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Activation of Aryl Hydrocarbon Receptor by 
ITE Improves Cardiac Function in Mice After 
Myocardial Infarction
Eunhwa Seong, BS; Jun-Ho Lee , PhD; Sungmin Lim , MD, PhD; Eun-Hye Park, MS; Eunmin Kim, PhD; 
Chan Woo Kim , PhD; Eunmi Lee, MS; Gyu-Chul Oh , MD; Eun Ho Choo, MD; Byung-Hee Hwang, MD; 
Chan Joon Kim, MD, PhD; Sang Hyun Ihm , MD, PhD; Ho Joong Youn, MD, PhD; Wook Sung Chung, MD, 
PhD; Kiyuk Chang , MD, PhD

BACKGROUND: The immune and inflammatory responses play a considerable role in left ventricular remodeling after myocar-
dial infarction (MI). Binding of AhR (aryl hydrocarbon receptor) to its ligands modulates immune and inflammatory responses; 
however, the effects of AhR in the context of MI are unknown. Therefore, we evaluated the potential association between AhR 
and MI by treating mice with a nontoxic endogenous AhR ligand, ITE (2-[1’H-indole-3’-carbonyl]-thiazole-4-carboxylic acid 
methyl ester). We hypothesized that activation of AhR by ITE in MI mice would boost regulatory T-cell differentiation, modulate 
macrophage activity, and facilitate infarct healing.

METHODS AND RESULTS: Acute MI was induced in C57BL/6 mice by ligation of the left anterior descending coronary artery. 
Then, the mice were randomized to daily intraperitoneal injection of ITE (200 µg/mouse, n=19) or vehicle (n=16) to examine 
the therapeutic effects of ITE during the postinfarct healing process. Echocardiographic and histopathological analyses re-
vealed that ITE-treated mice exhibited significantly improved systolic function (P<0.001) and reduced infarct size compared 
with control mice (P<0.001). In addition, we found that ITE increased regulatory T cells in the mediastinal lymph node, spleen, 
and infarcted myocardium, and shifted the M1/M2 macrophage balance toward the M2 phenotype in vivo, which plays vital 
roles in the induction and resolution of inflammation after acute MI. In vitro, ITE expanded the Foxp3+ (forkhead box protein 
P3-positive) regulatory T cells and tolerogenic dendritic cell populations.

CONCLUSIONS: Activation of AhR by a nontoxic endogenous ligand, ITE, improves cardiac function after MI. Post-MI mice 
treated with ITE have a significantly lower risk of developing advanced left ventricular systolic dysfunction than nontreated 
mice. Thus, the results imply that ITE has a potential as a stimulator of cardiac repair after MI to prevent heart failure.

Key Words: 2-(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl ester ■ aryl hydrocarbon receptor ■ dendritic cells ■ 
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Acute myocardial infarction (MI) leads to cardiac 
dysfunction and, ultimately, ischemic heart fail-
ure (HF), which is associated with increased 

morbidity and mortality.1,2 Although the probability 
of survival after MI has gradually increased in recent 
years because of advanced treatments, patients with 
acute MI have an increased risk of secondary events 

such as HF.3 Cardiac remodeling is important to pre-
vent progression to HF after MI. Although structural 
and functional cardiac remodeling is multifactorial, in-
flammation and immune responses are critical com-
ponents. Current clinical and experimental studies 
support an additional critical role for inflammation after 
MI.4-6 MI triggers a massive inflammatory response 
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related to the infiltration of immune cells into the dam-
aged myocardium. This phase involves reparative 
pathways necessary for cardiac healing.7 However, 
unbalanced or excessive inflammation contributes 
to the aggravation of adverse ventricular remodeling 
and impaired left ventricular function and structure. 
Progressive remodeling increases wall stress and loss 
of viable myocardium. Exposure of the heart to patho-
physiological stress after MI induces cardiomyocyte 
hypertrophy and fibrosis.8 Cardiomyocyte hypertro-
phy during cardiac remodeling is characterized by al-
terations in cell size associated with sarcomeric and 

constitutive protein synthesis and changes in cardiac 
gene expression. These observations indicate that re-
striction of cardiac inflammation is important in repair 
of ischemic injury, and that persistent inflammatory sig-
naling is also essential for healing. A recent approach 
with the interleukin-1β inhibitor, canakinumab, as anti-
inflammatory therapy significantly diminished adverse 
serious cardiovascular events and hospitalization for 
HF in patients with prior MI, suggesting the potential 
of this inhibitor in anti-inflammatory therapies as an an-
tiremodeling remedy after MI.9,10 We aimed to develop 
a novel therapeutic approach to prevent postinfarct HF.

AhR (aryl hydrocarbon receptor), which belongs 
to the subfamily of the bHLH/PAS (basic helix-loop-
helix/Per-ARNT-Sim) family, is a transcription factor 
that regulates adaptive metabolism and environ-
mental responses.11 AhR is activated by xenobiotic 
chemicals, such as 2,3,7,8-tetrachlorodibenzo-p-d
ioxin, and leads to a broad spectrum of biological 
and immunotoxicological effects.12,13 Several studies 
have shown that AhR plays a significant role in the 
immune system, leading to the mobilization and re-
cruitment of regulatory T cells (Tregs) that promote 
tolerance in autoimmune and inflammatory diseas-
es.14–16 In particular, AhR leads to upregulated Treg-
specific gene expression and inhibits the expression 
of specific genes associated with effector T-cell 
function.17 An endogenous nontoxic ligand of AhR, 
ITE (2-[1’H-indole-3’-carbonyl]-thiazole-4-carboxyl
ic acid methyl ester), suppresses experimental au-
toimmune encephalomyelitis by promoting the pro-
duction of functional Foxp3+ (forkhead box protein 
P3-positive) Tregs and tolerogenic dendritic cells 
(tDCs).18 Dendritic cells (DCs), the most potent type of 
antigen-presenting cell, regulate immunity and toler-
ance. In response to stimuli, DCs manipulate immu-
noregulatory functions, resulting in changes in their 
stage of differentiation, maturation, and functions.19 
AhR may stimulate tDC-supported differentiation of 
Tregs, thereby modulating inflammation during the 
postinfarct myocardial inflammation phase. In addi-
tion, because AhR can affect the control of monocyte 
differentiation and regulate the immune response, 
we examined the protective effect of DC activation in 
response to ITE. The physiological relevance of ITE 
during post-MI remodeling and its subsequent effect 
on the immune system remain unclear.

Here, we examined whether ITE is a useful tool 
in promoting effective favorable cardiac remodeling 
after acute MI using a coronary artery ligated mouse 
model. We found that ITE improves cardiac remod-
eling and reduces the proinflammatory response 
through systemic activation of Treg differentiation and 
regulation of the M1/M2 macrophage profile in the in-
jured myocardium.

CLINICAL PERSPECTIVE

What Is New?
•	 We provide in vivo evidence of AhR (aryl hydro-

carbon receptor) activation as a novel antire-
modeling strategy in suppressing adverse 
remodeling of myocardial infarction.

•	 Systemic administration of an endogenous AhR 
ligand induced regulatory T cell increases in the 
mediastinal lymph node, spleen, and postin-
farct myocardium, which brought about earlier 
M1 to M2 macrophage transition and favorable 
remodeling in a preclinical model of myocardial 
infarction.

What Are the Clinical Implications?
•	 Our findings suggest that AhR activation can 

successfully modulate postinfarct inflamma-
tion and improve left ventricular function via the 
control of regulatory T cells and subsequently a 
better immune environment for healing.

•	 Short-term administration and activation of AhR 
by a nontoxic endogenous ligand can be a novel 
therapeutic strategy for the prevention of heart 
failure in humans after myocardial infarction.

Nonstandard Abbreviations and Acronyms

AhR	 aryl hydrocarbon receptor
DCs	 dendritic cells
Foxp3+	 forkhead box protein P3-positive
ITE	 2-(1’H-indole-3’-carbonyl)-thiazole-4-

carboxylic acid methyl ester
mDCs	 mature dendritic cells
mdLNs	 mediastinal lymph nodes
tDCs	 tolerogenic dendritic cells
Tregs	 regulatory T cells
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METHODS
Data of this study are available on request from the 
authors.

Induction of an Ml Model and Treatment 
With ITE
All animal experiments were approved by the 
Institutional Animal Care and Use Committee at the 
School of Medicine of the Catholic University of Korea 
(approval number: CUMC-2018-0035-07). Male 7- 
to 8-week-old C57BL/6 mice were purchased from 
Orientbio Korea. Mice were anesthetized by intraperi-
toneal injection of tiletamine/zolazepam 12.5  mg/kg 
(Zoletil 50; Virbac Korea, Seoul, Korea) and xylazine 
10 mg/kg (Rompun; Bayer, Seoul, Korea), intubated, 
and placed on a mechanical animal ventilator (Harvard 
Apparatus). MI was induced in C57BL/6 mice (20‒
22 g) by ligation of the left anterior descending coro-
nary artery. In the sham group, the chest was opened, 
but left anterior descending coronary artery ligation 
was not performed. For ITE-treated mice, ITE (Tocris 
Bioscience, Bristol, UK) was prepared in DMSO 
(Sigma-Aldrich, St. Louis, MO) at a concentration of 
100 mmol/L and then diluted further with PBS before 
use. MI mice were randomly assigned and received 
daily intraperitoneal injection of vehicle (control group, 
n=16) or ITE (200  µg) for 1  week (ITE group, n=19). 
Mice were euthanized on day 5 or day 28 after MI 
under Rompun-Zoletil anesthesia, followed by bilat-
eral thoracotomy to assure euthanasia. For a survival 
analysis, mice treated with ITE (n=30) and controls 
(n=28) after MI or a sham-operated group (n=5) were 
monitored to identify overall survival.

Histology
Hearts were rapidly excised, fixed in 4% paraform-
aldehyde solution, and embedded in paraffin. The 
paraffin blocks were cut into 5-μm-thick sections 
by using a microtome (Thermo Fisher Scientific, 
Waltham, MA). Serial sections were stained with 
Masson’s trichrome, and infarct size was calcu-
lated as follows: total infarct circumference/total 
left ventricular circumference × 100.20 To visual-
ize the whole infarct area, excised heart tissue was 
cut into 4 serial sections and stained with a 1% 
2,-3,-5-triphenyltetrazolium chloride (Sigma-Aldrich) 
solution at 37°C for 20 minutes.

Echocardiography
Echocardiography was performed at 28  days after 
MI using an Affinity 50 imaging system (Philips, 
Amsterdam, the Netherlands). Briefly, mice were an-
esthetized with isoflurane (2.0%) in a mixture of oxygen 

and nitrous oxide (O2/N2O=3/7). The ejection fraction 
and fractional shortening were calculated by M-mode 
tracings in short-axis views at the papillary muscle level 
of the short-axis views.

Generation of Bone Marrow-Derived DCs
Bone marrow-derived DCs were obtained from mice 
(C57BL/6, 7  weeks old, male) as previously de-
scribed.21 Immature DCs were cultured with 1 µmol/L 
ITE or vehicle (control). To generate tDCs and mature 
DCs (mDCs), 10 ng/mL recombinant murine tumor ne-
crosis factor alpha (BD Pharmingen, Mountain View, 
CA) and 1 µg/mL lipopolysaccharide (Sigma-Aldrich) 
were added to immature DC cultures in the pres-
ence of ITE or PBS for 4 hours. Cells were harvested, 
and CD11c, CD40, CD80, CD86, and PD-L1 surface 
marker expression was examined on a fluorescence-
activated cell sorter or in functional assays.

DC–T-Cell Cocultures
DCs were cocultured with splenocytes from C57BL/6 
mice in RPMI 1640 medium containing 10% fetal bo-
vine serum (FBS) (DC:T-cell ratio, 1:10) at 37°C for 
72 hours. Next, the cells were harvested and analyzed 
by flow cytometry to identify the population of T cells. 
The cell culture supernatants were collected for cy-
tokine measurements.

Analysis of Immunofluorescence Staining
Paraffin-embedded cardiac tissue sections were 
deparaffinized and rehydrated. The sections were 
unmasked in antigen retrieval buffer (Abcam, 
Cambridge, UK) for 10 minutes at 95°C. After block-
ing, the sections were stained overnight at 4°C with 1 
of the following antibodies: anti-CD4 (GK1.5; Abcam), 
anti-Foxp3 (D6O8R; Cell Signaling Technology, 
Danvers, MA), anti-CD68 (FA-11; Abcam), anti-
iNOS (inducible nitric oxide synthase) (Abcam), and 
anti- MR (mannose receptor; Abcam). After sec-
ondary antibody incubation, nuclei were counter-
stained with a DAPI solution (Dako, Carpinteria, CA). 
Stained slides were mounted in DAKO Fluorescence 
Mounting Medium, and fluorescence signals were 
imaged using fluorescence microscopy (LSM 510 
Meta; Zeiss, Oberkochen, Germany). Images were 
acquired using ZEN 2012 software (Zeiss).

Quantitative Real-Time Polymerase Chain 
Reaction
Total RNA was isolated using TRIzol reagent 
(Invitrogen, Carlsbad, CA). The RNA purity and con-
centration of the purified RNA were determined by 
using a Thermo NanoDrop 2000 (Thermo Fisher), 
followed by cDNA synthesis with a cDNA synthesis 
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kit (Roche, Basel, Switzerland), quantitative real-time 
polymerase chain reaction (BioRad Laboratories, 
Hercules, CA), and real-time polymerase chain reac-
tion (BioRad). mRNA expression was normalized to 
GAPDH mRNA expression, and the lists of primers 
used for quantitative real-time polymerase chain re-
action are included in Table.

Measurement of Cytokine Concentrations
To measure cytokine production, single-cell sus-
pensions were prepared from mouse spleens and 
cultured in RPMI 1640 medium containing 10% FBS 
and 1% antibiotics at a density of 1×106  cells/mL, 
followed by stimulation with 50 ng/mL PMA (Sigma-
Aldrich) and 1  μmol/L ionomycin (Sigma-Aldrich). 
After 24  hours of incubation, the splenocyte cul-
ture supernatants were collected and analyzed to 
measure the concentrations of the cytokines inter-
leukin (IL)-10 and IL-17 (ELISA kits; R&D Systems, 
Minneapolis, MN).

Flow Cytometry Analysis
Spleens and mediastinal lymph nodes (mdLNs) were 
harvested and mechanically processed by passage 
through a 70-μm cell strainer. Cell-surface mark-
ers were stained with PerCP-Cy5.5-conjugated 
anti-CD4 (RM4-5; BioLegend, San Diego, CA) and 
Allophycocyanin-conjugated anti-CD25 (PC61; 
BioLegend) antibodies for Treg analysis. Intracellular 
staining was preformed after fixation and permeabi-
lization with a Foxp3 fix/perm buffer set (BioLegend) 
by incubating cells with a Phycoerythrin-conjugated 
anti-FOXP3 antibody (FJK-16s; Invitrogen). DCs were 
stained with fluorescein isothiocyanate–conjugated 
anti-CD11c (N418; BioLegend), Allophycocyanin-
conjugated anti-CD40 (3/23; BD Biosciences, 
Franklin Lakes, NJ), Alexa Fluor-488-conjugated 

anti-CD80 (2D10, BioLegend), Alexa Fluor-647-
conjugated anti-CD86 (GL-1; BioLegend), and 
Brilliant Violet421-conjugated anti-CD274 (10F.9G2; 
BioLegend) antibodies. Flow cytometric analysis was 
conducted by using a FACSCanto II flow cytometer 
(BD Biosciences), and the results were analyzed with 
FlowJo software (Tree Star, San Carlos, CA).

Statistical Analysis
Quantitative data and statistical analyses were con-
ducted using Prism version 7.0 (GraphPad Software, 
San Diego, CA). Based on an unpaired Student t test 
or 1-way ANOVA followed by Bonferroni’s multiple 
comparison test, a P<0.05 was considered statisti-
cally significant. Survival analysis were studied by the 
Kaplan-Meier curve and compared with a log-rank 
(Mantel-Cox) test.

RESULTS
ITE Treatment Improves Cardiac Structure 
and Function After MI
We performed histological analysis of cardiac tissue 
sections to examine the effects of ITE on cardiac 
remodeling and function in mice after MI. Figure 1A 
shows a schematic depicting the animal experi-
ments. At 28 days after MI, Masson’s trichrome and 
2,3,5-triphenyltetrazolium chloride staining showed 
that the infarct size in mice injected with ITE once 
a day for 1  week was significantly smaller com-
pared with control mice (P<0.0001; Figure  1B and 
1C). Serial echocardiographic monitoring to assess 
cardiac function and morphology showed no sig-
nificant differences in cardiac function including left 
ventricular ejection fraction and fractional shortening 
up to 2 weeks (Figure S1), but ITE treatment signifi-
cantly increased the fractional shortening (28.9%–
34.8%, P<0.001) and ejection fraction (10.6%–14.0%, 
P<0.01) compared with control at 28  days after MI 
(Figure 1D and 1E). Mice treated with ITE exhibited an 
increased survival rate compared with control mice 
(Figure 1F; log-rank P=0.3981). The results suggest 
that ITE therapy induces improvements in cardiac 
structure and function, thereby resulting in increased 
survival after acute MI.

ITE Promotes the Differentiation of Foxp3+ 
Tregs on Day 5 After MI
To confirm ITE-induced changes in Treg popula-
tions and cytokine production in vivo, mice were 
euthanized 5 days after MI. Cells were isolated from 
the heart-draining mdLNs and spleen. Flow cy-
tometry revealed that the Foxp3+ Treg population 
in the mdLNs and spleens from mice treated with 

Table 1.  Primer Sequence for Quantitative Real-Time 
Polymerase Chain Reaction

Gene Primer Sequence

CYP1A1 Forward 5′ TAA CCA TGA CCG GGA ACT GTG 3′ 
Reverse 5′ CTC CGA TGC ACT TTC GCT TG 3′

TNFα Forward 5′ CAC AGA AAG CAT GAT CCG CGA CGT 3′ 
Reverse 5′ TGA GAG GGA GGC CAT TTG GGA 3′

IL1β Forward 5′ GAG TGT GGA TCC CAA GCA AT 3′ 
Reverse 5′ ACG GAT TCC ATG GTG AAG TC 3′

IL10 Forward 5′ GCT CTT ACT GAC TGG CAT GAG 3′ 
Reverse 5′ CGC AGC TCT AGG AGC ATG TG 3′

TGFβ1 Forward 5′ TGA CGT CAC TGG AGT TGT ACG 3′ 
Reverse 5′ GGT TCA TGT CAT GGA TGG TGC 3′

Foxp3 Forward 5′ ACCCAGGAAAGACAGCAACC 3′ 
Reverse 5′ GATCTGCTTGGCAGTGCTTG 3′

GAPDH Forward 5′ AGA ACA TCA TCC CTG CAT CC 3′ 
Reverse 5′ CAC ATT GGG GGT AGG AAC AC 3′
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ITE was larger than that in corresponding tissues 
from control mice (Figure 2A and 2B). Next, we ex-
amined splenocyte cytokine profiles. ITE treatment 
increased the expression of IL-10 and decreased 
the expression of IL-17 in the spleen of treated mice 
compared with that of control mice (Figure  2C). 
Next, we examined cardiac Treg infiltration of the 
healing infarct after MI. An increased number of 
Tregs in the infarcted myocardium was observed 
in ITE-treated mice compared with control mice at 
5 days after MI (Figure 2D). Collectively, the results 

show that ITE treatment increases the Foxp3+ Treg 
populations in the lymph nodes, spleen, and in-
farcted myocardium.

ITE Modulates a Shift in Macrophage 
Subsets in the Myocardium After MI
To determine whether ITE alters macrophage po-
larization, immunofluorescence staining was per-
formed to evaluate myocardial infiltration by M1 and 
M2 macrophages. ITE promoted polarization to an 

Figure 1.  ITE improves cardiac function after MI.
A, Schematic showing the experimental timeline. B, Representative images showing Masson’s trichrome 
staining of cardiac tissues from the control (n=9) and ITE-treated (n=12) groups at 28 days after MI (left 
panel) and quantitative analysis of infarct size (right panel). Scale bar, 2 mm. The results were compared 
using an unpaired t test. ***P<0.001. C, Representative images showing 2,3,5-triphenyltetrazolium 
chloride staining of cardiac tissues from the control (left) and ITE-treated (right) groups at 28 days after MI 
(n=7 per group). Scale bar, 2 mm. D, Representative echocardiography M-mode images of sham, control, 
and ITE-treated mice. E, Echocardiography data showing the left ventricular EF and FS in the control 
and ITE-treated groups at 28  days after MI (n=5: sham and control, n=10: ITE). **P<0.01. ***P<0.001. 
F, Kaplan-Meier 28-day survival analysis after acute MI in vehicle control (n=28) and ITE-treated mice 
(n=30) or sham operation (n=5). The results were compared using 1-way ANOVA. Data are presented as 
mean±SEM. CON indicates control; EF, ejection fraction; FACS, fluorescence-activated cell sorter; FS, 
fractional shortening; ITE, 2-(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl ester; LAD, left 
anterior descending coronary artery; and MI, myocardial infarction.
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M2 phenotype in the myocardium at post-MI day 5. 
In contrast, nontreated mice showed accumulation of 
M1 macrophages at post-MI day 5. The CD68+iNOS+ 
M1 macrophage population in infarcted heart tis-
sue was far lower in ITE-treated mice than in control 
mice on day 5 (Figure  3A), whereas the CD68+MR+ 
M2 macrophage population was increased in the ITE-
treated mice (Figure 3B). To identify ITE-induced AhR 

activation in the infarcted myocardium, we confirmed 
the mRNA expression of Cyp1a1 (cytochrome P450 
1A1), which has been used as a biomarker for AhR 
activation. The ITE group showed increased Cyp1a1 
expression compared with the sham and control 
groups (Figure 4A). Additionally, to determine the ex-
pression of cytokines in the infarcted myocardium, we 
examined cytokine profiles by quantitative real-time 

Figure 1.  Continued
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Figure 2.  ITE increased Foxp3+ Treg populations.
A, Representative fluorescence-activated cell sorter plots showing the CD4+Foxp3+ Treg populations in the 
spleen and mdLNs of mice in the control and ITE-treated groups at 5 days after MI. B, Dot plots showing the 
CD4+Foxp3+ Tregs and CD4+CD25+Foxp3+ Tregs (n=6: control, n=8: ITE). C, Levels of cytokines (picograms 
per milliliter) produced by splenocytes in the control and ITE-treated groups at 5 days after MI (n=5 for per 
group). D, Confocal immunofluorescence images of Tregs in the infarcted myocardium at 5 days after MI. 
Cells were stained for CD4 (green) and Foxp3 (red) (left). A merged image is shown on the right (n=5 for per 
group). Scale bars=20 µm. The control and ITE groups were compared with an unpaired t test. Data are 
presented as mean±SEM. CON indicates control; Foxp3+, forkhead box protein P3-positive; IL, interleukin; 
ITE, 2-(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl ester; mdLNs, mediastinal lymph nodes; 
MI, myocardial infarction; and Tregs, regulatory T cells. *P<0.05. **P<0.01. ***P<0.001.
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polymerase chain reaction. The expression of mRNA 
transcripts encoding tumor necrosis factor alpha and 
IL-1β after MI was significantly increased in the control 
group compared with the sham and ITE groups. The 
expression of IL-10 and transforming growth factor 

beta 1 in post-MI infarcted tissue from the ITE group 
was much higher than that in corresponding tissue 
from the sham and control groups (Figure 4B), sug-
gesting that ITE modulates immune responses in the 
infarcted myocardium.

Figure 3.  AhR activation by ITE drives macrophage polarization in the infarcted myocardium.
A, Representative confocal IF images of M1 macrophages in infarcted hearts at 5 days after MI. Sections were stained for CD68 
(green) and iNOS (red) (left). The number of CD68+iNOS+ cells in control and ITE-injected mice was counted (right). B, Representative 
confocal IF images of M2 macrophages in infarcted hearts at 5 days after MI. Cells were stained for CD68 (green) and MR (red) (left). 
The number of CD68+MR+ cells in control and ITE-injected mice was counted (right) (n=5: control, n=6: ITE). Scale bars=20 µm. Data 
are presented as mean±SEM and were analyzed using an unpaired t test. AhR indicates aryl hydrocarbon receptor; CON, control; IF, 
immunofluorescence; iNOS, inducible nitric oxide synthase; ITE, 2-(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl ester; 
MI, myocardial infarction; and MR, mannose receptor. **P<0.01.
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Figure 4.  ITE regulates the production of anti-inflammatory and proinflammatory cytokines.
A, Relative mRNA expression of Cyp1a1 in infarcted tissues determined by quantitative real-
time polymerase chain reaction. Expression of mRNA transcripts encoding the proinflammatory 
cytokines TNF-α and IL-1β (B) and the anti-inflammatory cytokines TGF-β1 and IL-10 (C) in infarcted 
tissues at 5 days after MI (n=5‒7 per group). The values are normalized to GAPDH and expressed 
as the fold-change from sham values. The results were compared using 1-way ANOVA. Data are 
presented as mean±SEM. CON indicates control; Cyp1a1, cytochrome P450 1A1; IL, interleukin; 
ITE, 2-(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl ester; MI, myocardial infarction; 
ns, not significant; TGF-β1, transforming growth factor beta 1; and TNF-α, tumor necrosis factor 
alpha. *P<0.05. **P<0.01. ***P<0.001.
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Figure 5.  ITE inhibits the expression of costimulatory molecules by LPS-induced DCs.
A, DC subsets and ITE-treated cells were stained with specific antibodies and analyzed by flow cytometry. B, Bar graph 
showing the mean fluorescence intensity, expressed as the mean±SEM (n=5 independent DC preparations). *P<0.05. 
**P<0.01. ***P<0.001. APC, allophycocyanin; DC, dendritic cells; FITC, fluorescein isothiocyanate; ITE, 2-(1’H-indole-
3’-carbonyl)-thiazole-4-carboxylic acid methyl ester; LPS, lipopolysaccharide; mDC, mature dendritic cells; and tDC, 
tolerogenic dendritic cells.
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ITE-Treated DCs Have a Tolerogenic 
Function
Several approaches have shown that the regulatory 
capacity of in vivo expansion of the Foxp3+ Treg com-
partment depends on AhR activation.18,22,23 DCs can 
also modulate T-cell activation and polarization, con-
tributing to Foxp3+ Treg induction. To gain insight into 
the effect of AhR activation in response to ITE in vitro, 
we investigated the expression of costimulatory mol-
ecules, including CD40, CD80, CD86, and PD-L1 in 
DCs. We treated immature DCs in vitro with 1 µmol/L 
ITE and found that the expression of costimulatory 
molecules by ITE-treated mDCs was slightly lower than 
that by untreated control cells (Figure 5A and 5B). DCs 
can induce the differentiation of CD4+ T cells into Tregs; 
therefore, splenocytes were cocultured with DCs and 
analyzed. ITE-treated mDCs increased the Foxp3+ 
Treg population to a greater extent than nontreated 
mDCs (Figure 6A and 6B). These data were confirmed 
by measuring Foxp3 mRNA levels (Figure  6C). We 
showed that ITE could induce tDCs and inhibit their 

differentiation and maturation. Next, we examined the 
functional effects on Treg expansion in response to 
ITE. Compared with mDCs, ITE-mDCs promoted the 
Foxp3+CD4+CD25+ Treg population and increased the 
mRNA expression of Foxp3 (Figure  6A through 6C). 
These results suggest that ITE upregulates the im-
munotolerogenic effect of DCs when cocultured with 
splenocytes.

DISCUSSION
Our study revealed the effects of AhR stimulation by 
ITE (a nontoxic endogenous AhR ligand) on func-
tional and structural improvements after MI in mice. 
ITE treatment for 1 week significantly reduced infarct 
size measured by histology and markedly improved 
the left ventricular ejection fraction and fractional 
shortening observed by echocardiography in MI 
mice. These antiremodeling effects could be de-
rived from increases in the Foxp3+ Treg populations 
of the spleen and lymph nodes and subsequent M2 

Figure 6.  Immunosuppressive characteristics of ITE-primed tDCs.
A, Splenocytes were cocultured with tDCs or mDCs and stimulated with or without ITE for 72 hours at 
37°C. B, The bar graphs show the mean percentage of CD4+CD25+Foxp3+ cells. C, Relative Foxp3 mRNA 
expression was measured by quantitative real-time polymerase chain reaction. Foxp3 mRNA expression 
was quantified relative to that of GAPDH. Data are presented as mean±SEM and were compared using 
1-way ANOVA (n=5 per group). APC indicates allophycocyanin; Foxp3 indicates forkhead box protein P3; 
ITE, 2-(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl ester; mDCs, mature dendritic cells; ns, 
not significant; and tDCs, tolerogenic dendritic cells. *P<0.05. **P<0.01. ***P<0.001.
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macrophage predominance in infarcted hearts, cre-
ating a better environment for healing and favorable 
remodeling. These findings support the conclusion 
that ITE, a nontoxic AhR stimulator, can be clinically 
translated into a novel antiremodeling therapy for the 
prevention of post-MI HF in humans.

Wound healing after MI requires an orchestrated 
inflammatory response. Induction of Foxp3+ Tregs 
provides important benefits in reducing infarct size 
and preventing HF following acute MI.24,25 Several 
methods can be used for in vitro Foxp3+ Treg expan-
sion, but the capacity of these methods to lead to 
prolonged activation of Foxp3+ Tregs is limited.26-28 
Some studies have reported improved wound heal-
ing after MI by assessing the regulatory capacity 
of Tregs; unfortunately, these treatments have not 
translated to the clinic.29 Strategies aimed at manip-
ulating functional Foxp3+ Tregs in vivo would be more 
applicable to clinical practice. Potential approaches 
to generate functional Foxp3+ Tregs responding to 
AhR activation have demonstrated the ability to es-
tablish anti-inflammatory immune responses in set-
tings of experimental autoimmunity and transplant 
rejection.14,30-32 In this regard, AhR activation in acute 
MI could have the potential to modulate the immune 
response and reduce infarct size. The massive re-
lease of cytokines and inflammatory responses 
during ischemic cardiac injury play important roles in 
postischemic healing. Therefore, understanding the 
pathogenesis and pharmacodynamics of ischemia is 
essential to attenuate ischemic injury in heart tissues 
by regulating myocardial inflammation. AhR is an en-
dogenous ligand-dependent transcription factor that 
is intrinsically linked to mediating immune disorders 
and regulating inflammation.33 MI is associated with 
an intensive inflammatory response and spontaneous 
repression, which results in an important physiolog-
ical process for effective recovery. Thus, AhR is an 
attractive target in MI and inflammatory disease.

Myocardial ischemic injury following acute MI pro-
motes profound inflammation, and timely suppression 
of inflammatory responses via expansion of Foxp3+ 
Treg populations attenuates myocardial necrosis and 
adverse remodeling. After MI, macrophage subsets 
play a central role in cardiac remodeling.34,35 Tregs 
coordinate a switch in macrophage polarity, which 
helps to remove dead tissue and repair the wound 
after ischemic injury.21 Cardiac-resident macrophages 
mostly disappear within the first 24 hours, and mono-
cytes replenish with the cardiac macrophage pool 
after acute MI.36 The infiltrating monocytes then dif-
ferentiate into M1 macrophages responsible for the 
proinflammatory response. Subsequently, cytokines, 
chemokines, and growth factors influence the re-
parative phase coordinated by M2 macrophages. In 
this process, we hypothesized that ITE could further 

induce macrophage polarization from M1 to M2, 
thereby leading to better antiremodeling effect. Here, 
we showed that ITE abrogated excessive inflamma-
tion and promoted Treg populations in the mdLNs 
and spleen, which could induce a rapid shift from an 
M1 macrophage phenotype to an M2 macrophage 
phenotype in the infarcted myocardium (Figure  3A 
and 3B), achieving timely suppression and spatial 
containment of the postinfarction inflammatory re-
action at post-MI day 5. Although significant patho-
physiological differences at the initial phase was not 
observed between ITE treatment and control, thera-
peutic Treg activation or expansion by ITE treatment 
enhanced M2-like monocyte differentiation within 
5 days, which induced better healing at a later phase 
(28 days after MI). Activated M2-like macrophages are 
well known to mediate anti-inflammatory processes 
and exhibit wound-healing properties.37 Our studies 
clearly demonstrated that ITE could stimulate local 
M2-like macrophage proliferation (Figure 3B), produc-
ing transforming growth factor beta 1 and IL-10 in the 
myocardium in post-MI mice (Figure 4B).

Upregulated AhR expression has been shown 
to accelerate DC-induced anti-inflammatory activ-
ities.32,38 DCs serve as potent antigen-presenting 
cells and the first line of defense against pathologi-
cal infections. Many studies have attempted to regu-
late tDCs to prevent autoimmune disease.39,40 Here, 
we found that ITE conferred tolerogenic functions 
on DCs by inhibiting DC maturation. In particular, 
ITE inhibited the expression of costimulatory mole-
cules, including CD40, CD80, CD86, and PD-L1, in 
lipopolysaccharide-treated DCs derived from murine 
bone marrow-derived DCs (Figure  5A and 5B). In 
addition to the limited lipopolysaccharide-mediated 
inflammatory response of DCs, ITE expanded the 
Foxp3+ Treg population in vitro (Figure  6A). These 
results strongly support that ITE treatment after MI 
downregulates the immune response in the infarcted 
myocardium.

In the present study, we focused on the proof of 
concept of immune modulatory potential of ITE after 
acute MI; however, it is limited for understanding the 
detailed mechanisms underlying the immune re-
sponses after ITE treatment. For instance, the in vivo 
absorption, metabolism, distribution, and excretion 
rates of ITE remain unclear.41 Therefore, more intensive 
studies, including the detailed pharmacokinetics, will 
need to be performed to define the biodistribution of 
ITE and its primary effects on a tissue-specific manner 
in future work.

In conclusion, an earlier M1 to M2 macrophage 
transition and rapid Treg expansion induced by ITE 
contribute to potent immune modulation, which im-
proves the systolic function of the heart in MI mice. 
Treg populations are increased in the mdLNs, spleen, 
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and infarcted myocardium. This altered immune envi-
ronment within the infarcted heart promotes wound 
remodeling and preserves left ventricular function after 
myocardial tissue damage. Thus, ITE, an endogenous 
AhR ligand, may serve as a highly potent new com-
pound for the antiremodeling treatment of MI.
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SUPPLEMENTAL MATERIAL



Figure S1. Time course of improvements in EF and FS obtained by echocardiography for 4 
weeks. 

Echocardiography was performed before LAD ligation (base, n=5) and at 1-week 

intervals after LAD ligation in each group (control, n=5; ITE, n=10). Data are 

presented as the mean ± SEM. **P < 0.01, and ***P < 0.001. EF indicates ejection 

fraction and FS, fractional shortening. 
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