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Abstract: Used in Asian countries, including China, Japan, and Thailand, Houttuynia cordata Thumb
(H. cordata; Saururaceae, HC) is a traditional herbal medicine that possesses favorable antiviral
properties. As a potent folk therapy used to treat pulmonary infections, further research is required to
fully elucidate the mechanisms of its pharmacological activities and explore its therapeutic potential
for treating pneumonia caused by SARS-CoV-2. This study explores the pharmacological mechanism
of HC on pneumonia using a network pharmacological approach combined with reprocessing
expression profiling by high-throughput sequencing to demonstrate the therapeutic mechanisms
of HC for treating pneumonia at a systemic level. The integration of these analyses suggested that
target factors are involved in four signaling pathways, including PI3K-Akt, Jak-STAT, MAPK, and
NF-kB. Molecular docking and molecular dynamics simulation were applied to verify these results,
indicating a stable combination between four metabolites (Afzelin, Apigenin, Kaempferol, Quercetin)
and six targets (DPP4, ELANE, HSP90AA1, IL6, MAPK1, SERPINE1). These natural metabolites have
also been reported to bind with ACE2 and 3CLpro of SARS-CoV-2, respectively. The data suggest
that HC exerts collective therapeutic effects against pneumonia caused by SARS-CoV-2 and provides
a theoretical basis for further study of the active drug-like ingredients and mechanism of HC in
treating pneumonia.

Keywords: Houttuynia cordata; network pharmacology; pneumonia; SARS-CoV-2; molecular docking;
afzelin; MAPK1

1. Introduction

Houttuynia cordata Thumb (H. cordata; Saururaceae) is a traditional herbal medicine
used in Asian countries, including China, Japan, and Thailand. It exhibits promising
antiviral activities towards clinically enveloped viruses, such as influenza virus, herpes
simplex virus-1(HSV-1), and human immunodeficiency virus-1 (HIV-1) in vitro [1]. As a
time-honored traditional Chinese medicine (TCM), HC has demonstrated a broad range of
pharmacological activities for the treatment of inflammatory diseases, especially pulmonary
symptoms, i.e., phlegm, dyspnea, lung abscess, and cough, and such infectious diseases as
severe acute respiratory syndrome (SARS) [2]. This herb has traditionally been used as one
of six principal ingredients in an herbal formula purported to have a preventive effect on
SARS-CoV-1 infection [3,4]. As such, it has been recommended to the general public as a
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preventative measure by the State Administration of TCM of China for SARS-CoV-2 [5]. As a
potent folk treatment of pulmonary infections, further research is required to fully elucidate
the mechanisms of its pharmacological activities and explore its therapeutic potential for
treating lung inflammatory disorders, particularly pneumonia caused by SARS-CoV-2.

HC consists of a large number of drug-like bioactive compounds that have been
isolated in previous studies and could play a vital role in antiviral and anti-inflammatory
medicine [6,7], namely, volatile oil, alkaloid, flavonoid, polysaccharides, and organic acid.
The main volatile oils of methyl-n-nonyiketone, decanoylacetadehyde, β-myrcene, and
α-pinene, extracted by steam distillation, demonstrated a direct antiviral effect on HSV-1,
influenza virus, and HIV-1 [8]. The main water extracts of HC with quercetin, quercitrin,
and Quercetin–3-glucoside can also prevent HSV-1 infection by inhibiting the activation of
NF-kB [9], while the polysaccharide can inhibit inflammation, protect the intestinal barrier,
and regulate mucosal immunity to alleviate lung and intestinal injuries caused by IAV
virus [10]. A recent systematic evaluation of the natural metabolites that could potentially
be used against SARS-CoV-2 demonstrated that apigenin, afzelin, kaempferol, quercetin,
and quercetin 3-glucosyl-(1,4)-rhamnoside could bind with 3C-like protease (3CLpro) and
angiotensin I converting enzyme 2 (ACE2), respectively, at significant binding energy [11].
As previously mentioned, research has primarily focused on various solvent HC extracts’
antiviral and anti-inflammatory mechanisms. Yet, the underlying connection between these
bioactivities and HC metabolites remains obscure.

Based on the potential antiviral and anti-inflammatory properties of HC multi-compounds,
HC has been used to treat different types of pneumonia caused by bacteria and viruses [12].
Coronavirus disease-19 (COVID-19) can cause lung complications, including pneumonia,
and in the worst cases, acute respiratory distress syndrome (ARDS) [13]. Sepsis, another
possible complication of COVID-19, can also cause lasting harm to the lungs and other
organs [14]. The mechanism underlying the inhibition of HC water extract on viral pneu-
monia arguably rests on the direct inhibition of the virus by flavonoids and regulation of
immune function. At the same time, its polysaccharide reduces cytokines, including tumor
necrosis factor-α (TNF-α), interleukin 1 (IL1), and interleukin 6 (IL6), thereby inhibiting in-
nate immune cells and epithelial cells from releasing excessive cytokines, while increasing,
or rescuing, the expression of anti-inflammatory mediators like interleukin10 (IL10) and
interleukin 14 (IL4) [15]. Based on this hypothesis, this study examines the pharmacological
mechanism of HC on pneumonia caused by SARS-CoV-2, using network pharmacology
and molecular docking, thus providing a new strategy for the development of novel drugs
targeting pneumonia caused by SARS-CoV-2 (Figure 1).

Acute lung injury (ALI) was found to cause pneumonia, matrix lesions, and pulmonary
fibrosis initiated by SARS-CoV-1 (2003), avian influenza (2008), swine influenza (2009), and
SARS-CoV-2 (2020) [2]. Indeed, ALI is a potentially lethal factor contributing to the short-
term acute exacerbation of idiopathic pulmonary fibrosis in ARDS with rapid pulmonary
fibrosis [6]. Both SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-
CoV) causes severe atypical pneumonia in humans and present with similar symptoms,
which contribute to preferential viral replication in the lower respiratory tract and viral
immunopathology [16], while pathogenic T cells and inflammatory monocytes incite an
inflammatory storm, or cytokine storm, in severe COVID-19 patients [17]. The lung injury
pattern of severe COVID-19 patients is similar to ARDS. Characterized by severe, often
refractory, hypoxemia and bilateral lung infiltrates, ARDS has been reported in 42% of
patients hospitalized in Wuhan with COVID-19 pneumonia [18]). Thus, following an initial
hyper-inflammatory phase, many severe COVID-19 patients eventually develop some
degree of immune paralysis and increased risk of secondary infections [19], as well as
evidence of pulmonary fibrosis.

SARS-CoV-2 infection is a critical factor in the onset of pneumonia and death. HC is a
time-honored TCM herb widely used to treat both bacterial and viral respiratory diseases,
and it was purported to prevent and treat SARS-CoV-1 infection in 2003. In light of this,
effective herbal compounds for SARS-CoV-1 were posited to be beneficial in the treatment



Viruses 2022, 14, 1588 3 of 20

of COVID-19 caused by SARS-CoV-2 since homology between the above two viruses is
around 80% [5]. As a folk therapy to treat pulmonary infections, HC is one of the major
ingredients in the capsule Lian Hua Qing Wen, a TCM formula with the ability to reduce
inflammation, which was endorsed by the State Administration of TCM of China [20] as a
public treatment measure.

Figure 1. Framework based on an integrative strategy of network pharmacology to investigate phar-
macologic mechanisms of Houttuynia cordata for the treatment of pneumonia caused by SARS-CoV-2.
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2. Materials and Methods
2.1. Bioactive Compound Screening and Pharmacokinetic Prediction

HC was searched to identify its active ingredients and pharmacological targets using
an in silico approach. As a result, the efficacy of active compounds of HC prediction
was established in public databases, including the Traditional Chinese Medicine Systems
Pharmacology Database and Analysis Platform (TCMSP), the TCM Integrated Database
(TCMID), The Encyclopaedia of Traditional Chinese Medicine (ETCM), and the Bioinfor-
matics Analysis Tool for Molecular Mechanism of TCM (BATMAN-TCM) [21]. In addition,
absorption, distribution, metabolism, and excretion (ADME) was also employed as a compu-
tational evaluation model in pharmacokinetic research to select drug-like compounds [22].
This model consists of criteria such as drug-likeness (DL) and oral bioavailability (OB).
These two indices were applied to ascertain whether the compounds have drug-like prop-
erties as therapeutic agents and are chemically suitable for drug development [23]. Out of
50 compounds shown in these databases, compounds with DL > 0.18 and OB > 30% were
selected. In total, nine bioactive components were ultimately included in this study and
used for the subsequent prediction of compound-related targets.

2.2. Potential Targets of HC Active Components

The active components of a drug interact with respective targets to inhibit their biological
function. An HC target gene set was acquired by searching several databases: (1) acquiring
gene symbols and related information about HC targets from TCMSP; (2) importing selected
candidate components into the PubChem database (https://pubchem.ncbi.nlm.nih.gov/
(accessed on 1 August 2021)) to identify relevant targets, and (3) using the ETCM to acquire
the target genes associated with the selected active compounds with a score >0.8. The target
set was derived after combining the search results and removing duplication and certain
bioactive components with suitable targets with a score >0.8 [24].

2.3. Identification of Pneumonia-Related Targets Database

Genes related to pneumonia caused by SARS-CoV-2 were screened, selected, and
obtained from the Gene Expression Omnibus (GEO), GeneCards database, and other
references. First, the dataset was mainly derived from reprocessing high-throughput
sequencing data downloaded from the GEO database. The expression profile of GSE152075
involved 430 SARS-CoV-2 infection samples and 54 negative control samples, which were
analyzed on the GPL18573 Illumina NexSeq500 platform (Homo sapiens) [25]. The limma
package in R Bioconductor was used to identify differentially expressed genes (DEGs)
between SARS-CoV-2 infection and negative control, in which the adjusted p-value and
[logFC] were determined [26]. The selected criteria of DEGs were thereafter set as p < 0.05
and [logFC] > 1.08 for up-regulated genes and [logFC] < 1.651 for downregulated genes [25].
Second, the targets related to viral pneumonia were obtained by using “Viral pneumonia” as
the keyword in the GeneCards database search (https://www.genecards.org/ (accessed on
10 August 2021)). Finally, an intersection between genes retrieved through GeneCards and
DEGs of reprocessed data series GSE152075 was obtained as pneumonia-related targets [27].

2.4. Construction of PPI Network and Herb-Metabolites-Targets-Disease (HMTD) Network

The HC targets intersecting with pneumonia-related targets were taken as HC–pneumonia
common targets, which can be visualized with Venn 2.0. The common targets were imported
into the STRING platform (version 11.0). The species was then set to Homo sapience and
the minimum required interaction score to the highest confidence of 0.9 in order to retrieve
the concise protein–protein interaction (PPI) information for the next step of the analysis.
The PPI network was also visualized with Cytoscape software [28].

The Herb-Metabolites-Targets-Disease (HMTD) network was built on the interactions
among drug (HC), ingredients, gene symbols, and disease (pneumonia) and then visualized
by Cytoscape software. The nodes’ varying shapes represent common pneumonia and
HC active ingredient targets. The nodes are linked by edges (lines), indicating interactions

https://pubchem.ncbi.nlm.nih.gov/
https://www.genecards.org/
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between nodes. As such, the topological features of a network can be used to predict the
targets, while the candidate hub notes analyzed by Cytoscape’s Network analyzer tool
can be identified by calculating the two topological features of betweenness and degree.
Betweenness is the number of shortest paths through the node (the shortest distance
between two nodes) and degree is the sum of the number of edges connected the node [29].
Closeness centrality measures how close a node is to all others in the same network [30].
These network centrality indices have been used to define the network properties of drug
targets separately or collectively and judge the importance of nodes. Nodes (targets)
with higher ranks were considered to have a more critical role within the network [31].
Collectively, the top 15 nodes were screened as the hub genes in the network with the
criteria of closeness centrality >0.4 and degree > 4.

2.5. GO and KEGG Analysis

Depending on the hub genes (core targets), the Gene Ontology (GO) biological pro-
cesses, and the Kyoto Encyclopaedia of Genes and Genomes (KEGG), metabolic pathway
enrichment analyses were carried out on the pneumonia–HC common targets. GO source
and GO enrichment can divide the functions and products of genes into three categories,
namely, molecular function (MF), biological process (BP), and cellular components [32]. The
biological processes and pathways selected from the analysis of Metascape were colored
by cluster ID with the best p-values from each of 20 clusters, wherein nodes that share
the same cluster ID are typically close to each other. Enrichment analysis was also carried
out in PaGenBase to demonstrate disease targets–organs location. In addition, a further
enrichment analysis was performed in DisGeNET to identify the relevant diseases. The
results of the KEGG enrichment analysis were used to construct a KEGG pathway network
to determine the proteins involved in the treatment effects of HC. Based on the STRING
results, the gene–pathway of HC against pneumonia was constructed to delineate the
various pathways and key targets in order to explore the potential mechanisms underlying
the effect of HC on the treatment of pneumonia [28].

2.6. Molecular Docking

Molecular docking is a useful tool to predict and design new drugs. As such, the
computational validation of ingredients–targets interactions were confirmed by exploring
their binding modes via this process. The computational modeling of intermolecular
combinational patterns between target proteins and herb ligands can predict the potential
binding modes. Depending on the degree of 67 common targets in the PPI network and the
important reference, four active ingredients, including afzelin, apigenin, kaempferol, and
quercetin, and six targets, i.e., dipeptidyl peptidase-4 (DPP4), neutrophil elastase (ELANE),
Heat shock protein (HSP90AA1), IL6, mitogen-activated protein kinase 1 (MAPK1), and
Serpin Family E Member 1 (SERPINE1), were selected to simulate the ingredients–targets
interactions for verification of molecular docking. Molecular 2D structures for the molecular
ligands and active ingredients were downloaded from PubChem databases. The crystal
structures of the key target proteins DPP4 (PDB ID: 4N8D), ELANE (PDB ID: 4WVP),
HSP90AA1 (PDB ID: 5J2X), IL6 (PDB ID: 4CNI), MAPK1 (PDB ID: 6QAH), and SERPINE1
(PDB ID: 7AQF) were selected from RCSB PDB (https://www.wwpdb.org/ (accessed on
11 August 2021)). The key target proteins were purposefully selected with a resolution
smaller than 2, and their crystals were imported into PyMOL 3.0 software [33]. The active
site of the protein is centered on the active amino acid site of the original ligand in the
crystal structure, which residue information can be obtained from the literature [34–39].

Docking was performed by Autodock Vina 1.1.2, and the molecules with the lowest
binding energy in the docking conformation were chosen to observe the binding effect
by matching with the original ligands and intermolecular interactions, such as hydropho-
bic interaction, cation–π, hydrogen bond, anion–π, π–π stacking, salt bridge, and metal
complexation [33]. The molecular docking patterns were finally visualized via PyMOL 3.0.

https://www.wwpdb.org/
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2.7. Molecular Dynamics Simulation

The molecular dynamics simulations of these complexes were performed using Gro-
macs 2020.1, in which the charm36-jul2020 force field was chosen. The complex was solved
in TIP3P water and immersed in a dodecahedron box extending to at least 1 nm of the
solvent on all sides. The system was neutralized by Na+ and Cl−, followed by adding
0.15 M NaCl, which made the system close to the physiological state. The system was
minimized by using the steepest descent algorithm for 5000 steps and made a maximum
force of less than 1000 kJ/mol/nm. Then, it was equilibrated in a constrained NVT (number
of particles, volume, temperature) and NPT (number of particles, pressure, temperature)
running for 100 ps. The system was well-equilibrated through NVT and NPT equilibration
at 300 K and 1 bar. Finally, MD simulations of the complex were carried out for 100 ns. The
Verlet cut-off scheme and a Leap-frog integrator with a step size of 2 fs were applied. The
final analysis of molecular dynamics included the root mean square deviation (RMSD) of
protein and molecule and the interaction energy between the protein and small molecules,
which were calculated by GROMACS 2020.1.

3. Results
3.1. Target Prediction and Analysis of HC

While 50 metabolites were shown in the TCMSP by searching the keywords “Houttuy-
niae Herba”, only 7 satisfied the criteria of OB ≥ 30% and DL ≥ 0.18. Other metabolites
were obtained by searching ETCM, BATMAN-TCM, and TCMID. A number of metabo-
lites had already been established as the most effective components of HC throughout
the relevant literature [40]. These were also included, even though they did not meet
the OB and DL criteria. As such, a total of 20 metabolites were acquired. Depending on
these metabolites, the targets for a number of active ingredients of HC were identified by
target fishing and by integrating the data acquired from TCMSP, PubChem, and ETCM.
The targets of each active ingredient derived from the ETCM database were selected via
the screening score ≥0.8. Therefore, only 7 active metabolites were left after searching
the targets in those databases, including quercetin, quercitrin, kaempferol, acetyl borneol,
decanoic acid, afzelin, and apigenin (Table 1), and 463 targets related to the above seven
core active metabolites were identified.

3.2. Disease Targets Analysis

Bioinformatics analyses on the expression profile microarray data GSE152075 and
GSE1739 containing positive SARS-CoV-2 and negative control samples were performed to
identify DEGs between SARS-CoV-2 infection and negative control by the limma package in
R Bioconductor. This step identified 9685 DEGs from data series GSE152075 and 1791 DEGs
from data series GSE1739. Other disease data sources, such as GeneCards and DisGeNET,
were combined with the GEO results to remove duplicates, resulting in the identification
of 11,027 targets related to SARS-CoV-2. Since SARS-CoV-2 causes not only pneumonia
but also multiple organ failure, neutrophilia, and organ and coagulation dysfunction,
pneumonia-related targets were acquired by searching GeneCards with the keywords
“SARS-CoV-2” and “pneumonia”, resulting in 786 pneumonia-related targets. The inter-
section between SARS-CoV-2-related targets (11,207) and pneumonia-related targets (786)
resulted in 739 elite targets related to pneumonia caused by SARS-CoV-2.
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Table 1. Core metabolites of Houttuynia cordata.

PubChem CID Name OB (%) DL Structure

5280343 Quercetin 46.4 0.27
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3.3. Herb-Ingredients-Targets-Disease Network of HC Analysis

The intersection between HC-related targets (463) and pneumonia-related elite targets
(739) resulted in an HC–pneumonia common target set with 67 genes. This common target
set was imported into Cytoscape v3.5.0 to construct an Herb-Metabolites-Targets-Disease
(HMTD) network, as shown in Figure 2. This consisted of six metabolites assigned to
67 targets, indicating HMTD interactions. The node can be designed as a hub node if
the degree, betweenness, and closeness satisfy specific criteria, such as the median of the
corresponding parameters. The screening of important metabolites and core targets was
carried out based on the criteria of SUID > 70, Closeness Centrality > 0.4 and Degree > 4,
resulting in four ingredients (apigenin, quercetin, afzelin, and kaempferol) and 21 core
common targets (Table 2). Consequently, these important metabolites might be crucial active
compounds of HC targeting 21 genes, which could be verified through molecular docking or
further experiments. The HC–pneumonia common target set was imported into STRING to
remove unconnected targets, and a PPI network with a confidence score set to 0.9 or higher
was gained. PPI information from the STRING platform was input to Cytoscape software to
construct a PPI network based on the common targets shown in Figure 3. The size of target
nodes was consistent with the degree, and the nodes with pink color were deemed to be
important targets [41]. According to the degree and combined score, the top 21 common
targets shown in Table 2 are involved in the effects of HC treatment on pneumonia.
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Figure 2. Herb-Metabolites-Targets-Disease network (HMTD) of Houttuynia cordata. The green square
represents the herb Houttuynia cordata; pink diamonds are the active ingredients of Houttuynia cordata;
blue circles are common targets resulting from the intersection of herb targets and disease targets; the
red triangle is the disease.

Figure 3. Protein–Protein Interaction network (PPI) of common targets. The size of nodes in the left
picture represents the degree of targets. The picture on the right-hand side is the key protein in the
PPI network and correlated degree. The y-axis is the gene symbol of the key targets, and the x-axis is
the degree of the targets.
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Table 2. Information of 21 core genes after protein–protein network analysis.

No UniProt ID Gene Symbol Protein Name Degree

1 P10275 AR Androgen receptor 8

2 P31749 AKT1 RAC-alpha serine 8

3 P09601 HMOX1 Heme oxygenase 1 8

4 P27487 DPP4 Dipeptidyl peptidase 4 6

5 P06493 CDK1 Cyclin-dependent kinase 1 6

6 P05362 ICAM1 Intercellular adhesion molecule 1 6

7 P35869 AHR Aryl hydrocarbon receptor 6

8 P28482 MAPK1 Mitogen-activated protein kinase 1 6

9 P22301 IL10 Interleukin-10 6

10 P05231 IL6 Interleukin-6 6

11 P05164 MPO Myeloperoxidase 6

12 P01308 INS Insulin 4

13 P07900 HSP90AA1 Heat shock protein HSP 90-alpha 4

14 P48736 PIK3CG Phosphatidylinositol 4,5-bisphosphate
3-kinase catalytic subunit gamma isoform 4

15 P29965 CD40LG CD40 ligand 4

16 P42224 STAT1 Signal transducer and activator of
transcription 1-alpha/beta 4

17 P01375 TNF Tumour necrosis factor 4

18 P08246 ELANE Neutrophil elastase 4

19 P05112 IL4 Interleukin-4 4

20 P00533 EGFR Epidermal growth factor receptor 4

21 P15692 VEGFA Vascular endothelial growth factor A 4

3.4. GO and KEGG Enrichment Analysis

According to the results of GO enrichment analyses in Metascape, the genes were
enriched in different GO terms, and the top 20 GO terms in the three categories were selected
to construct connections within the signaling network (Figure 4). The network was colored
by cluster ID with the best p-values from each of 20 clusters, wherein nodes that share the
same cluster-ID are typically close. The top signaling pathways mainly include interleukin-
4 and interleukin-13 signaling, the AGE–RAGE signaling pathway in diabetic complication,
positive regulation of cell migration, spinal cord injury, IL17 signaling pathway, reactive
oxygen species metabolic process, leukocyte activation involved in immune response, Th17
cell differentiation, cytokines and inflammatory response, and epithelial cell migration
(Figure 4). The x-axis in the bar chart represents log 10 (p-value) and the y-axis the GO term.
The enrichment analysis in PaGenBase demonstrated disease targets-organs location, such
as lung, smooth muscle, cardiac myocytes, bone marrow, bronchial epithelial cells, liver
cells, and spleen. The analyses of the most-associated diseases showed immunosuppression,
fatty acid disease, respiratory distress syndrome, pneumonitis, endothelial dysfunction,
respiratory syncytial virus infection, liver failure, middle cerebral artery occlusion, bacterial
infections, acute myocardial infarction, lung diseases, cardiac arrest, myocardial ischemia,
and herpes simplex infections. To analyze the significance and importance of key targets in
the pathways involved in the treatment effect of pneumonia, 10 key pathways, determined
according to gene counts and adjusted p values from the KEGG enrichment analysis and
related targets, were used to construct a KEGG key pathway network (Figure 5). The
construction of gene–KEGG key pathways demonstrated that the targets MAPK1, MAPK3,
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IL6, PIK3CA, AKT1, EGFR, TNF, and STAT3 involved more than four signaling pathways,
including PI3K-Akt, Jak-STAT, MAPK, and NF-kB (Table 3). As such, HC could target
multiple functional and biological factors in pneumonia. However, the effects and profound
influence required further validation [28].

Figure 4. GO analyses of the 67 common targets associated with pneumonia. (A) Network of enriched
terms: the left-hand side is colored by cluster ID with the best p-values from each of 20 clusters
wherein nodes that share the same cluster-ID are typically close to each other; the right-hand side
network was colored by p-value, indicating that terms containing more genes tend to have a more
significant p-value; (B) bar graph of enriched terms colored by p-values to visualize the top 20 clusters;
(C) summary of enrichment analysis in PaGenBase to demonstrate disease targets–organs location;
(D) summary of enrichment analysis in DisGeNET to show the relevant diseases.
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Figure 5. Key pathway network construction based on KEGG enrichment. (A) Gene–pathway
of Houttuynia cordata against pneumonia. The node’s size is related to a degree; pink diamonds
are signaling pathways, and blue circles are target genes. (B) Schematic diagram of key signaling
pathways of Houttuynia cordata in treating pneumonia. Solid lines are direct actions, and dashed lines
are indirect actions. Some intermediate molecules are not presented. Detailed information and key
genes are listed in Table 3.

Table 3. Virus-related signaling pathway enriched by target genes.

ID Description Count Gene Ratio FDR

hsa04933 AGE-RAGE signaling pathway in
diabetic complications 18 18/67 2.78 × 10−23

hsa04657 IL-17 signaling pathway 16 16/67 1.91 × 10−20

hsa04066 HIF-1 signaling pathway 15 15/67 1.01 × 10−18

hsa04620 Toll-like receptor signaling pathway 12 12/67 4.25 × 10−14

hsa04668 TNF signaling pathway 12 12/67 6.79 × 10−14

hsa04151 PI3K-Akt signaling pathway 16 16/67 5.19 × 10−13

hsa04630 Jak-STAT signaling pathway 12 12/67 3.54 × 10−12

hsa04621 NOD-like receptor signaling pathway 12 12/67 5.17 × 10−12

hsa04068 FoxO signaling pathway 11 11/67 9.46 × 10−12

hsa04660 T cell receptor signaling pathway 10 10/67 1.98 × 10−11

hsa04917 Prolactin signaling pathway 8 8/67 9.06 × 10−10

hsa04919 Thyroid hormone signaling pathway 9 9/67 1.51 × 10−9

hsa04062 Chemokine signaling pathway 10 10/67 3.64 × 10−9

hsa04926 Relaxin signaling pathway 9 9/67 4.03 × 10−9

hsa04064 NF-kB signaling pathway 8 8/67 7.15 × 10−9

hsa04072 Phospholipase D signaling pathway 9 9/67 9.09 × 10−9

hsa04664 Fc epsilon RI signaling pathway 7 7/67 1.90 × 10−8

hsa04010 MAPK signaling pathway 11 11/67 1.94 × 10−8

3.5. Docking and Molecular Dynamics Simulation Analysis of Ingredients-Targets

Considering the integration of the results from the PPI network and HMTD network,
the key targets in the pathways mentioned above and the nodes with high degrees represent
the key targets. Therefore, molecular docking validation was performed based on the
pneumonia-related targets and selected ingredients from the HMTD network. The selected
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active ingredients included quercetin (CAS no. 117-39-5), kaempferol (CAS no. 520-18-3),
afzelin (CAS no. 482-39-3), and apigenin (CAS no. 520-36-5). The protein structures of key
targets were acquired online from RCSB PDB, including DPP4, ELANE, HSP90AA1, IL6,
MARK1, and SERPINE1, based on STRING interaction analysis and importance reference.
Docking analysis of the metabolites and proteins above showed the docking patterns and
binding affinities (Table 4). The docking results were represented on the molecular surface
to reflect the topical details of the binding sites. The residues were marked on the protein
surface, and hydrogen bonds were shown as solid lines (Figure 6). The binding affinities
of all docking patterns were less than −6 kcal/mol, indicating a stable binding between
active ingredients and protein targets. The binding affinities are listed in Table 4, and the
binding configuration is shown in Figure 6. The affinity energy of the best mode, apigenin,
is −9.4 kcal/mol.

Table 4. Binding affinities (kcal/mol) and binding residues.

Ingredient–Target BindingAffinity
Binding Residues

H-Bonds Hydrophobic Interaction π-Stacking/Salt Bridge

Afzelin–IL6 −6.7 TYR-97, ASN-63, THR-137 ASP-140, GLU-93 N/A

Afzelin–DPP4 −8.6 ARG-560, TYR-631, GLY-632, TRP-629,
TYR-547, LYS-554 N/A VAL-546, ASP-545

Afzelin–ELANE −6.7 ARG-23, CYS-136, GLN-122, GLY-207 PHE-29, LEU-137, TRP-27 N/A

Afzelin–MAPK1 -9.4 PHE-129, GLN-132, ASP-106, ILE-84,
ASN-158, THR-150 ILE-133, ASN-82 N/A

Afzelin–HSP90AA1 −7.6 GLN-133 N/A ARG-46

Afzelin–SERPINE1 −8.1 SER-119, ASP-95, THR-94, TYR-79 PHE-117, ARG-76 N/A

Apigenin–IL6 −6.7 GLN-152, ASN-103, ARG-104, ASP-160 GLN-159, GLN-156 N/A

Apigenin–DPP4 −8.4 SER-630, VAL-546, TYR-547 TRP-629 N/A

Apigenin–ELANE −7.6 CYS-168, ARG-178 PRO-230, AL-181, THR-164 N/A

Apigenin–MAPK1 −8.1 ILE-133, ASN-154, GLN-132 LEU-150, ILE-140, LEU-155, LEU-157 N/A

Apigenin–HSP90AA1 −7.3 LYS-58, PHE-138, GLY-135 THR-184, LEU-107, THR-109, ASN-51 N/A

Apigenin–SERPINE1 −8.5 PHE-117, SER-41, TYR-37, TYR-39 LEU-116, LEU-75, TYR-79 N/A

Kaempferol–IL6 −6.8 GLN-156, GLN-159, ARG-104 GLN-152 N/A

Kaempferol–DPP4 −8.1 GLU-205, ASN-710, ARG-125, SER-630, VAL-711, PHE-357 TYR-666

Kaempferol–ELANE −7.2 ASN-180, THR-164 VAL-181, LEU-130 N/A

Kaempferol–MAPK1 −8.3 GLN-132, LEU-156 LEU-157, ILE-140, LEU-150 N/A

Kaempferol–HSP90AA1 −7.4 LYS-58, ASN-51 THR-109, LEU-107, PHE-138, THR-184 N/A

Kaempferol–SERPINE1 −8.5 ASP-95, PHE-117, LEU-75, ALA-72 SER-41, TYR-79 N/A

Quercetin–IL6 −7.2 GLN-152, ARG-104 GLN-156, GLN-159 N/A

Quercetin–DPP4 −8.5 SER-630, TYR-662, ASN-710, ARG-125,
ARG-358 TYR-666, PHE-357 N/A

Quercetin–ELANE −7.3 ARG-128, CYS-168, GLN-233, ARG-129,
ARG-176 THR-164, LEU-130, VAL-181 N/A

Quercetin–MAPK1 −8.5 HIS-147, ASN-82 LEU-155, LEU-156, LEU-157 N/A

Quercetin–HSP90AA1 −7.4 GLY-97, THR-184, LEU-107, GLY-135 ALA-55, ASN-51, ASP-54 N/A

Quercetin–SERPINE1 −8.7 SER-41, ASP-95, SER-119, TYR-37,
LEU-75, PHE-117 TYR-79, LEU-116 N/A
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In order to verify the stability of the docking structures, we selected DPP4—kaempferol,
MAPK1–afzelin, SERPINE1–apigenin and SERPINE1–quercetin complexes for dynamic
simulation analysis. As shown in Figure 7, RMSD of proteins and small molecules
in the complex structures remained relatively stable during the simulation, especially
MAPK1–afzelin, SERPINE1–apigenin and SERPINE1–quercetin complexes. The RMSD of
kaempferol in DPP4–kaempferol varied greatly, and it was stable at 1 nm compared with
the initial docking structure, indicating that the position of kaempferol changed signifi-
cantly during the simulation process. This position change occurred rapidly and remained
stable at the new binding position. The average interaction energy of DPP4–kaempferol,
MAPK1–afzelin, SERPINE1–apigenin and SERPINE1–quercetin complexes was −107.34
kJ/mol, −180.39 kJ/mol, −175.82 kJ/mol, and −183.77 kJ/mol.

Figure 7. Molecular dynamics simulation results. (A–C) Molecular dynamics simulation results
of DPP4–kaempferol. Root square deviation (RMSD) of DPP4 skeleton atom (A), the RMSD of
kaempferol heavy atom (B), and the interaction energy between DPP4 and kaempferol during 100 ns
simulation (C). (D–F) Molecular dynamics simulation results of MAPK1–afzelin. RMSD of MAPK1
skeleton atom (D), the RMSD of afzelin heavy atom (E), and the interaction energy between MAPK1
and afzelin during 100 ns simulation (F). (G–I) Molecular dynamics simulation results of SERPINE1–
apigenin. RMSD of SERPINE1 skeleton atom (G), the RMSD of apigenin heavy atom (H), and the
interaction energy between SERPINE1 and apigenin during 100 ns simulation (I). (J–L) Molecular
dynamics simulation results of SERPINE1–quercetin. RMSD of SERPINE1 skeleton atom (J), the
RMSD of quercetin heavy atom (K) and the interaction energy between SERPINE1 and quercetin
during 100 ns simulation (L).
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In conclusion, we used docking and dynamics simulation to explore ingredient-target
prediction. Our results showed that the DPP4–kaempferol, MAPK1–afzelin, SERPINE1–
apigenin, and SERPINE1–quercetin complexes had good docking fractions, that the protein
and small-molecule positions were stable during the simulation process, and that the
interaction energy was lower than −100 kJ/mol. Accordingly, our studies provide a
reference for subsequent experimental design.

4. Discussion

While previous studies demonstrated that HC exhibited antiviral activity through
inhibiting SARS-CoV-1 3CLPRO and RdRp and also stimulated the proliferation of CD4+

and CD8+ T cells in vitro [3], the ability of HC to inhibit SARS-CoV-2 infection and the
similarities between the inhibitory mechanisms of SARS-CoV-2 and SARS-CoV-1 remain
unknown. Although several clinical studies have confirmed that prescriptions or formulas
(Lian Hua Qing Wen capsule) containing HC are effective for the treatment of COVID-
19 [42], further research is necessary to investigate the mechanism of action of HC and apply
the pharmacology of TCM network for the predictive analysis. Thus, this study aimed
to explore the pharmacological mechanism of HC on pneumonia caused by SARS-CoV-2
using network pharmacology and molecular docking.

TCM considers an individual or patient an integrative complex with dynamic states,
demonstrating multiple biological targets and focusing on integral therapeutic effica-
cies [43]. Inflammation has been the pathophysiological mechanism behind many chronic
diseases, including cytokines, nitric oxide (NO), lipid mediators, G prostaglandins, and
leukotrienes produced by macrophages, neutrophils, and other inflammatory cells [44,45].
This study included seven core metabolites, following diligent screening and searching in
the references, including quercetin, quercitrin, kaempferol, acetyl borneol, decanoic acid,
afzelin, and apigenin. These flavonoids are known to be large entities of plant constituents
and possess anti-inflammatory activity [15]. Some flavonoids have been shown to attenuate
lung inflammatory response strongly. For example, quercetin was previously reported to
attenuate lipopolysaccharide (LPS)-induced lung inflammation in mice by oral administra-
tion [14], while afzelin isolated from methanol extract of HC was demonstrated to regulate
both mitophagy and mitochondrial biogenesis through Rev–Erb-/phosphor–AMPK/SIRT1
signaling [40]. In addition, afzelin can inhibit mitochondrial dysfunction induced by ex-
cessive oxidative stress and attenuate the reduction of mitochondrial GDH activity and
hepatic ATP production in LPS-induced hepatic injury [40]. Kaempferol has been proven
to protect against H9N2 swine influenza virus infection and can ameliorate virus-induced
acute lung injury by inactivation of TLR4/MyD88-mediated NF–kB and MAPK signaling
pathways [46]. Kaempferol can also inhibit the release of TNF-α, IL1β, IL6, and IL18 and
suppress the activation of NF–kB and AKT, thus attenuating cardiac fibroblast inflamma-
tion [47]. Apigenin, a plant-derived flavonoid, possesses anti-carcinogenic, antioxidant,
anti-inflammatory, and anti-mutagenic properties [48]. Apigenin can react to the Nrf2 gene,
which encodes a key transcription factor to regulate the antioxidative defense system, and
was also a potent inhibitor of SARS-CoV 3CLpro [47]. The targets of these active ingredients
were collected from a different database.

Depending on the above active metabolites, target searching in the databases of
TCMSP, PubChem, and ETCM resulted in the acquisition of 463 targets related to the above
seven core active metabolites. The disease targets were obtained by identifying key genes
in SARS-CoV-2 infection and uncovering their potential functions by re-processing the
expression profiling of high-throughput sequencing of GSE152075 from the GEO database
to form a solid basis for the ensuing analysis. The bioinformatics analyses generated
11,207 DEGs, contributing to our understanding of the molecular mechanism underlying
the advancement of SARS-CoV-2 infection.

Since SARS-CoV-2 causes multiple organ failure [49], the intersection between DEGS
acquired from the GEO series and pneumonia-related genes from GeneCards and Dis-
GeNET isolated pneumonia caused by SARS-CoV-2, resulting in 739 elite targets. These
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were matched and mapped to obtain 67 common HC-pneumonia targets. A PPI network of
the common targets and screened nodes according to observed gene count > 50 resulted
in 21 core target networks to verify targets associated with HC ingredients. According to
the combined score of each node, the top 25 nodes were mainly NOS3, MTOR, SERPINE1,
PIK3CA, HSP90AA1, STAT3, INS, IL6, IL-1β, TNF, IL10, VEGFA, CDK1, and GSK3B. Most
of these genes are associated with inflammation, hypoxia, and angiogenesis [50]. This
result aligned with the findings of previous studies of HC extract and confirmed that HC
can down-regulate specific inflammatory mediators, such as TNF-α, IL6, prostaglandin
E2 (PGE2), and nitric oxide (NO) production in the cells, inducible nitric oxide synthase
(iNOS), and cyclooxygenase-2 (COX-2) expression [7].

The pathogenesis of inflammatory diseases is associated with the overproduction
of the above mediators. NO by endothelial nitric oxide synthase (NOS3) is implicated
in vascular smooth muscle relaxation and mediates vascular endothelial growth factor
(VEGF)-induced angiogenesis in coronary vessels, which may explain the many complica-
tions occurring in COVID-19 patients [51]. The mammalian target of rapamycin (mTOR)
entails the downstream of PI3K–Akt to regulate cell growth and proliferation, cell sur-
vival, protein synthesis, and transcription [52]. HC may inhibit PI3K/Akt/mTOR and
ERK1/2 signaling pathways in human lung cancer cells [53], while IL17A can inhibit
PI3K/Akt/mTOR-mediated autophagy, which causes lung inflammation and fibrosis [54].
However, alternative evidence suggests that activation of the PI3K/Akt/mTOR pathway
may contribute to pulmonary fibrosis and lung injury by regulating lung fibroblasts and
epithelial cells [55]. For STAT3, the activation of JAK–STAT signaling can lead to fibrosis in
many organs, i.e., the lung [47]. STAT3 is a potential molecular target for clinical syndromes
characterized by systematic inflammation in COVID-19 in a large-scale transcriptional
study [56]. Therefore, GO and KEGG enrichment analysis of the core targets was applied
to explore the underlying mechanism of HC.

The GO enrichment results confirmed that HC mainly regulates biological processes
in response to stimulus, regulation of the cellular process, response to chemicals, response
to stress, cell communication, signal transduction regulation of macromolecule metabolic
process, and regulation of nitrogen compound metabolic processes. The results of KEGG
enrichment uncovered the numerous signaling pathways involved in the development
and progression of pneumonia, including PI3K-Akt, HIF-1, IL-17, TNF, TLR, JAK–STAT,
NOD-like receptor, or MAPK. Previous studies further suggest that the anti-inflammatory
properties of HC extract may arise from the inhibition of pro-inflammatory mediators by
suppression of NF–κB, and MAPK signaling pathways by binding their key proteins in
pathways with HC active metabolites, as outlined above [9,39,41].

Based on the PPI, HMTD, and KEGG enrichment analysis, 6 of 21 core targets, namely,
DPP4, ELANE, HSP90AA1, IL6, MAPK1, and SERPINE1, were selected to dock with four
main ingredients identified in a series of analyses of this study. As such, the docking results
agreed with the intermolecular interactions. Despite extensive prior efforts to elucidate the
metabolism and effects of oral administration of HC in patients in vivo, the mechanism
remained largely unclear. DPP4, HSP90AA1, and SERPINE1 are related to immune re-
sponse and linked to macrophages which promote the generation of inflammatory factors,
such as TNF-α and IL6 [57]. DPP4 is a member of serine peptidases known as adeno-
sine deaminase complexing protein 2 clusters of differentiation 26 (CD26) associated with
immune regulation, apoptosis, and signal transduction. However, the main receptor of
SARS-CoV is angiotensin-converting enzyme 2 (ACE2) or CD209L, whereas MERS-CoV
uses DPP4 (also known as CD26) as the major receptor [58]. A correlation between DPP4
and ACE2 found that both membrane proteins can facilitate virus entry. Therefore, DPP4
was speculated to be a co-receptor to facilitate SARS-CoV-2 infection since DPP4 can be
found in lung cells [59]. The co-receptors of ACE2 and DPP4 to the spike glycoprotein pos-
tulate that different human coronaviruses target similar cell types across different human
organs [60]. Heat shock proteins (HSPs), also known as stress proteins, are divided into
the HSP70 family, HSP90 family, HSP 100 family, and so on. HSP90AA1 is a molecular
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chaperone protein with inhibitors that can induce hepatic stellate cell apoptosis through
neurophospholipase or NK-κB, depending on the mechanism. A previous study found
that Jin Hua Qing Gan Granules regulate multiple signaling pathways via binding targets,
such as PTGS2, HSP90AA1, and NCOA2, to prevent COVID-19 [61].

ELANE genes can express up to a five-fold level against SARS-CoV-1 infection, causing
lung proinflammatory cytokines [62]. Recent research found strong evidence that the
ELANE gene mainly enhances proinflammatory cytokines and can subsequently cause
epithelial cell injuries in cystic fibrosis patients [62,63]. The suppression of the ELANE gene
can therefore reduce the production of proinflammatory cytokines, resulting in improved
pulmonary function [63]. As such, the inhibition of ELANE directly protects the lung
and reduces lung inflammatory cell infiltration to improve the success rate of coronavirus
patients [62]. MAPK1 is the critical target participating in the MAPK signaling and PI3K-
Akt signaling pathways. The inhibition of MAPK1 can result in inhibiting the above two
pathways in LPS-induced ALI in mice [64]. SERPINE1 is a serpin peptidase inhibitor whose
increased expression resulted in a lower survival rate. Furthermore, increased expression
of SERPINE1 was associated with the activation of the PI3K–Akt pathway [16]. The results
from PPI and HMTD indicated that the six intersection genes above could prove to be
potent pharmacological targets of HC against COVID-19.

Molecular docking of 6 out of 21 core targets and four screened active ingredients
was applied to validate the results of the network pharmacology. The active ingredients
which target these proteins include quercetin, kaempferol, afzelin, and apigenin. Docking
within the docking pockets between active ingredients and target proteins was visualized
by AutoDock Vina and PyMOL software. The binding affinities of the docking results
ranged from −6.7 to −9.4 kcal/mol, indicating stable binding. Afzelin showed the greatest
binding affinities with MAPK1 (−9.4 kcal/mol), followed by DPP4 (−8.6 kcal/mol). In
contrast, MAPK showed a better average binding affinity with these four active ingredients,
indicating that HC protected against acute lung injury, mainly through the suppression of
the MAPK/NF–kB pathway [5]. The docking pose of apigenin shows H-bonds between
the aromatic region and residues PHE-129, ILE-133, ASN-82, ASP-106, ILE-84, ASN-158,
and THR-190, establishing a stacking interaction with GLN-132 [65]. However, the docking
results reflect possible treatment mechanisms and guide herb–disease validation via cells
and animal experiments.

Network pharmacology has been widely used for TCM mechanism research owing
to its efficacy in analyzing the complicated relationships among multiple ingredients
and multiple disease targets. Docking technology can visualized the binding modes
of active ingredients with disease-related key target proteins and provide guidance for
researchers’ selections of active ingredients for in vivo or in vitro experiments [66]. As
shown in the binding affinity result, multiple ingredients can bind the same protein, which
may result in synergistic effects. This represents a significant challenge for current network
pharmacology. In addition, further animal and cell models are needed to verify the relevant
pathways and targets.

This study confirmed the potent therapeutic effect of HC, a time-honored herb widely
used in Asian countries to treat pneumonia. The potential mechanisms of HC were revealed
by employing both network pharmacology and molecular computational analyses. Our
results offer a very different perspective in terms of modern pharmacological mechanisms
which may assist in the global fight against the COVID-19 pandemic. However, while
HC is an effective herb for pneumonia treatment, the optimal dose for inducing remission
with low toxicity needs to be determined. Moreover, further animal and cell models are
necessary to verify the relevant pathways and targets.
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