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Abstract

Microbes are capable of physiologically adapting to diverse environmental conditions by dif-

ferentially varying the rates at which they uptake different nutrients. In particular, microbes

can switch hierarchically between different energy sources, consuming first those that

ensure the highest growth rate. Experimentally, this can result in biphasic growth curves

called “diauxic shifts” that typically arise when microbes are grown in media containing sev-

eral nutrients. Despite these observations are well known in microbiology and molecular

biology, the mathematical models generally used to describe the population dynamics of

microbial communities do not account for dynamic metabolic adaptation, thus implicitly

assuming that microbes cannot switch dynamically from one resource to another. Here, we

introduce dynamic metabolic adaptation in the framework of consumer-resource models,

which are commonly used to describe competitive microbial communities, allowing each

species to temporally change its preferred energy source to maximize its own relative fit-

ness. We show that dynamic metabolic adaptation enables the community to self-organize,

allowing several species to coexist even in the presence of few resources, and to respond

optimally to a time-dependent environment, thus showing that dynamic metabolic adapta-

tion could be an important mechanism for maintaining high levels of diversity even in envi-

ronments with few energy sources. We show that introducing dynamic metabolic strategies

in consumer-resource models is necessary for reproducing experimental growth curves of

the baker’s yeast Saccharomyces cerevisiae growing in the presence of two carbon

sources. Even though diauxic shifts emerge naturally from the model when two resources

are qualitatively very different, the model predicts that the existence of such shifts is not a

prerequisite for species coexistence in competitive communities.

Author summary

Since a celebrated experiment by Monod in 1949, we know that microbes can adapt their

metabolic strategies in response to their environment, thus uptaking different nutrients at

different rates depending on their relative quality and availability. It is currently unclear
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whether this physiological plasticity of microbes contributes to maintaining the high

degree of diversity found in natural microbial communities, even in the presence of very

few resources. By introducing dynamic and optimal metabolic strategies in consumer-

resource models, we show that we can correctly reproduce the experimental growth of

Saccharomyces cerevisiae on two different resources and we show that dynamic metabolic

strategies allow the community to self-organize and to ensure the coexistence of multiple

species competing for few resources.

Introduction

Biodiversity is one of the most fascinating aspects of nature: from the microscopic to the conti-

nental scale, complex communities composed of tens to thousands of species compete for

resources and yet coexist. In particular, the survival of a species depends on the availability of

resources in the environment, which is not static and can be altered by the presence of other

species in the community. Furthermore, biodiversity is crucial for the functioning and mainte-

nance of whole ecosystems, directly impacting their productivity, stability and many other

properties [1]. It is thus critical to understand what are the mechanisms that can promote and

maintain biodiversity within natural communities. To answer this question, the coexistence of

several species in the same ecosystem can be investigated experimentally using controlled

microbial communities and theoretically using models of community dynamics in the pres-

ence of multiple resources. Indeed, studies in the field of microbial ecology have shown that

several species can coexist in the presence of few resources [2–6], and how this is possible is a

long-standing open question [6–9] that recent theoretical studies are trying to answer [10–12].

Independent and apparently unrelated experiments of microbial batch growth have shown

that microbes are capable of physiologically adapting to environments containing two or more

resources [13–15]. Microbes can in fact physiologically adapt to different environmental con-

ditions in various ways, by transforming and recycling nutrients and by varying the rates with

which they uptake resources with time. Already in the early 1940s, Jacques Monod [13]

observed that Escherichia coli and Bacillus subtilis grown in a culture medium containing two

different sugars exhibit a biphasic growth curve, which he called “diauxie”. Instead of metabo-

lizing these two nutrients simultaneously, bacteria consumed them sequentially using the most

favorable one first (i.e., the one that conferred the highest growth rate) and once it had been

depleted, following a lag phase, they resumed growth using the other sugar. Since then, diauxic

growth has been the subject of thorough empirical study [16–19], via experiments that have

generally involved the growth of one microbe on two resources, and the occurrence of diauxic

shifts has been documented to occur widely across different microbial species [20–22]. Many

models have been proposed to describe this phenomenon of “metabolic dynamic adaptation”,

but all are focused on the specific gene regulation and expression mechanisms of a given spe-

cies [15, 23], and are generally tailored to describe the growth of such a species on a specific set

of resources [24–26]. The general effects of using dynamic strategies on the maintenance of

biodiversity in microbial communities, therefore, have not yet been investigated from the

ecological dynamics perspective, with the exception of very few studies that have analyzed sim-

ilar effects on different types of system: Valdovinos et al. [27], for example, investigated the

consequences of adaptive foraging in plant-pollinator systems and found out that this effect

increases species persistence and diversity.

In principle, the ability of microbial species to vary the rates at which they consume differ-

ent nutrients might allow them to diversify the consumption of different resources in response
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to both the presence of other species and to the abundance and quality of the nutrients avail-

able, and this in turn might allow them to persist in the community. To understand the general

implications of dynamic metabolic strategies for the maintenance of biodiversity, one needs to

abstract from the specific molecular mechanisms that regulate the preferential consumption of

different resources by any given species. What is needed, instead, is a general, phenomenologi-

cal framework capable of describing these phenomena in a unified way as emergent properties

of complex systems of agents that interact with each other and with the environment, rather

than through ad hoc tailored biological and/or molecular mechanisms. Recently there has

been a growing effort to develop such a framework, with particular focus on the conditions

leading to species coexistence [10, 11, 28–32]. The models devised in this direction typically

build on MacArthur’s consumer-resource framework [33, 34], describing the competition of

species for a common pool of resources, but neglecting dynamic metabolic adaptation. In fact,

despite the aforementioned evidence for dynamic metabolic adaptation from studies of micro-

bial metabolism, these models implicitly but systematically assume that the metabolic strate-

gies (defined here as the maximum resource uptake rates) of microbial species do not change

with time, and assume that a species’ consumption rate of a given resource depends solely on

the concentration of the latter, and not on the presence of other species, nor on the concentra-

tion of other nutrients. There are only a few examples in the literature where metabolic strate-

gies in microbial communities are allowed to change to a certain degree, but these studies were

neither focused on deriving conditions for species coexistence, especially as a consequence of

having dynamic metabolic strategies, nor did they take into account a continuous temporal

dynamics for metabolic strategies. Goyal et al. [12], for example, have recently developed a

conceptual model of microbial communities showing that such systems can have multiple sta-

ble states, that they can restructure themselves after external perturbations, and that comple-

mentarity in nutrient preferences allows multiple species to coexist; in this model, species can

switch instantaneously between different energy sources, but the model does not explicitly

describe population dynamics. Marsland et al. [35], on the other hand, have considered models

where resource uptake rates can be regulated so that species use the resource that is currently

the most abundant, and species can excrete secondary metabolites into the environment.

In this work we allow metabolic strategies to depend on time within a consumer-resource

model. The temporal dynamics of such metabolic strategies is set to maximize the relative fit-

ness of each species. We show that this approach is capable of quantitatively reproducing

experimentally-measured growth curves of S. cerevisiae consuming multiple resources, in con-

trast to a consumer-resource model with fixed strategies. When considering a community

composed of multiple species consuming multiple resources, our model suggests that dynamic

metabolic adaptation plays a major role in maintaining species diversity, especially when few

common resources are available. Furthermore, if the environmental conditions of the system

are variable over time, or if some of the available resources degrade rapidly, our adaptive

framework is capable of maintaining the coexistence of several species on few resources, while

the classical MacArthur’s consumer-resource model with fixed metabolic strategies would pre-

dict the extinction of most species. Our work therefore proposes a unifying theoretical frame-

work capable of reproducing both the existence of diauxic shifts and the coexistence of a large

number of species competing for a limited number of resources in various realistic ecological

settings, thus suggesting that dynamic metabolic adaptation can play an important role in

maintaining high levels of biodiversity in microbial communities.

When using consumer-resource models it is of paramount importance to identify what are

the ‘‘resources’’. In fact, several properties of this type of models, particularly those relative to

the maintenance of species diversity, depend crucially on identifying the growth-limiting

resources. In this work we consider only substitutable resources, i.e. we identify as resources
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those substances present in the environment that can be used interchangeably for microbial

growth (e.g. different sugars as carbon sources). Finally, we point out that since our framework

is based on consumer-resource ecological models, the term ‘‘adaptation’’ is used here in the

system dynamics sense (i.e., indicating changes in the metabolic state of a species aimed at

maximizing its growth rate over ecological time scales) and should not be intended in the evo-

lutionary sense (i.e., the process by which species become better adapted to their environment

via mutation, genetic drift and selection over evolutionary times).

Results

The MacArthur’s consumer-resource model

In the classical formulation of MacArthur’s consumer-resource model, a community of m spe-

cies competes for p resources according to the following equations:

_ns ¼ ns

 
Xp

i¼1

viasiriðciÞ � ds

!

; ð1Þ

_ci ¼ si �
Xm

s¼1

nsasiriðciÞ � mici ; ð2Þ

where nσ(t) describes the population density of species σ, ci(t) is the concentration of resource i
and δσ is the death rate of species σ. The quantity ri(ci) is a function accounting for the fact that

the dependence of a species’ growth rate on a given resource concentration saturates as ci is

increased. Without loss of generality, we assume that ri(ci) has the form of a Monod function

[13], i.e. ri(ci) = ci/(Ki + ci) with Ki > 0 (Ki is the half-saturation constant), and so ri(ci)< 1 8 ci

> 0. The quantities ασi� 0 are the metabolic strategies, and each one of them can be inter-

preted as the maximum rate at which species σ uptakes resource i. The parameter vi is often

called “resource value” and is related to the resource-to-biomass conversion efficiency: the

larger vi, the larger the population growth rate that is achieved for unit resource quantity, and

thus the more “favorable” resource i is. The parameter si is a constant nutrient supply rate, and

the sum in (2) represents the action of all consumers on resource i. Such an action depends of

course on the metabolic strategies ασi. Finally, μi� 0 is the degradation rate of resource i.

Introducing dynamic metabolic adaptation

Our introduction of dynamic metabolic strategies in the consumer-resource framework starts

from the requirement that each metabolic strategy~as ¼ ðas1; . . . ; aspÞ
T

changes in time to

maximize the relative fitness of species σ, measured [36, 37] as the growth rate

gs ¼
Pp

i¼1
viasiriðciÞ � ds. This can be achieved by requiring that metabolic strategies follow a

simple gradient ascent equation:

_asi /
@gs
@asi

: ð3Þ

Notice that introducing adaptive metabolic strategies in the MacArthur’s consumer-

resource model reduces the number of independent parameters, given that the m � p metabolic

strategies become dynamical variables.

Eq (3) is missing an important biological constraint, which is related to intrinsic limitations

to any species’ resource uptake and metabolic rates: by necessity, microbes have limited

amounts of energy that they can use to produce the metabolites necessary for resource uptake,
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so we must introduce such a constraint in (3). To do so, we require that each species has a

maximum total resource uptake rate E�
s
� 0 that it can achieve, i.e.

Pp
i¼1
asiðtÞ≔EsðtÞ � E�

s
.

The choice of imposing a soft constraint in the form of an inequality is not arbitrary, as it is

rooted in the experimental evidence that microbes cannot devote an unbounded amount of

energy to metabolizing nutrients. Experiments [38] have shown, in fact, that introducing a

constraint for metabolic fluxes in the form of an upper bound (perfectly analogous to the one

we adopted in this work, see Eq. (4) in [38]) allows one to improve the agreement between

Flux Balance Analysis modeling and experimental data on E. coli growth on different

substrates.

The constraint on the species’ maximum total resource uptake rates introduces a trade-off

between the use of different resources. In S1 Text we present a geometrical interpretation of

the maximization problem given by (3), i.e. _~as /r
!

~as
gs wherer

!

~as
is the gradient with respect

to the components of~as. In particular, since we want~as to change so that the constraint

φð~asðtÞÞ≔
Pp

i¼1
asiðtÞ=E�s � 1 � 0 is satisfied, we remove fromr

!

~as
gs the component parallel

tor
!

~as
φð~asðtÞÞ as soon as φð~asðtÞÞ ¼ 0. Furthermore, we prevent the metabolic strategies from

becoming negative. Eventually, the final equation for the metabolic strategies’ dynamics is

given by (see S1 Text for the full derivation):

_asi ¼ asils viri �
Yðφð~asÞÞPp

k¼1
ask

Xp

j¼1

vjrjasj

" #

; ð4Þ

where we have written ri = ri(ci), Θ is Heaviside’s step function (i.e. Θ(x) = 1 when x� 0 and

Θ(x) = 0 otherwise) and λσ is the ‘‘learning rate’’ of species σ. Here, we assume that all the degra-

dation rates μi are null, but we discuss a more general case below. Table 1 summarizes the param-

eters used in the model. See S1 Text for the detailed dimensional analysis of the parameters.

Diauxic shifts

If we introduce dynamic metabolic adaptation in a consumer-resource model so that each spe-

cies changes its metabolic strategies to maximize its own growth rate, the new model is capable

not only of reproducing qualitatively the growth dynamics of diauxic shifts, but to do so in

quantitative agreement with experimental observations. To show this, we measured growth

curves of the baker’s yeast, S. cerevisiae, grown in the presence of galactose as the primary car-

bon source. In these growth conditions, S. cerevisiae partially respires and partially ferments

Table 1. Parameters used in our model, with their definition and units (see S1 Text for the detailed dimensional

analysis of the model).

Parameter Definition Units

nσ Population density of species σ cell/mL

δσ Death rate of species σ 1/h

λσ Learning rate g of resource /(cell � h)

E�
s

Total uptake rate of species σ g of resource /(cell � h)

ασi Metabolic strategy g of resource /(cell � h)

vi Value of resource i cell/(g of resource)

ci Density of resource i g of resource/mL

Ki Half-saturation constant of resource i g of resource/mL

si Supply rate of resource i g of resource/(mL � h)

μi Degradation rate of resource i 1/h

https://doi.org/10.1371/journal.pcbi.1007896.t001
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the sugar. As a byproduct of fermentation, yeast cells release ethanol in the growth medium,

which can then be respired by the cells once the concentration of galactose in the medium is

reduced. To model the growth of S. cerevisiae in these conditions, we modified the equations

to account for the fact that the second resource, ethanol, is produced by the yeast cells them-

selves, while the first one, galactose, is consumed. We have then fitted the model to the data

using a Markov Chain Monte Carlo (MCMC) algorithm [39] (see Methods). In Fig 1A, we

show that our adaptive consumer-resource model can fit the experimental data with parame-

ters that are compatible with values found in the literature (see Table A in S1 Text). When fit-

ting the “classic” MacArthur’s consumer-resource model with fixed metabolic strategies, on

the other hand, the same MCMC fitting algorithm returns two possible different outcomes,

depending on the ranges that the parameters are allowed to explore in the Markov chain

dynamics. When the parameters are constrained to vary within a few orders of magnitude

from experimentally-measured values found in the literature (Table A in S1 Text), the fixed-

strategies model is incapable of reproducing even a diauxic behavior (Fig 1B). When the

parameters are subject to looser constraints on the value they can take, instead, the model can

reproduce the data (Figure A in S1 Text), although not as well as the adaptive-strategies model,

but some of the best fit parameters have biologically unreasonable values (see Table A in S1

Text). The Akaike Information Criterion, used to compare the relative quality of the two mod-

els discounting the number of parameters, selects unambiguously the model with adaptive

strategies as the best fitting one when comparing it to either fits of the fixed-strategies model

(see Methods).

Fig 1. Comparison between the best fits of MacArthur’s consumer-resource model (dashed lines) and experimental measures of the growth of S.
cerevisiae on galactose as the primary carbon source and ethanol as a byproduct of fermentation, in the case of adaptive (A) and fixed (B)

metabolic strategies. Shown are the mean (black lines) and the standard error (gray bands) across n = 8 replicate populations. In (A) the model is not

only capable to reproduce very well the experimental data, but the best fit returns parameters whose values are biologically reasonable when contrasted

with experimentally-measured ones found in the literature (see Table A in S1 Text). On the other hand, the fit in (B) cannot reproduce a diauxic

behavior when the parameters are constrained to vary within a few orders of magnitude away from biologically reasonable values (see Table A in S1

Text). See S1 Text for details on how the fits were performed and the resulting values of the best fit parameters.

https://doi.org/10.1371/journal.pcbi.1007896.g001
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Species coexistence

The MacArthur’s consumer-resource model also makes predictions for the coexistence of m
species on p shared resources and reproduces the so-called “Competitive Exclusion Principle”

[40] (CEP), a theoretical argument that has sparked a lively debate in the ecological commu-

nity [41–45]. According to the CEP, the maximum number of species that can stably coexist is

equal to p. In nature, however, there are many situations in which the CEP appears to be vio-

lated: the most famous example of such violation is the “Paradox of the Plankton” [7], whereby

a very high number of phytoplankton species is observed to coexist in the presence of a limited

set of resources [46]. Many different mechanisms have been proposed to explain the violation

of the CEP, ranging from non-equilibrium phenomena [7] to the existence of additional limit-

ing factors like the presence of predators [47], cross-feeding relationships [6], toxin production

[48], and complex or higher-order interactions [49, 50]; see [8] and [9] for comprehensive

reviews.

Considering now our model in the general case of m species and p resources, if the total

maximum resource uptake rates E�
s

are completely uncorrelated to the death rates δσ (e.g. if

E�
s
¼ Qsds, with Qs > 0 drawn randomly from a given distribution with average hQi and

standard deviation S) we observe extinctions, i.e. in the infinite time limit, we cannot have

more than p coexisting species (see S1 Text). We focus on the idealized case of infinite tempo-

ral coexistence to avoid the introduction of too many finite temporal scales, as would be the

case when considering the inevitable perturbations experienced by communities that jeopar-

dize their coexistence. In Fig 2 we show how the times of first and seventh extinction change as

we vary the coefficient of variation S=hQi of the normal distribution from which we draw the

Qs in a system of m = 10 species and p = 3 resources. As shown, these extinction times increase

sensibly as S=hQi is reduced. In other words, for Qs more and more peaked around their

mean value, the species present in the system can coexist for increasingly longer times. As we

can see, the extinction times exhibit a power law-like behavior as a function of the coefficient

of variation S=hQi. In particular, we find that the times to extinction of the first m − p species

scale approximately as ðS=hQiÞ� 1
. This observation suggests that adaptive strategies promote

species biodiversity for finite time scales and that coexistence for an infinite time interval could

be possible if the ratio between the maximum resource uptake rate E�
s

and the death rate of

each species δσ, which we call the Characteristic Timescale Ratio (CTR), does not depend on

the species’ identities. In mathematical terms, if E�
s
=ds ¼ Qs ¼ Q 8s, then m> p species can

coexist. This requirement is compatible with the experimental observations that led to the for-

mulation of the metabolic theory of ecology [51] (see S1 Text for a detailed mathematical justi-

fication of this statement), according to which these two rates (E�
s

and δσ) depend only on the

characteristic mass of a species. It is indeed possible to show analytically that our model can

strictly violate the CEP if the CTR Q does not depend on the species’ identities (see S1 Text for

details on the proof). In this latter case, since a single time scale characterizes each species, we

set λσ = dδσ, where d> 0 regulates the speed of adaptation.

For comparison, in Fig 2 we also show the times of first extinction for the same system with

the same parameter distributions but where metabolic strategies are fixed. As we can see, these

extinction times are all approximately equal independently of S=hQi, and are orders of magni-

tude smaller than the ones obtained with dynamic metabolic strategies. It is therefore clear

that even when each species has its own CTR, Qs, using dynamic metabolic strategies increases

by several orders of magnitude the length of the time interval over which species coexist.

MacArthur’s consumer-resource model with fixed ασi has been shown to violate the CEP

only if
Pp

i¼1
asi ¼ E (where E> 0 is a constant independent of σ, i.e. the maximum resource

uptake rate is the same for all species), if δσ = δ8σ (where δ> 0 is a constant independent of σ,
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i.e. the death rate is the same for all species) and if~s, the vector whose components are the

nutrient supply rates si, belongs to the convex hull of the metabolic strategies~as [10]. In gen-

eral, any looser constraint (including
Pp

i¼1
asi � Es with arbitrary Eσ) will lead to the extinc-

tion of at least m − p species, i.e. the system will obey the CEP; in this sense the system allows

coexistence only when fine-tuned, a situation that is unlikely to be true for all natural commu-

nities. However, if we now use (4) for the dynamics of ασi, it is possible to show analytically

that the system gains additional degrees of freedom which make it possible to find steady states

where an arbitrary number of species can coexist, even when the initial conditions are not

favorable. More specifically, if we denote by~̂s and ~̂as some appropriately rescaled versions of

the nutrient supply rate vector~s and the metabolic strategies~as (see S1 Text for more informa-

tion), the system reaches a steady state where all species coexist even when~̂s initially does not

belong to the convex hull of ~̂as. In Fig 3, we show the initial and final states of a temporal inte-

gration of the model: even though~̂s was initially outside the convex hull of ~̂as, the metabolic

strategies changed to bring~̂s within the convex hull and thus allowed coexistence. Therefore,

the community modeled by Eqs (1–4) is capable to self-organize. Notice that if we used fixed

metabolic strategies in this case, almost all species would go extinct and the CEP would hold

(see Figure D in S1 Text).

Fig 2. Time of first (orange) and seventh (purple) extinction in the consumer-resource model with adaptive

metabolic strategies and with E�
s

drawn independently of δσ. We used m = 10, p = 3 and E�
s
¼ Qsds with Qs drawn

from a normal distribution with mean hQi and standard deviation S; see S1 Text for more details on the parameters

used. The extinction times were computed as the instants at which the densities of the species fell below 1 cell/mL.

Both axes are in logarithmic scale, the error bars represent one standard deviation across 50 iterations of the model and

the dashed lines are the best power-law fits. The behavior of the extinction times suggests that if S = 0 then all species

could coexist indefinitely. Indeed, it is possible to show analytically that when Qs ¼ Q 8s, all species coexist at the

stationary state of the system (see S1 Text for details). The green points show, for comparison, the time of first

extinction for a system with the same parameters but where metabolic strategies are fixed. As we can see, even when

each species has its own CTR, Qs, using dynamic metabolic strategies increases by several orders of magnitude the

length of the time interval over which species manage to coexist. The results shown do not change noticeably if the

initial conditions on the populations are increased, even if by some orders of magnitude.

https://doi.org/10.1371/journal.pcbi.1007896.g002
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Minimization of energy waste. An independent prediction of our model is that if one of

the available resources, e.g. resource j, is too energetically unfavorable, then dynamic metabolic

adaptation will bring all the j-th components of the metabolic strategies to zero, i.e. species will

stop using that resource. By what measure resource i is unfavorable is quantified by 1/vi. When

the metabolic strategies are not allowed to adapt, it is possible to prove that a nontrivial station-

ary state (i.e. one where the CEP is violated) is possible only if 1=vi < Q 8i; this means that if

even just one of the resources is unfavorable, i.e. 1=vj > Q for one j, then there will be extinc-

tions and in the end the CEP will hold (see S1 Text and Figure E in S1 Text for more details).

However, when we allow the strategies to adapt following (4), the system reaches a non-trivial

stationary state even if there is one (or possibly more) resource j for which 1=vj > Q. In this

case, in fact, resource j becomes too unfavorable, and it is possible to show that the system

decouples from it, i.e. the j-th component of all the metabolic strategies becomes null (see

Figure E in S1 Text). Something analogous happens also when degradation rates are present,

i.e. μi > 0 in (2): in this case, at stationarity, the convex hull of the rescaled metabolic strategies

will include the vector with components ~si≔viðsi � mic�i Þ=
Pp

j¼1
vjðsj � mjc�j Þ with c�i the station-

ary value of ci(t) (see S1 Text), and if one of the μi is sufficiently large, this vector will lie on one

of the sides of the (p − 1)-dimensional simplex where our system can be represented. In other

Fig 3. Comparison between the initial (orange) and final (purple) convex hull of the rescaled metabolic strategies

(colored dots) when they are allowed to adapt according to (4). These results have been obtained for a system with

m = 10 species and p = 3 resources using the graphical representation method introduced by Posfai et al. [10] and

using a common value of the CTR Q for all species. In particular, in this case this method prescribes that the rescaled

metabolic strategies and nutrient supply rate vector (black star) all lie on a 2-dimensional simplex (i.e. the triangle in

the figure), where each vertex corresponds to one of the resources; for details on the parameters used, and for the plots

of the temporal dynamics of the population densities and metabolic strategies, see Figure D in S1 Text. In the final

state, the ~̂as have incorporated~̂s in their convex hull.

https://doi.org/10.1371/journal.pcbi.1007896.g003
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words, we find that if the degradation rate μj of resource j becomes too large, then again all the

j-th components of the metabolic strategies will become null (see Figures S5 and S7). On the

other hand, if we introduce the resource degradation rates in MacArthur’s consumer-resource

model with fixed metabolic strategies, extinctions will occur and the CEP will hold (see

Figure F in S1 Text) for any choice of Eσ. Therefore, species in our model minimize the energy

they use to metabolize resources that are unfavorable or volatile, and they invest their energy

budget on the more convenient ones.

Variable environmental conditions. Having adaptive metabolic strategies also allows the

system to better respond to variable environmental conditions, i.e. when~s is a function of time

~sðtÞ. Let us consider a scenario where the nutrient supply rates change periodically; this can be

implemented by shifting~s between two different values at regular time intervals: one inside the

convex hull of the initial (rescaled) metabolic strategies and one outside of it. We found that

when the metabolic strategies~as are allowed to adapt, the species’ populations oscillate

between two values and manage to coexist, while when the metabolic strategies are fixed in

time, some species go extinct due to the perturbations and the CEP is recovered, unless~sðtÞ
spends enough time inside the convex hull of the metabolic strategies—see Fig 4. Also in the

case of environmental conditions that vary with time, we find that when we introduce resource

degradation rates that are sufficiently large, all the i-th components of the metabolic strategies

vanish (see Figure H in S1 Text). Therefore, adaptive metabolic strategies allow species in the

community to self-organize and efficiently deal with variable environmental conditions and a

mix of (energetically) favorable and unfavorable resources, features characterizing natural

ecosystems.

Adaptation velocity. A physically relevant parameter characterizing the capacity of a spe-

cies to adapt to a new environment is d, which regulates the velocity of dynamic metabolic

adaptation for the metabolic strategies (see (3) with λσ = dδσ, by which d has units of g of

resource/cell). Increasing the value of d leads to metabolic strategies that adapt more rapidly,

and as a consequence species’ growth rates will be optimized for longer periods of time. Thus,

in a community in which the CTR is the same for all species, stationary population densities

will be higher for larger values of d. When d tends to zero, instead, we recover the case of fixed

metabolic strategies and thus the CEP will determine the fate of the community. As shown in

Fig 5, the distribution of stationary species’ populations can indeed change sensibly with the

adaptation velocity d. On the other hand, if the system is subject to variable environmental

conditions like the ones discussed previously (i.e.~sðtÞ changes with time), as d increases the

species’ are more able to promptly respond to perturbation and thus their populations will be

less variable (see Figure K in S1 Text).

Discussion

Community dynamics in the presence of multiple resources has traditionally been modeled

via the MacArthur’s consumer-resource model, which prescribes the temporal dynamics of

the population abundances of different competing species and of the resource densities. At

present, the rates at which different species uptake different resources in such models have

been treated as fixed parameters, in contrast with the experimental evidence that microbes can

dynamically adapt nutrient uptake rates in response to environmental conditions. With fixed

metabolic strategies, we find that the MacArthur’s consumer-resource model cannot repro-

duce the growth dynamics of a single microbial species in the presence of two resources, which

shows that one must account for the temporal dynamics of nutrient uptake even in very simple

ecological settings. For more complex communities, the MacArthur’s model with fixed

PLOS COMPUTATIONAL BIOLOGY Metabolic adaptation promotes coexistence in competitive communities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007896 May 7, 2020 10 / 18

https://doi.org/10.1371/journal.pcbi.1007896


metabolic strategies reproduces the so-called Competitive Exclusion Principle, whereby only

m� p species can survive if p resources are present, an observation that is in contrast with

abundant empirical observations.

To understand if and how the classical MacArthur’s consumer-resource model can

describe the coexistence of multiple competing species, we have introduced dynamic meta-

bolic adaptation such that each species varies its metabolic strategies to maximize its growth

rate. This new theoretical framework provides therefore a unified description of dynamic

metabolic adaptation and community-level coexistence. We show that consumer-resource

models with adaptive metabolic strategies can quantitatively describe the growth of a single

microbial species on multiple resources through a fit of experimental data that gives physio-

logically reasonable best fit estimates for the model parameters. Furthermore, we show

that the adaptive dynamics of metabolic strategies has a fundamental impact on species

Fig 4. Comparison between the temporal dynamics of species’ population densities (each color represents a different species) in the consumer-

resource models with fixed metabolic strategies, when the resource supply rate vector~s varies with time. Here, we simulated a system with m = 20

species, p = 3 resources, and with the nutrient supply rate vector switching at regular intervals between the two values shown (black star and diamond) in

(A). Specifically, in (B) we made~sðtÞ alternate periodically between~s in for τin = 12 h and~sout for τout = 48 h, with~s in chosen within the convex hull of the

initial rescaled metabolic strategies and~sout chosen outside of it (see Figure G in S1 Text for more information on the parameters used). Panel (C) shows

the same quantities, with τin = τout = 48 h. See Figure G in S1 Text for the dynamics of the species’ populations in the consumer-resource model with

adaptive metabolic strategies.

https://doi.org/10.1371/journal.pcbi.1007896.g004
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coexistence: the coexistence time interval of multiple species competing for few resources

diverges as the characteristic timescale ratio (CTR) becomes less and less variable across dif-

ferent species. We suggest that this requirement is compatible with the experimental mea-

surements of the scaling of vital and metabolic rates with body size that led to the metabolic

theory of ecology [51], according to which the rates involved in the CTR depend only on the

characteristic mass of the species. Fluctuations around such scaling patterns can be non-neg-

ligible [52–54] and thus it is likely that the coefficient of variation, S/hQi, in natural commu-

nities is not exactly equal to zero. Thus, it is reasonable to postulate that such patterns may

be responsible for reducing the coefficient of variation and thus prolonging extinction times,

giving time to other processes not explicitly considered here to promote species coexistence,

such as trade-offs in life-history traits [55–57] (e.g. the fact that some species grow faster

when resources are abundant and others when resources are scarce, or that some species

grow fast on a primary resource while growing more slowly on a secondary one). Therefore,

we suggest that dynamic metabolic adaptation and the metabolic theory of ecology provide a

fundamental mechanism for promoting the coexistence of a large number of species on a

limited number of resources. Without invoking the metabolic theory of ecology, each species

Fig 5. Rank distribution of the (decimal) logarithm of the stationary population densities n�
s

for different values of the

adaptation velocity d (see Figure J in S1 Text for more information on the parameters used). The lines represent the average

value over 100 iterations, while the opaque bands outline the standard error of the mean. For d = 0 (blue line) the rank distribution is

very steep and only the first few species have a population density over 1 cell/mL (corresponding to logn�
s
¼ 0), while as d increases

the distribution becomes more even. Setting logn�
s
¼ 0 as the extinction threshold, approximately two thirds of the species in the

system go extinct with d = 10−7 (yellow line), while all of them survive with d = 10−5.

https://doi.org/10.1371/journal.pcbi.1007896.g005
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would have its own CTR and extinctions would be unavoidable, ultimately leading to the

CEP. We find that the crucial parameter controlling the rate at which biodiversity is lost is

the adaptation velocity, such that the CEP holds when dynamic metabolic adaptation is too

slow with respect to the population dynamics.

Although we have focused only on competitive interactions, these are clearly not the only

kind of interactions found in natural communities. Recent studies have shown that phenom-

ena such as cross-feeding and syntrophy are ubiquitous in the microbial world [58], and have

crucial roles in shaping the structure and function of microbial communities [6, 31, 59]. Future

work will therefore be dedicated to incorporating cross-feeding and other types of inter-spe-

cific interactions in our theoretical framework. It has also been recently found that natural

microbial communities are often composed of metabolically distinct and interdependent

groups of species, each specialized in a particular function [2, 4, 60–62]. While the properties

of interconnected ecological networks have been investigated in the past [63], a possible future

development of our work consists in investigating if a modular organization of microbial spe-

cies according to their metabolic function can be an emergent property of microbial commu-

nities, and in which conditions it stabilizes and is beneficial for such systems.

Methods

Comparison between the model and experimental measures of diauxic

growth curves for S. cerevisiae
The S. cerevisiae strain used in this study, yAG47, is identical to strain yJHK459 of [64] and is

in the W303 background. Its genotype is MATa, can1-100, ura3 Δ0, BUD4-S288C. A culture of

yAG47 was grown overnight in complete synthetic medium (CSM) + 2% (w/v) glucose. 1 mL

of the overnight culture was spun down and resuspended in CSM + 0.5% (w/v) galactose to a

concentration of 1.6 � 105 cell/mL. Eight wells of a 96-well plate were inoculated with 150 μL of

the resuspended culture and incubated with constant shaking at 30˚C in a plate reader. The

96-well plate was sealed with a sealing membrane that allowed gas exchange. The temperature

on the top of the 96-well plate was kept at 31˚C to avoid condensation on the membrane. Opti-

cal density (OD) measurements were taken every 10 min, for a total duration of about 70 h. To

build the calibration curve used to convert OD to cell density, 1.4 mL of the same overnight

culture were spun down and resuspended in 1 mL of CSM + 0.5% (w/v) galactose. The density

of this suspension was measured using a Coulter counter and serial dilutions of this suspension

were inoculated in a 96-well plate covered with the same sealing membrane used for the

growth curve measurement. The OD of the wells containing the serial dilution of the suspen-

sion was measured after equilibration to 30˚C using the same plate reader used to measure the

growth curves, and these measurements were used to build the calibration curve converting

OD to cell density.

When S. cerevisiae is grown on galactose as the primary carbon source, the sugar is partially

respired and partially fermented. Yeast cells excrete ethanol as a byproduct of fermentation,

which can then be used as a carbon resource. For this reason, in order to describe such system

we use our adaptive consumer-resource model with m = 1, p = 2 and we slightly modify the

equations for the temporal dynamics of ethanol concentration to take into account the fact

that this resource is not initially present in the system but is produced by the yeast. In particu-

lar, the equations we used in order to describe the system are (5–9), where in (7) we have

inserted an ethanol production rate that is proportional to the galactose consumption rate; in
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other words, Y can be interpreted as the galactose-to-ethanol yield.

_n ¼ n vgalagal
cgal

Kgal þ cgal
þ vethaeth

ceth
Keth þ ceth

� d

 !

; ð5Þ

_cgal ¼ � nagal
cgal

Kgal þ cgal
; ð6Þ

_ceth ¼ � naeth
ceth

Keth þ ceth
þ Y � nagal

cgal
Kgal þ cgal

; ð7Þ

_a i ¼ aidd vi
ci

Ki þ ci
� Y

agal þ aeth

Qd
� 1

� �
1

agal þ aeth
�

"

� vgalagal
cgal

Kgal þ cgal
þ vethaeth

ceth
Keth þ ceth

 !#

i ¼ gal; eth

ð8Þ

agal þ aeth

Qd
� 1 ; ð9Þ

Notice that since the model has several parameters (10 in total, some of which are phenom-

enological) there can be several different choices that lead to apparently equivalent fits. We

therefore used a Markov Chain Monte Carlo algorithm [39] to fit this consumer-resource

model to the experimental measurements of the population density of S. cerevisiae, both in the

case of adaptive and fixed metabolic strategies, and to estimate the posterior distributions of

the parameters. The comparison between the data and the best fits in the two cases are shown

in Fig 1, while the values of the parameters obtained are shown in Table A in S1 Text. We used

the same algorithm to fit the model with fixed metabolic strategies. Even if the model with

fixed metabolic strategies is technically capable of reproducing the data (at the cost of return-

ing parameters with biologically unrealistic values, see Figure A and Table A in S1 Text), we

can use the Akaike Information Criterion (AIC) [65] to compare how it performs against the

model with adaptive metabolic strategies. In fact, if we call ΔAIC ≔ AICadaptive − AICfixed the

difference between the AIC in the two cases, it is possible to show [65] that exp(ΔAIC/2) is the

relative likelihood of the two models, and as such measures the probability that the model with

fixed metabolic strategies minimizes the information loss (i.e. it is a better fit to the data than

the one with adaptive metabolic strategies). In our case, by comparing the fits shown in Fig 1A

and Figure A in S1 Text we found ΔAIC = −938, so the probability that the results could be bet-

ter explained using the model with fixed metabolic strategies is infinitesimal, even if the curve

can nevertheless reproduce a diauxic behavior. The situation is of course even more extreme if

we compare the fits shown in Fig 1A and 1B, since in this case we find ΔAIC = −1327. We show

in Figure C in S1 Text the predicted temporal dynamics of the resources concentrations, meta-

bolic strategies and also of the constraint (9) using the best fit parameters of the model with

adaptive metabolic strategies.

Supporting information

S1 Text. Additional details and computations on the model.

(PDF)
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S1 Data. Data on the growth of S. cerevisiae on galactose.
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