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ABSTRACT 29 

Cardiovascular diseases (CVDs) and pathologies are often driven by changes in molecular 30 

signaling and communication, as well as in cellular and tissue components, particularly those 31 

involving the extracellular matrix (ECM), cytoskeleton, and immune response. The fine-wire 32 

vascular injury model is commonly used to study neointimal hyperplasia and vessel stiffening, but 33 

it is not typically considered a model for CVDs. In this paper, we hypothesize that vascular injury 34 

induces changes in gene expression, molecular communication, and biological processes similar 35 

to those observed in CVDs at both the transcriptome and protein levels. To investigate this, we 36 

analyzed gene expression in microarray datasets from injured and uninjured femoral arteries in 37 

mice two weeks post-injury, identifying 1,467 significantly and differentially expressed genes 38 

involved in several CVDs such as including vaso-occlusion, arrhythmia, and atherosclerosis. We 39 

further constructed a protein-protein interaction network with seven functionally distinct clusters, 40 

with notable enrichment in ECM, metabolic processes, actin-based process, and immune 41 

response. Significant molecular communications were observed between the clusters, most 42 

prominently among those involved in ECM and cytoskeleton organizations, inflammation, and cell 43 

cycle. Machine Learning Disease pathway analysis revealed that vascular injury-induced 44 

crosstalk between ECM remodeling and immune response clusters contributed to aortic 45 

aneurysm, neovascularization of choroid, and kidney failure. Additionally, we found that 46 

interactions between ECM and actin cytoskeletal reorganization clusters were linked to cardiac 47 

damage, carotid artery occlusion, and cardiac lesions. Overall, through multi-scale bioinformatic 48 

analyses, we demonstrated the robustness of the vascular injury model in eliciting transcriptomic 49 

and molecular network changes associated with CVDs, highlighting its potential for use in 50 

cardiovascular research. 51 

  52 
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I. INTRODUCTION 53 

An estimated 127.9 million Americans, or 48.6% of adults aged 20 and above, have some form 54 

of cardiovascular disease (CVD) [1], including hypertension and atherosclerosis-associated 55 

diseases such as peripheral vascular disease and coronary artery disease. A common etiology 56 

of cardiovascular pathologies is the progression of neointimal hyperplasia into atherosclerosis [2], 57 

which coincides with arterial stiffening [3] and can lead to cardiac ischemia/infarction, brain 58 

ischemia, and thrombosis [4]. Procedures like embolectomy [5], vein grafting [6], balloon 59 

angioplasty, and stenting [7] can damage the vessel wall, causing neointimal hyperplasia, 60 

restenosis, or thrombosis. Fine-wire vascular injury models are commonly used [8-11] to study 61 

the molecular mechanisms of neointimal hyperplasia [12-15].  Neointimal hyperplasia arises from 62 

the migration, proliferation, and extracellular matrix (ECM) deposition of vascular smooth muscle 63 

cells (VSMC) from the media into the intimal layer, leading to vascular wall thickening and further 64 

exacerbating atheroprogression and CVDs. Vascular injury creates conditions that mimic various 65 

aspects of CVD, including aberrant proliferation [16], migration [17], differentiation [18-20], ECM 66 

synthesis [19], inflammation [21], and loss of cellular contraction [22]. A frequently overlooked 67 

feature of the vascular injury model is increased vessel stiffening [23], a mechanosignal that may 68 

accelerate neointimal hyperplasia [24-26]. Despite fostering various pathologies associated with 69 

CVD in general, vascular injury is not typically used as a model for CVD outside of those that 70 

exhibit neointimal hyperplasia and vascular stiffening. Expanding the use of vascular injury model 71 

into studying CVD could uncover valuable insights into potential therapeutic targets for treating 72 

this comorbidity. 73 

 74 
Recent studies reveal a complex interaction between inflammation and the immune response in 75 

CVD, suggesting that targeting this response could reduce atherosclerotic events [27, 28]. 76 

However, suppressing immune activity increases the risk of infections and other diseases. At the 77 

site of vascular injury, macrophages regulate angiogenesis at the vessel wall but also contribute 78 

to atherosclerosis by maladaptively promoting further plaque buildup through the accumulation of 79 

cells, lipids, and ECM components, thereby worsening CVD [29, 30]. Changes in ECM stiffness 80 

and remodeling, in response to vascular injury, have been shown to regulate the tissue repair 81 

functionality of macrophages [31], indicating an intricate relationship between ECM modulation 82 

and the immune system in CVD. Dissecting this interaction in the context of vascular injury can 83 

reveal meaningful molecular targets, interactions, and mechanisms to be further studied as new 84 

methods to manage CVD and its pathologies. 85 

 86 
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While considerable knowledge exists on how the actin cytoskeleton regulates key components of 87 

neointimal hyperplasia, including VSMC dedifferentiation [32, 33] and migration [34, 35], the 88 

specific changes in the actin cytoskeleton associated with vascular injury remain poorly 89 

characterized. Mechanical forces can influence the actin cytoskeleton via well-established 90 

integrin-dependent mechanisms that transmit ECM stiffness into actin cytoskeletal arrangements 91 

through focal adhesion complexes [36, 37]. Although ECM regulation post-vascular injury is well-92 

understood [25, 38-40], the interplay between ECM and the actin cytoskeleton and its contribution 93 

to CVD remains elusive. 94 

 95 
Bioinformatic analyses provide insights into the complex interplay often presented in diseases. 96 

Once transcriptomic data is obtained, the goal is to understand how biological processes 97 

modulate genes and vice versa. Analyses as such reveal how these genes are interrelated, 98 

allowing us to establish a hierarchy of pathways that govern the broader biological processes. 99 

Multi-scale network analysis can be performed [41, 42] using transcriptomic data [43] to interpret 100 

how changes in gene regulation relate to protein-protein interactions (PPI) [44] and their impact 101 

on disease progression [45, 46]. This approach also identifies associated biological processes 102 

and diseases regulated by differentially expressed genes in a model system. While multi-scale 103 

networks are diverse in nature, they generally integrate data to infer biological information across 104 

different scales [42, 43, 45, 46]. Transcriptomics provides differential gene expression data from 105 

a disease, which can be leveraged by the PPI scale to illuminate protein interactions 106 

(communication and networks), as well as post-translational modification and degradation 107 

relationships. These insights can then be related to pathways that initiate and drive disease 108 

progression.  109 

 110 

In this study, we performed multi-scale bioinformatic network analysis using microarray datasets 111 

from injured femoral arteries and uninjured contralateral (control) femoral arteries in mice two 112 

weeks post-injury to investigate how robust transcriptomic changes in response to vascular injury 113 

could potentially affects CVDs. Through Ingenuity Pathway Analysis (IPA) of differentially 114 

expressed genes (DEGs) found in our dataset, we identified significant activation of various CVDs 115 

such as atherosclerosis, arrhythmia, and vaso-occlusion. Protein-protein interaction (PPI) 116 

network formed from DEGs was used to identify seven clusters with distinct functions including, 117 

ECM organization, metabolic and biosynthetic processes, immune-related processes, actin 118 

organization, and cell proliferation, where most clusters exhibited dense communications with 119 

each other. A closer analysis of the communication between the ECM remodeling and immune 120 
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system or actin reorganization clusters further inferred the effects of vascular injury on modulating 121 

the activation of aortic aneurysm, cardiac lesions, cardiac damage, and other diseases.  122 

  123 

 124 

II. Transcriptomic and multi-scale network analyses 125 

A. Differential Gene Expression Analysis 126 

To identify changes in gene expression in healthy and injured mouse arteries, we performed 127 

differential gene expression analysis on previously published microarray datasets using the R 128 

DESeq2 package [47]. Gene expression changes were calculated as follows: 129 

 130 

Fold Change =
Expression level in Injured Group

Expression level in Uninjured Group
 131 

log2(Fold Change) = log2 �
Expression level in Injured Group

Expression level in Uninjured Group
� 132 

 133 

The significance of the results was calculated using the Wald test [47] for p-value calculation and 134 

false discovery rate:  135 

 136 

𝑊𝑊 = 𝛽𝛽�2

𝑉𝑉𝑉𝑉𝑉𝑉(𝛽𝛽�)
             𝑝𝑝 = 𝑃𝑃(𝑥𝑥12 ≥ 𝑊𝑊)            𝐹𝐹𝐹𝐹𝐹𝐹�𝑝𝑝(𝑖𝑖)� = 𝑝𝑝(𝑖𝑖)∙𝑚𝑚

𝑖𝑖
  137 

 138 

where �̂�𝛽 is the estimated coefficient from the regression model, Var(�̂�𝛽) is the variance of the 139 

estimated coefficient, 𝑥𝑥12 is a chi-square distribution with 1 degree of freedom, m is the total 140 

number of tests.  141 

 142 

B. Identification of Differentially Expressed Genes 143 

To identify differentially expressed genes (DEGs) in response to vascular injury, the following 144 

filtering criteria were applied. Genes (g) were classified as DEGs if they satisfied both of the 145 

following conditions: 146 

 147 

(i) FDR-adjusted p-value (q-value) threshold: q ≤ 0.15 148 

(ii) log2(Fold Change) threshold: ∣log2(Fold Change)∣ ≥ 0.5 149 

 150 

Combining these conditions, genes (g) are considered significantly differentially expressed if: 151 
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 152 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆) = �𝑞𝑞𝑔𝑔 ≤ 0.15� ∧ (�𝑙𝑙𝑙𝑙𝑆𝑆2�𝐹𝐹𝐶𝐶𝑔𝑔�� ≥ 0.5) 153 

 154 

The gene distribution was visualized using a volcano plot created with the Bioinfokit package in 155 

Python. The R programming language’s ggplot2 package [48] was used to visualize the Principal 156 

Component Analysis (PCA) plot, and covariance was calculated as follows: 157 

 158 

Cov(X) = QΛQ−1   [42] 159 

 160 

where Q is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues. 161 

 162 

C. Gene Ontology Enrichment Analysis 163 

To explore the biological processes associated with upregulated and downregulated DEGs, gene 164 

enrichment analysis was conducted using the g:GOSt function on the gProfiler web server 165 

(https://biit.cs.ut.ee/gprofiler/gost) [49]. Given a list of genes G and subsets of upregulated DEGs 166 

Gup.DEGs and downregulated DEGs Gdown.DEGs identified by the criteria: 167 

 168 

𝐺𝐺𝑢𝑢𝑝𝑝.𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = �𝑆𝑆 ∈ 𝐺𝐺 � 𝑞𝑞 ≤ 0.15 ∧ 𝑙𝑙𝑙𝑙𝑆𝑆2�𝐹𝐹𝐶𝐶𝑔𝑔� ≥ 0.5� 169 

𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = �𝑆𝑆 ∈ 𝐺𝐺 � 𝑞𝑞 ≤ 0.15 ∧ 𝑙𝑙𝑙𝑙𝑆𝑆2�𝐹𝐹𝐶𝐶𝑔𝑔� ≤ −0.5� 170 

 171 

The gene enrichment analysis was then performed using Gup.DEGs and Gdown.DEGs to test for 172 

overrepresentation in various gene sets S: 173 

 174 

𝑆𝑆𝑒𝑒𝑑𝑑𝑉𝑉𝑖𝑖𝑒𝑒ℎ𝑒𝑒𝑑𝑑1 = {𝑆𝑆𝑖𝑖 | 𝑝𝑝 − 𝑣𝑣𝑆𝑆𝑙𝑙𝑣𝑣𝑣𝑣�𝑆𝑆𝑖𝑖,𝐺𝐺𝑢𝑢𝑝𝑝.𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷� ≤  𝛼𝛼} 175 

𝑆𝑆𝑒𝑒𝑑𝑑𝑉𝑉𝑖𝑖𝑒𝑒ℎ𝑒𝑒𝑑𝑑2 = {𝑆𝑆𝑖𝑖 | 𝑝𝑝 − 𝑣𝑣𝑆𝑆𝑙𝑙𝑣𝑣𝑣𝑣(𝑆𝑆𝑖𝑖,𝐺𝐺𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) ≤  𝛼𝛼} 176 

 177 

where S is the set of all gene ontology (GO) terms being tested, Si is a particular GO term, p-178 

value(Si, GDEGs) is the statistical significance of the enrichment of Si in GDEGs, α is the significance 179 

threshold (α = 0.05). For visualization purposes, bubble plots representing the top 20 enriched 180 

GO terms and KEGG pathways were generated using the SRplot online server. 181 

 182 

D. QIAGEN Ingenuity Pathway Analysis 183 
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Combined differential expression analysis results from both clusters 1 and 5, and clusters 1 and 184 

3, were uploaded to the QIAGEN Ingenuity Pathway (IPA) software, using the expression log ratio 185 

and p-adjusted values. IPA’s Core Analysis function was employed to investigate altered signaling 186 

pathways in response to vascular injury. The Diseases & Functions and Pathways features were 187 

used to identify significantly affected pathways and diseases (absolute activation z score ≥ 2; -188 

log(Benjamin-Hochberg p-value ≥ 2) as follows: 189 

 190 

𝑧𝑧 = 𝑥𝑥
𝜎𝜎𝑥𝑥

= ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

√𝑁𝑁
= 𝑁𝑁+−𝑁𝑁−

√𝑁𝑁
    [50] 191 

 𝑝𝑝𝚤𝚤� = 𝑚𝑚𝑆𝑆𝑆𝑆
𝑘𝑘∈{𝑖𝑖𝑚𝑚}

�𝑚𝑚𝑆𝑆𝑆𝑆 ��𝑚𝑚
𝑘𝑘
�𝑝𝑝𝑘𝑘 , 1��    [50] 192 

 193 

Combining these conditions, a term (t) is considered significantly activated or inhibited if: 194 

 195 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆) = (−𝑙𝑙𝑙𝑙𝑆𝑆10(𝑝𝑝�𝑙𝑙) ≥ 2) ∧ (|𝑧𝑧 − 𝑠𝑠𝑆𝑆𝑙𝑙𝑠𝑠𝑣𝑣| ≥ 2) 196 

 197 

Additionally, Network Analysis feature was used to explore molecular interactions within the 198 

combined clusters and their associated diseases and functions. Statistical values for the Network 199 

Analysis were computed based on the p-score, derived from p-values and equal to -log10(p-200 

value). The "My pathway" tool was used to illustrate known relationships between molecules or 201 

molecules to functions. 202 

 203 

To study how molecular-level interactions lead to disease progression, IPA Machine Learning 204 

Disease Pathways tool was used to identify similar regulatory patterns among the genes and 205 

causally connected them with human diseases. The disease-to-molecule ratio (r) used in IPA 206 

Machine Learning Pathways tool was calculated as follows: 207 

 208 

𝑠𝑠 =
𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑆𝑆

 209 

 210 

where 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is the number of DEGs from our dataset that was identified in the pathway, and 𝑆𝑆 as 211 

the total number of genes that IPA identified in that pathway. 212 

 213 

E. Protein-protein interaction (PPI) network 214 
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The STRING website was used to construct the PPI network, and the results were visualized 215 

using the Cytoscape software [51]. The expression data for the DEGs were imported into the node 216 

table to indicate expression levels using log2(fold-change) values and node color to indicate 217 

intensity. Orphan and non-present intermediate protein entries were filtered out from the network. 218 

K-means clustering tool on the STRING website was used to identify 7 functionally distinct 219 

clusters within the PPI network, enrichment analysis for each cluster was conducted using the 220 

gProfiler web server.  221 

 222 

III. RESULTS 223 

A. Genome-wide analysis identifies transcriptomic changes related to CVD in mouse 224 

femoral arteries post vascular injury 225 

To investigate the effects of vascular injury on transcriptional responses and biological processes, 226 

we performed bioinformatic analyses (Fig. 1) on previously published microarray datasets 227 

collected from injured and uninjured mouse femoral arteries [52, 53]. Expression values of 21,734 228 

transcripts were identified, and the distinctions among samples (uninjured vs. injured) were 229 

visualized in an unsupervised Principal Component Analysis (PCA) plot (Fig. 2A). The analysis 230 

revealed two distinct clusters of samples, with and without vascular injury, suggesting vascular 231 

injury may significantly influence the transcriptomic landscape. To identify differentially expressed 232 

genes (DEGs) in our dataset, genes were filtered for q-values of ≤ 0.15 and absolute log2(fold-233 

change) ≥ 0.5. We identified 1,467 DEGs, with 696 upregulated and 771 downregulated. The 234 

distribution of these DEGs was displayed in the volcano plot (Fig. 2B). To further explore the 235 

impact of vascular injury on the biological processes associated with DEGs, we performed Gene 236 

Ontology (GO) enrichment analysis. The top 20 biological processes categories enriched among 237 

the downregulated DEGs were mainly related to various metabolic/energy and development 238 

processes, including “generation of precursor metabolites and energy”, “energy derivation by 239 

oxidation of organic compounds”, “system development,” “developmental process,” and “muscle 240 

structure development” (Fig. 2C). Moreover, the top 20 biological process categories enriched 241 

among the upregulated DEGs were primarily related to various biological regulation and cell 242 

migration processes, including “positive regulation of biological process”, “response to stress”, 243 

and “cell migration” (Fig. 2D).  244 

 245 

To gain insight into cardiovascular diseases transcriptomically associated with vascular injury, we 246 

employed the Core Analysis function of QIAGEN Ingenuity Pathway Analysis (IPA) software on 247 

the complete dataset of DEGs (both upregulated and downregulated). Using the IPA Diseases & 248 
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Functions feature, particularly in the “Cardiovascular Disease” category, seven diseases and 249 

functions terms were found to be significantly activated (a Z-score of ≥ 2 is considered significant 250 

activation[50], including “Vaso-occlusion” (activation z-score = 2.332), “Arrhythmia” (activation z-251 

score = 2.261), “Atherosclerosis” (activation z-score = 2.772). Two diseases and functions terms 252 

were significantly inhibited (a Z-score of ≤ 2 is considered significant inhibition [50] “Peripheral 253 

arterial disease” (activation z-score = -2.608) and “Valvulopathy” (activation z-score = -2.401) 254 

(Fig. 2E). Collectively, these findings indicate that vascular injury markedly alters transcriptomic 255 

profiles, thereby modulates a diverse array of cellular behaviors and biological processes, all of 256 

which could further the development of CVDs. 257 

 258 

B. Multi-scale analyses identify molecular and functional networks 259 

To integrate the topology information of identified DEGs, a protein-protein interaction (PPI) 260 

network was constructed using STRING online database and visualized with Cytoscape software, 261 

resulting in 1,188 nodes and 11,025 edges. Further, seven functionally distinct clusters within the 262 

PPI network were identified using the STRING online k-means clustering tool (Fig. 3A). Cluster 263 

1, consisting of 193 nodes and 533 edges (Fig. 3B), was associated with extracellular matrix and 264 

development-associated biological processes, including “extracellular matrix organization,” 265 

“extracellular structure organization,” “external encapsulating structure organization,” “system 266 

development,” “tube development,” and “animal organ development” (Fig. 3C). Cluster 2, 267 

comprising 177 nodes and 900 edges (Fig. 3D), was primarily associated with various metabolic 268 

and biosynthetic processes, including “cellular respiration,” “generation of precursor metabolites 269 

and energy,” “nucleotide metabolic process,” “purine ribonucleoside triphosphate biosynthetic 270 

process,” and “ATP biosynthetic process” (Fig. 3E). Cluster 3, consisting of 151 nodes and 1,728 271 

edges (Fig. 3F), was mostly enriched in immune and inflammation-related biological processes, 272 

including “immune system process,” “leukocyte activation,” “regulation of immune system 273 

process,” “immune response,” and “lymphocyte activation” (Fig. 3G). Cluster 4, with 189 nodes 274 

and 3,713 edges (Fig. 3H), was primarily associated with cell growth, including “cell cycle,” “cell 275 

cycle process,” “mitotic cell cycle,” “cell division,” “nuclear division,” and “chromosome 276 

organization” (Fig. 3I). Cluster 5, consisting of 216 nodes and 584 edges (Fig. 3J), was mostly 277 

associated with actin cytoskeleton and muscle contraction-related biological processes, including 278 

“actin filament-based process,” “muscle system process,” “muscle contraction,” “actin filament-279 

based movement,” “actin cytoskeleton organization,” “cardiac muscle contraction,” and “heart 280 

contraction” (Fig. 3K). Cluster 6, consisting of 89 nodes and 88 edges (Fig. 3L), was mostly 281 

associated with various biological regulation processes, including “biological regulation,” 282 
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“regulation of multicellular organismal process,” “regulation of biological process,” “regulation of 283 

hydrolase activity,” “regulation of cell adhesion,” and “regulation of catalytic activity” (Fig. 3M).  284 

Cluster 7, comprising 45 nodes and 33 edges (Fig. 3N), was enriched in various biological 285 

processes, including “cellular response to stress,” “DNA damage response,” “regulation of viral 286 

processes,” “nucleoside metabolic process,” and “viral process” (Fig. 3O). The topological cluster 287 

analysis provided significant insights into the distinct biological roles and processes enriched 288 

within the protein interactome network, highlighting the extensive transcriptomic changes induced 289 

by vascular injury.  290 

  291 

C. Altered molecular communication due to vascular injury contributes to the development 292 

of cardiovascular and other diseases 293 

Abnormal remodeling of the actin cytoskeleton and ECM, as well as immune and metabolic 294 

dysregulation, and cell overgrowth, ultimately promotes the development of CVDs [30, 54, 55]. 295 

Therefore, we assessed the interplay between functionally distinct clusters (Fig. 3A) and their 296 

combined impact on disease progression by comparing each pair of clusters. Interestingly, the 297 

data demonstrated that cluster 3, characterized by an enrichment of immune-related biological 298 

processes, exhibited the most significant molecular communications with cluster 1, enriched in 299 

ECM structure and organization, and cluster 4, enriched in cell growth (Fig. 4A). Additionally, 300 

cluster 4 exhibited distinct molecular communications with cluster 2, enriched in metabolic and 301 

biosynthetic processes (Fig. 4A). Cluster 1 also showed molecular communications with cluster 302 

5, enriched in actin cytoskeleton and muscle contraction-related biological processes (Fig. 4A).  303 

 304 

We next examined the consequences of molecular communications between cluster 1 (“ECM 305 

structure and organization”) and cluster 3 (“immune-related processes”), which had the most 306 

significant interactions, using the Core Analysis function and the Machine Learning (ML) Disease 307 

Pathways in IPA with the combined DEGs from these clusters. Our findings indicated that 308 

pathological vascular conditions, which eventually promote cardiovascular and other diseases, 309 

such as “Aortic aneurysm,” “Arterial aneurysm,” “Neovascularization of choroid,” “Abdominal aorta 310 

lesion,” “Abdominal aortic aneurysm,” and “Pathological dilation of abdominal aorta” were 311 

predicted to be significantly activated (z-score > 4) (Fig. 4B). The data also showed significant 312 

activation of other diseases such as “Kidney failure,” “Renal impairment,” “Acute respiratory 313 

disorder,” “Acute lung injury,” and “Immune-mediated uveitis” (Fig. 4B). Additionally, results from 314 

the ML Diseases Pathways function similarly showed that “Neovascularization of the choroid” had 315 

the highest the disease-to-molecule ratio at 0.28 while “Aortic aneurysm,” “Arterial aneurysm,” 316 
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and “Failure of kidney” also exhibited higher ratios of 0.22, 0.214, and 0.25, respectively (Fig. 317 

4C), inferring the involvement of DEGs from cluster 1 and cluster 3 as key participants in disease 318 

development. Furthermore, the ML Disease pathways identified key molecular players and their 319 

interaction networks for the three most significant diseases shown in Figures 4B and 4C: aortic 320 

aneurysm, arterial aneurysm, and failure of kidney (Figs. 4D−F). For example, in the aortic and 321 

arterial aneurysm pathways shown in Figures 4D and 4E, ACTA2 and MYH11 genes [56-58], 322 

whose mutations are known to be associated with these conditions, were significantly connected 323 

with other DEGs within the networks and predicted to be activated in response to vascular injury, 324 

linking them to aortic and arterial aneurysms. Similarly, in the failure of kidney pathway shown in 325 

Figure 4F, AGT and PTGS2 genes, whose mutations are associated with kidney failure [59-61], 326 

were predominantly connected with other DEGs and predicted to be activated in response to 327 

vascular injury. Interestingly, AGT and PTGS2 genes were also involved in the disease pathways 328 

for aortic and arterial aneurysms (Figs. 4D, E). The ML Disease generated networks also 329 

predicted the activation states of disease-specific etiology. For instance, in Figure 4E, activation 330 

of AGT gene is predicted to not only trigger arterial aneurysm, but also activate “Activation of 331 

cardiac fibroblasts,” “Remodeling of artery,” and “Infiltration by neutrophils”. Similarly, in Figure 332 

4F, AGT gene activation is predicted to drive “Apoptosis of renal tubule”, a key factor in kidney 333 

failure. Taken together, our analysis demonstrates that abnormal remodeling of the ECM, along 334 

with immune and metabolic dysregulation, promotes the development of cardiovascular and other 335 

diseases by elucidating significant molecular communications between functionally distinct 336 

clusters and identifying key molecular players and pathways associated with these conditions. 337 

 338 

D. Changes in ECM constituents and actin cytoskeleton leads to the progression of 339 

cardiovascular diseases  340 

We further investigated the implications of molecular communication between cluster 1 (“ECM 341 

structure and organization”) and cluster 5 (“actin cytoskeleton”), using the same methods as 342 

shown in Figure 4. Of particular interest, our findings unveiled significant and differential 343 

activations of several cardiovascular diseases, including “Cardiac damage,” “Occlusion of the 344 

carotid artery,” “Cardiac lesions,” and “Congestive heart failure” (Fig. 5A). These activations can 345 

arise from pathological changes in ECM structure and organization and actin cytoskeleton 346 

induced by vascular injury. Additionally, results from the ML Diseases Pathways function showed 347 

higher disease-to-molecule ratios of 0.192 for Cardiac damage, 0.138 for Occlusion of carotid 348 

artery, and 0.098 for Cardiac lesion (Fig. 5B). Additionally, the ML Disease pathways identified 349 

critical molecular players and their communication networks for three significant cardiovascular 350 
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diseases shown in Figures 5A and 5B: cardiac damage (Fig. 5C), occlusion of the carotid artery 351 

(Fig. 5D), and cardiac lesions (Fig. 5E). For example, in the cardiac damage and lesion pathways 352 

shown in Figures 5C and 5E, DMD, SGCA, SGCB, and SGCG genes [62, 63] associated with 353 

these conditions, were significantly connected with other DEGs and predicted to be inhibited in 354 

response to vascular injury, linking them to cardiac impairment. Interestingly, in response to 355 

vascular injury, PTK2, COL1A2, and FN1 genes, known to be associated with cardiac fibrosis, 356 

were densely connected with other DEGs, and their predicted activation link them to cardiac 357 

lesion. Additionally, in the occlusion of carotid artery pathway shown in Figure 5D, S100A8, 358 

ITGB2, and PTGS2 genes, associated with carotid artery disease [64-67], were predicted to be 359 

activated in response to vascular injury. Overall, these robust integrated analyses demonstrate 360 

that vascular injury-induced extracellular matrix and actin cytoskeletal alterations profoundly 361 

impact diverse cardiovascular diseases. 362 

 363 

 364 

IV. DISCUSSION 365 

In this work, we focused on the biological and molecular scale communications underlying CVD 366 

progressions in response to vascular injury. By utilizing bioinformatic sequencing analyses and 367 

IPA disease machine learning approaches, we identified complex interactions between DEGs that 368 

lead to alterations in biological components, including the actin cytoskeleton, immune system, 369 

and ECM. Furthermore, our analysis predicts that interactions among these biological processes 370 

and components collectively contribute to the development of various cardiovascular pathologies. 371 

Based on the transcriptomic changes revealed by our multi-scale bioinformatic analyses, we 372 

suggest expanding the use of vascular injury model as a suitable option to investigate not only 373 

neointimal hyperplasia and vessel stiffening, but also a range of other CVDs. 374 

 375 

From our DEG list, the IPA Disease and Function feature identified seven CVDs significantly 376 

activated in response to vascular injury, including but not limited to vaso-occlusion, 377 

atherosclerosis, and arrhythmia. To explore the translational changes due to vascular injury, we 378 

constructed a PPI network based on the DEG list and identified functionally distinct clusters within 379 

the network. Although distinct, the seven PPI clusters displayed great communications with each 380 

other, most significantly between cluster 1 (ECM structure and organization) and cluster 3 381 

(immune-related processes). IPA Disease ML Pathway analysis predicted that crosstalk between 382 

these clusters could lead to diseases such as aortic aneurysm, arterial aneurysm, and kidney 383 

failure. Our ML analysis also revealed disease-specific networks with key molecular players and 384 
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etiology. Notably, activation of AGT and PTGS2 gene, known to be associated with kidney failure 385 

[59-61], also appeared to influence the aortic and arterial aneurysm networks (Fig. 4D-F). 386 

Furthermore, interactions between ECM changes and actin cytoskeletal reorganization were 387 

linked to cardiac damage, carotid artery occlusion, cardiac lesions, and congestive heart failure. 388 

These findings underscore the pivotal roles of ECM and actin cytoskeleton organization 389 

alternations in driving vascular pathologies, highlighting the potential relevance of these cellular 390 

processes for therapeutic strategies.  391 

 392 

 393 

V. CONCLUSION 394 

In conclusion, our study offers a multi-scale level understanding of the intricate regulatory 395 

mechanisms governing cardiovascular disease progressions in the context of vascular injury. 396 

From genomic level to protein and biological levels, we offered novel insights into the 397 

transcriptomic rewiring and molecular networks in response to mouse vascular injury. These 398 

findings pave the way for further investigations into the development of targeted therapeutic 399 

interventions aimed at modulating ECM, immune response, cytoskeletal dynamics, ultimately 400 

contributing to the management and prevention of cardiovascular pathologies. 401 
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FIGURE LEGENDS 419 

Figure 1. Overview of the multi-scale bioinformatics analysis workflow.  420 

 421 

Figure 2. Structure and function of genome-wide transcriptomic changes due to vascular 422 

injury. (A) Principal Component Analysis (PCA) plot for the entire transcriptome list displays the 423 

correlations and variances among the samples. (B) Volcano plot illustrates the distribution of 424 

differentially expressed genes (DEGs) in response to femoral artery fine-wire injury. Green dots 425 

represent statistically downregulated genes (771 downregulated DEGs identified) and red dots 426 

represent statistically upregulated genes (696 upregulated DEGs identified). Bubble plots depict 427 

the top 20 enriched biological processes for significantly (C) downregulated and (D) upregulated 428 

DEGs. (E) Cardiovascular Disease terms were predicted by IPA to be activated in response to 429 

vascular injury. 430 

  431 

Figure 3. K-means clustering analysis and GO enrichment. (A) Network displays 7 clusters 432 

within the protein-protein interaction network (1,188 nodes and 11,025 edges) of DEGs based on 433 

k-means clustering. (B-C) Interaction network of cluster 1 (193 nodes and 533 edges) and its 434 

associated biological processes including extracellular matrix organization, extracellular structure 435 

organization, and external encapsulating structure organization. (D-E) Interaction network of 436 

cluster 2 (177 nodes and 900 edges) and its associated biological processes including cellular 437 

respiration, aerobic respiration, and generation of precursor metabolites and energy. (F-G) 438 

Interaction network of cluster 3 (151 nodes and 1,728 edges) and its associated biological 439 

processes including immune system process, positive regulation of multicellular organismal 440 

process, and cell activation. (H-I) Interaction network of cluster 4 (189 nodes and 3,713 edges) 441 

and its associated biological processes including cell cycle, cell cycle process, and mitotic cell 442 

cycle. (J-K) Interaction network of cluster 5 (216 nodes and 584 edges) and its associated 443 

biological processes including actin filament-based process, muscle system process, and muscle 444 

contraction. (L-M) Interaction network of cluster 6 (89 nodes and 88 edges) and its associated 445 

biological processes including biological regulation, regulation of multicellular organismal 446 

process, and regulation of biological process. (N-O) Interaction network of cluster 7 (45 nodes 447 

and 33 edges) and its associated biological processes including cellular response to stress, DNA 448 

damage response, and regulation of viral process.  449 

  450 

Figure 4. Inter-cluster analysis of diseases and pathways associated with cluster 1 and 3. 451 

(A) Matrix correlation heatmap illustrates molecular communications between each pair of 452 
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functionally distinct clusters. (B) IPA Core Analysis on cluster 1 and 3 DEGs showing differential 453 

changes in various Machine Learning (ML) Disease Pathways. (C) Bar plot shows the disease-454 

to-molecules ratio of differentially and significantly changed ML Disease Pathways. Interaction 455 

networks display molecular communications and functionalities leading to changes in ML Disease 456 

Pathways of (D) aortic aneurysm, (E) arterial aneurysm, and (F) failure of kidney. 457 

 458 

Figure 5. Diseases and pathways associated with cluster 1 and 5. (A) IPA Core Analysis on 459 

cluster 1 and 5 DEGs showing differential changes in various ML Disease Pathways. (B) Bar plot 460 

shows the disease-to-molecules ratio of differentially and significantly changed ML Disease 461 

Pathways. Interaction networks display molecular communications and functionalities leading to 462 

changes in ML Disease Pathways of (C) cardiac damage, (D) occlusion of carotid artery, and (E) 463 

cardiac lesion.  464 
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