only seven genes

(ASP, C17orf80, FAM111B, GRAMD2, SP100, USP45 and
ZNF534) with high impact mutations (PDAVs) in three
(or more) BC patients while comparable mutations were
not found (or only once) among the control samples.
None of these genes was reported to possess cancer pre-
disposing properties and therefore not included in the
CAGP. Gene Ontology (GO) annotation [43] for molecu-
lar function, biological processes and Reactome Pathways
indicated that SP100 and USP45 are involved in DNA re-
pair while ZNF534 is involved in DNA-templated regula-
tion of transcription, making them good candidate cancer
predisposing genes. No molecular function or biological
process was annotated to C17orf80 and FAM11B, whereas
ASPH and GRAMD2 were reported to be involved in cal-
cium homeostasis and transport (Additional file 8).
When restricting our variant analyses performed on BC

patients to the 492 genes of the CAGP, we found novel as
well as known PDAVs in several genes known or suspected
to be BC predisposing (Table 2 and Additional file 10).
Genes participating in DNA DSB repair process e.g. PALB2,
BARD1, CHEK2 and RAD51C are particularly intriguing as
DSB repair process defective tumors can be selectively tar-
geted by PARP (poly (ADP-ribose) polymerase) inhibitors
resulting in synthetic lethality [44–46]. We also found
PDAVs in genes linked to DNA repair, FA or occurring in
some types of cancers but not well studied in the context of
familial BC (Table 2 and Additional file 10). These candidate
BC predisposing genes are also interesting to scrutinize fur-
ther in familial BC setting as it is known that familial BC sus-
ceptibility genes can also predispose to multiple cancers [30].
Furthermore, we detected PDAVs in genes associated with
other hereditary syndromes but not clearly related to cancer
(Table 2 and Additional file 10). These genes are mostly de-
rived from the FaCD panel, which is uncurated. PDAVs de-
tected in the CAGP from control samples but not present in
the BC patients are listed in Additional file 11.
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Table 2 List of genes with the corresponding PDAVs that were validated as true positive in the corresponding BC patient

Gene Variant type Transcript: Base change (Protein change) Exon
(Intron)

MAF 1000 g
[gnomAD]

rsID
(dbsnp147)

BC
Patients

Controls

ABCC11 splice-site
substitution

NM_032583.3:c.395 + 2 T > C (p.?) 4 − [0.000004061] – BB44 0

ABCC11 nonsense
substitution

NM_032583.3:c.297G > A (p.Trp99*) 4 − [0.0007676] rs145048685 BB12 1x

BARD1 nonsense
substitution

NM_000465.3:c.1690C > T (p.Gln564*) 8 − [0.00002032] rs587780021 BB13 0

BBS10 frameshift
insertions

NM_024685.3:c.271dup (p.Cys91Leufs*5) 2 − [0.0005626] rs549625604 BB15 ** 1x

BBS10 frameshift
insertions

NM_024685.3:c.1543_1546dup (p.Thr516Argfs*7) 2 − [−] – BB48 0

CCNH frameshift
deletion

NM_001239.3:c.643_646del (p.Thr215Profs*21) 5 − [0.000008149] – BB15** 0

CD96 frameshift
insertions

NM_198196.2:c.766dup (p.Ile256Asnfs*13) 5 − [0.00001625] rs766366613 BB10 0

CD96 nonsense
substitution

NM_198196.2:c.1321C > T (p.Arg441*) 11 − [0.0001056] rs201691670 BB54** 0

CHEK2 frameshift
deletion

NM_001005735.1:c.1229del (p.Thr410Metfs*15) 12 0.001 [0.002077] rs555607708 BB17 0

CYP1A1 frameshift
deletion

NM_000499.3:c.1371del (p.Cys457*) 7 0.0006 [0.0009096] rs561096394 BB1 0

DCLRE1A nonsense
substitution

NM_001271816.1:c.412C > T (p.Arg138*) 2 0.002 [0.00279] rs41292634 BB41 0

DCLRE1C nonsense
substitution

NM_001033855.2:c.241C > T (p.Arg81*) 3 − [0.00001221] rs121908156 BB33*** 0

DHCR7 splice-site
substitution

NM_001360.2::c.964-1G > C (p.?) 9(8) 0.0026 [0.003762] rs138659167 BB21 0

DNAH11 frameshift
deletion

NM_001277115.1:c.2081_2082del (p.Val694Glyfs*2) 12 − [−] – BB29** 0

ESCO2 frameshift
deletion

NM_001017420.2:c.876_879del (p.Asp292Glufs*48) 4 − [0.00000409] rs80359856 BB35** 0

EXO1 splice-site
substitution

NM_006027.4:c.2212-1G > C (p.?) 13(12) 0.0012 [0.001644] rs4150000 BB35** 0

FANCA splice-site
substitution

NM_000135.2:c.2152-2A > G (p.?) 24(23) − [−] – BB45 0

FLT4 nonsense
substitution

NM_182925.4:c.3048C > A (p.Cys1016*) 22 − [−] – BB38 0

HPS6 stop-loss
substitution

NM_024747.5:c.2326 T > C (p.*776Argext*38) 1 − [0.0001577] rs200206362 BB33*** 0

MUS81 nonsense
substitution

NM_025128.4:c.392G > A (p.Trp131*) 4 − [0] – BB7 0

MYH8 nonsense
substitution

NM_002472.2:c.1209C > A (p.Cys403*) 13 0.0004 [0.001105] rs144321381 BB31 0

NME8 splice-site
substitution

NM_016616.4:c.454 + 1G > A (p.?) 8 − [0.00006108] rs538425312 BB3** 0

NME8 nonsense
substitution

NM_016616.4:c.1600C > T (p.Arg534*) 17 0.0008 [0.0003171] rs142525551 BB33*** 0

PALB2 frameshift
insertions

NM_024675.3:c.1674dup (p.Gln559Serfs*19) 4 − [−] – BB36 0

PDE11A frameshift
deletion

NM_016953.3:c.1660del (p.Cys554Valfs*14) 9 0.0008 [0.001214] rs573163079 BB5 1x

RAD51C frameshift
deletion

NM_058216.2:c.181_182del (p.Leu61Alafs*11) 2 − [0.00001624] rs754525165 BB54** 0
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Only about 44% of the BC patients were found to har-
bor a PDAV in one (and exceptionally in two or three)
gene(s) of the CAGP in this study. Eleven out of 31
PDAVs detected were not reported in dbSNP147 and
therefore considered novel. We should keep in mind
that these PDAVs are not necessarily BC predisposing.
Therefore, their cancer predisposing attributes should be
further investigated in much larger cohort /case-control
studies or by performing co-segregation analyses in posi-
tive families (if sufficient families are available). Al-
though in this study we mainly focused on candidate
PDAVs found in genes of the CAGP (which only ac-
counts for 2% of the full exome), we must remain aware
that missense variants in genes of the CAGP but also

PDAVs and missense variants outside this gene panel
may also predispose to BC. For instance, we identified 7
genes not represented in the CAGP in which PDAVs
were over-represented in the BC patient cohort. More-
over, BC predisposition may not necessarily rely solely
on the presence of one particular variant in the family
but may result from combinatorial interactions between
several variants. Indeed, it has been proposed that in the
majority of BC families, BC predisposition could be
polygenic in nature and the contribution of several vari-
ants located in genes associated to moderate or low risk
could be responsible for the increased susceptibility to
BC [47]. The mechanism how these different variants
cooperate at the molecular level to create an increased
BC risk is a matter of further investigation [48].

Conclusions
On average, twice more nonsense variants were found in
BC patients than in controls when analyzing the genes
from the CAGP. Moreover, GO analysis (biological
process) of the genes accumulating those nonsense vari-
ants indicated that genes involved in the DSB repair
process were overrepresented in the BC patients but not
in controls. Comparable observations were not made for
the other variant types in the CAGP, nor when consider-
ing the whole exome. Taken together, our observations
might indicate that a nonsense variant found in the CAGP
of a BC patient has more than 50% chance to be associated
with BC risk while similar conclusions cannot be drawn for
“probably/possibly damaging” missense or frameshift muta-
tions. Larger case-control studies should be performed to
confirm these assumptions and validate our candidates. This
preliminary study in 54 BC patients from BRCA1 and
BRCA2-negative BC families with elevated cancer risk identi-
fied candidate BC predisposing PDAVs (known as well as
unknown) in 30 genes; PALB2, BARD1, CHEK2, RAD51C,
FANCA, RINT1, EXO1, RECQL4, CCNH, MUS81, TDP1,

Table 2 List of genes with the corresponding PDAVs that were validated as true positive in the corresponding BC patient
(Continued)

Gene Variant type Transcript: Base change (Protein change) Exon
(Intron)

MAF 1000 g
[gnomAD]

rsID
(dbsnp147)

BC
Patients

Controls

RECQL4 frameshift
deletion

NM_004260.3:c.1573del (p.Cys525Alafs*33) 9 − [0.0002387] rs386833845 BB52 0

RECQL4 frameshift
deletion

NM_004260.3:c.3439del (p.Leu1147Cysfs*3) 20 − [−] – BB34 0

RINT1 nonsense
substitution

NM_021930.4:c.64G > T (p.Glu22*) 2 − [−] – BB3** 0

TDP1 frameshift
deletion

NM_018319.3:c.502del (p.Leu168Serfs*45) 3 − [0.00002039] rs762302264 BB32 0

TTC8 nonsense
substitution

NM_001288781.1:c.736C > T (p.Gln246*) 9 − [−] – BB29** 0

In addition to the details of each variant (variant type, transcript ID, base change, protein change, exon/intron), its frequency in controls, dbsnp147, global MAF in
1000 genome [2015 August release] and gnomAD [Ensembl GRCh37 release 95] are also given. ** = BC patient with PDAV in two genes, *** = BC patient with
PDAV in three genes and “−” = not available
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DCLRE1A, DCLRE1C, CD96, CYP1A1, DHCR7, DNAH11,
ESCO2, FLT4, HPS6, MYH8, NME8,TTC8, ASPH, C17orf80,
FAM111B,GRAMD2, ZNF534, SP100 and USP45. The seven
last genes of this list were not connected to the cancer
process so far. These novel candidate variants and their asso-
ciated genes should be further investigated with other
methods to confirm their role in BC predisposition.
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