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Abstract 

Background:  SWATH-MS has emerged as the strategy of choice for biomarker discovery due to the proteome cover-
age achieved in acquisition and provision to re-interrogate the data. However, in quantitative analysis using SWATH, 
each sample from the comparison group is run individually in mass spectrometer and the resulting inter-run variation 
may influence relative quantification and identification of biomarkers. Normalization of data to diminish this variation 
thereby becomes an essential step in SWATH data processing. In most reported studies, data normalization methods 
used are those provided in instrument-based data analysis software or those used for microarray data. This study, 
for the first time provides an experimental evidence for selection of normalization method optimal for biomarker 
identification.

Methods:  The efficiency of 12 normalization methods to normalize SWATH-MS data was evaluated based on statisti-
cal criteria in ‘Normalyzer’—a tool which provides comparative evaluation of normalization by different methods. 
Further, the suitability of normalized data for biomarker discovery was assessed by evaluating the clustering efficiency 
of differentiators, identified from the normalized data based on p-value, fold change and both, by hierarchical cluster-
ing in Genesis software v.1.8.1.

Results:  Conventional statistical criteria identified VSN-G as the optimal method for normalization of SWATH data. 
However, differentiators identified from VSN-G normalized data failed to segregate test and control groups. We thus 
assessed data normalized by eleven other methods for their ability to yield differentiators which segregate the study 
groups. Datasets in our study demonstrated that differentiators identified based on p-value from data normalized 
with Loess-R stratified the study groups optimally.

Conclusion:  This is the first report of experimentally tested strategy for SWATH-MS data processing with an emphasis 
on identification of clinically relevant biomarkers. Normalization of SWATH-MS data by Loess-R method and identifica-
tion of differentiators based on p-value were found to be optimal for biomarker discovery in this study. The study also 
demonstrates the need to base the choice of normalization method on the application of the data.
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Background
Liquid chromatography-mass spectrometry (LC–MS) 
based quantitative proteomic profiling has substantially 
contributed to identification of disease biomarkers for 
improved diagnosis/better prognostication or to moni-
tor response to therapy [1–3]. This is achieved through 
assessment of the ability of differentiators, identified by 
quantitative proteomics, to segregate the comparison 
groups distinctly by cluster analysis—an essential feature 
of biomarkers. Success of this process depends not only 
on selection of appropriate clinical samples and sample 
processing strategies, but also on mass spectrometry 
based-factors such as the depth of LC–MS profile and 
occurrence of instrumental or non-instrumental errors in 
the data. Therefore, use of mass spectrometers with capa-
bilities for in-depth profiling and data processing strate-
gies which reduce biases, errors and optimize the desired 
outcome is necessary.

The recent feature in MS—Sequential window acqui-
sition of all theoretical fragment-ion spectra (SWATH) 
provides in depth profiling by data independent acquisi-
tion (DIA) [4]. It is preferred for profiling clinical sam-
ples, as in data or information-dependent acquisition 
(IDA) data from low expressers is lost permanently [5]. 
SWATH not only provides for fragmentation of almost 
all ions but also for re-interrogation of data, after detec-
tion capabilities are improvised to identify more number 
of proteins [4]. These features are conducive to profiling 
of clinical samples which are available in amounts insuf-
ficient for enrichment and are unavailable for reanalysis. 
A testimony to this is the wide use of SWATH-MS in 
clinical proteomics after its discovery in 2012. PubMed 
results show that 44% (20/45) of the SWATH-MS studies 
on clinical samples published till date are aimed at bio-
marker discovery or therapeutic target identification.

However, a feature in quantification by SWATH-MS, if 
overlooked, can hinder biomarker identification. Unlike 
labelled quantification by IDA wherein all samples for 
relative quantification are run together, in label-free 
quantification by SWATH, each sample from the com-
parison group is run individually in MS. This increases 
the probability of both systematic and random error. 
Intervention to reduce these variations by ‘normalization’ 
is thus a prerequisite to subsequent analysis of SWATH 
data for identification of differentiators. The data from 
reported SWATH-MS studies is normalized using either 
methods provided by the MS instrument-based software 
or those used to normalize microarray data [6–9]. As the 
source of systematic bias differs between MS and micro-
array, it is essential to experimentally validate the appro-
priate normalization strategy for SWATH data.

The present study was undertaken to experimen-
tally identify an appropriate normalization method 

for SWATH-MS data. The statistical tool ‘Normalyzer’, 
which compares the efficiency of diverse methods 
to normalize ‘omics’ data based on statistical crite-
ria [10], was used to achieve the same. Fu et al. [11] in 
their study to identify the optimal analysis chain have 
reported total ion current normalization as optimal for 
SWATH-MS data based on statistical end-point. Fur-
ther, considering the wide application of SWATH-MS 
in biomarker identification, in this study we have sup-
plemented the statistical evaluation with biologically 
relevant criteria of precise stratification of comparison 
groups by cluster analysis. Towards this (a) Normaliza-
tion of data was assessed using ‘Normalyzer’ to iden-
tify the optimal method of normalization based on 
statistical criteria (b) from the data normalized by dif-
ferent methods in Normalyzer, differentiators between 
comparison groups were identified based on p-value, 
fold change and combination of both. The potential of 
these differentiators to segregate comparison groups 
distinctly, was assessed by cluster analysis. Detection of 
optimal method for normalization of SWATH-MS data 
and optimum criteria for identification of differentia-
tors would have an impact on biomarker discovery.

Methods
The scheme of experiments employed to identify the 
normalization strategy optimum for SWATH-MS data 
is depicted in Fig. 1. It involves:

A.	Inclusion of a quantitatively defined dataset from 
public domain, generated from hybrid of peptides 
from three different sources mixed in defined pro-
portions, to serve as a ‘reference set’. Generation 
of datasets using K562 cells for quantitation by 
SWATH-MS, referred to as ‘study set’ which includes 
one set with smaller number of samples and two sets 
with larger number of samples. Further, inclusion 
of two datasets from public domain comprising of 
larger sample size, to serve as ‘validation set’ to con-
firm the findings in the study set.

B.	 SWATH-MS analysis of reference, study and valida-
tion set.

C.	Normalization of SWATH-MS data obtained from 
reference, study and validation sets using methods 
in Marker view software and Normalyzer and iden-
tification of optimum method of normalization based 
on statistical criteria.

D.	Identification of differentiators from this normalized 
data based on criteria of p value, fold-change and 
both, followed by cluster analysis of these differentia-
tors.



Page 3 of 15Narasimhan et al. J Transl Med          (2019) 17:184 

Details of samples for SWATH‑MS analysis
Details of samples used for SWATH-MS analysis are 
summarized in Fig.  1a. The reference set was obtained 
from data published by Navarro et al. [12] wherein sam-
ples were prepared by mixing known proportions of 
constituent proteome (i.e. with known fold-difference in 
quantities). Samples with a hybrid of human, yeast and 
E. coli peptides referred to as HYE124 had differences 
in relative proportions of the constituent peptides and 
served as control (65% w/w human, 30% w/w yeast, 5% 
w/w E. coli peptides) and test (65% w/w human, 15% w/w 

yeast, 20% w/w E. coli peptides). SWATH runs of these 
samples in technical triplicate and their corresponding 
spectral ion library deposited in Proteome Xchange con-
sortium (identifier-PXD002952), was used for SWATH 
data analysis.

A ‘study set’ was generated in our laboratory using 
K562, an erythroleukemic cell line (generous gift from 
Dr. Tadashi Nagai, Jichi Medical University, Tochigi, 
Japan). It was maintained in RPMI 1640 medium supple-
mented with 10% FBS and 1% antibiotic (Gibco, Thermo 
Fisher Scientific, USA). K562 harbours BCR/ABL 
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Obtained from Proteome Xchange 
consortium (PXD002952).
Mixture of yeast, E.coli and
human peptides in known

proportions 

Study set 
(constituting samples K562 S, S+IM & R) 

K562 S and S+IM K562 S+IM and  R
Four Biological replicates of 

each sample

Set 1, Set 2, Set 3, Set 4 Set 1, Set 2, Set 3, Set 4 

Dataset B Dataset C Dataset D

Each sample was subjected to 1 IDA run followed by 3 SWATH 
runs (Technical replicates) : total 4 IDA & 12 SWATH runs/sample 

Reference set

SWATH-MS spectra in technical triplicate & 
spectral ion library – Obtained from 
Proteome Xchange (PXD002952).

DIA (SWATH) 
RUNS

Spectral Ion Library

Retention time calibration & filtering of peptides, transitions for quantification

Quantification by Marker View

Normalization of intensity 
values

Dataset A

Marker view

Using total area sums (TAS) : To minimize 
inter-sample variation

Using selected peaks / internal standard (IS): 
to minimize inter-run variation

Normalyzer

Global : Loess-G, RLR-G, VSN-G, TI-G, AI-G, MedI-G, 
Quantile.

Local : Loess-R, RLR-R, VSN-R 

Comparative evaluation of methods based on quantitative & 
qualitative plots generated by Normalyzer

p value cut off

Fold change 
cut off

p value & fold 
change cut off 

(Both)

Cluster analysis to assess of 
the ability of differentiators to 

stratify comparison groups 
precisely  

Identification of differentiators
based on

Normalized data 

Sample 
grouping

for analysis
of SWATH 

data:

S & S+IM
in set 1

S  & S+IM
in set 1-4

(IDA runs)

S+IM & R
in set 1-4

(IDA runs)

Spectral Ion Library

Dataset B & C Dataset  D

Validation set
Obtained from Proteome Xchange consortium 

PXD006106
10 Untreated & 

formaldehyde treated 
HeLa Kyoto cells

PXD000672 
9 Normal & tumor

kidney tissue 
samples

Dataset E Dataset F
Single SWATH-MS spectra 
for each biological replicate

SWATH-MS spectra in 
technical duplicate

Spectral ion library - Comprehensive human 
SWATH library obtained from SWATH Atlas

Fig. 1  Scheme of experiments. It describes: a Samples used in this study which include IM-sensitive K562 cells (S) untreated or treated with 
imatinib (S + IM), IM-resistant K562 cells (R) and 3 datasets from public domain. b Generation of spectral ion library for all comparison groups in 
A from information dependent acquisition (IDA) data and generation of quantitative proteomic profile by data independent acquisition (DIA) 
using Sequential window acquisition of all theoretical fragment-ion spectra (SWATH). c Normalization of SWATH data using different methods. d 
Identification of differentiators based on p-value, fold change and combination of both followed by cluster analysis of the identified differentiators
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oncogene which encodes a constitutively active tyrosine 
kinase, whose activity is inhibited by the small molecular 
inhibitor imatinib (IM). Inhibition of BCR/ABL activity 
by imatinib is known to cause quantitative changes in the 
proteome of K562 cells [13, 14].

Thus IM-sensitive K562 cells (S) untreated or treated 
with imatinib (S + IM) and IM-resistant K562 cells (R) 
were analyzed. For S cells, treatment with imatinib was 
carried out at 0.75  µM concentration for 12  h, a con-
dition observed to inhibit BCR/ABL activity without 
compromising on cell viability (data not shown). R cells 
were always maintained in medium containing 0.75 µM 
imatinib. SWATH-MS profiles were generated for four 
biological replicates of S, S + IM and R, each run-in trip-
licate (Fig. 1a, b).

The ‘validation set’ constituted SWATH data depos-
ited by Tan et  al. [15]. and Guo et  al. [16] in Proteome 
Xchange consortium with identifiers PXD006106 and 
PXD000672, respectively. SWATH runs of ten biological 
replicates of HeLa Kyoto cells untreated (UT) and treated 
with formaldehyde (FA) were obtained from PXD006106 
while duplicate SWATH runs of normal (N) and tumor-
ous (T) kidney tissue samples from nine patients were 
obtained from PXD000672.

Preparation of K562 lysates for LC–MS analysis
To prepare whole cell lysate, 1 × 106 cells were sus-
pended in 100 µl SDS buffer (10% glycerol, 2% SDS, 5% 
β-mercaptoethanol and 62.5  mM tris pH 6.8), boiled 
for 10 min and centrifuged at 13,000×g for 15 min. The 
supernatant was collected and acetone precipitated with 
1  ml chilled acetone to remove detergents. Protein pel-
let thus obtained was denatured by resuspending in 6 M 
urea and protein concentration was determined by Brad-
ford assay [17]. 10  µg protein was subjected to in-solu-
tion trypsin digestion. Briefly, the denatured proteins 
were reduced by incubating with 200 mM dithiothreitol 
(DTT) for 1  h at room temperature. It was followed by 
alkylation with 200 mM iodoacetamide (IAA) for 1 h in 
dark. Before trypsin digestion, urea concentration was 
adjusted to 0.6 M using 1 mM CaCl2. In-solution diges-
tion was carried out by adding proteomic grade trypsin 
(Sigma Aldrich, USA) in the ratio of 1:50 trypsin: protein 
(w/w) and incubated for 16 h at 37 °C. Peptides were then 
desalted using C18 spin columns (Pierce, Thermo Fisher 
Scientific, USA), dried in a speed vac and reconstituted 
with 0.1% Formic acid (FA) in water to get a final concen-
tration of 0.5 µg/µl.

LC–MS/MS data acquisition for the study set
Each sample in the study set was spiked with 1 pmol/µl of 
digested Escherichia coli β-galactosidase (β-gal) peptides 
(Sciex, USA), before injection, which served as internal 

standard. The samples were then injected into Eksigent 
ekspertTM nano-LC 400 with cHiPLC® system, with 
trap column (200  µmX 0.5  mm) and analytical column 
(75  µmX 15  cm), both packed with 3  µl ChromXp C18 
(120 Å). For reverse phase HPLC, 0.1% FA in water and 
0.1% FA in acetonitrile (ACN) served as solvent A and B 
respectively. A gradient elution of 225 min, with increas-
ing percentage of mobile phase B was used to elute the 
peptides at a flow rate of 300 nl/min. Eluate from the col-
umn was analyzed in a positive ion mode on Triple TOF 
5600 + (Sciex, USA) mass spectrometer.

Each sample was subjected to 1 IDA run for spec-
tral ion library generation followed by 3 DIA (SWATH) 
runs, which served as technical replicates. Thus, with 
four biological replicates, K562 S, S + IM and R cells 
had 4 IDA runs and 12 SWATH runs each (Fig. 1b). IDA 
mode involved a survey scan over a mass range of 350–
1250 m/z and MS/MS scan over 200–1800 m/z for top 30 
precursor ions with rolling collision energy, 50 mDa mass 
tolerance and accumulation time of 250 ms for MS and 
about 50 ms for MS/MS.

For DIA-SWATH acquisition, the instrument was 
tuned to a looped product ion mode. A sequential isola-
tion window width of 25 m/z (with 1 m/z overlap) cover-
ing a mass range of 350–1250 m/z was set, resulting in 36 
overlapping windows. The accumulation time was 50 ms 
for MS scan and 80  ms for MS/MS scan, thereby mak-
ing a total cycle time of about 3 s. The conditions used to 
generate data by Navarro et al. [12]. Guo et al. [16] and 
that used to generate data experimentally in this study 
were comparable, while data generated by Tan et al. [15] 
used 64 variable wide precursor ion selection window. 
Further, samples in the reference set and validation set 
were spiked with indexed retention time (iRT) peptides 
for retention time calibration while those in the study set 
were spiked with E. coli β-gal peptides.

Generation of spectral ion library for the study set
The reference set from Navarro et  al. [12] was referred 
to as Dataset A. The data acquired from S, S + IM and R 
sets were further grouped for comparison into datasets 
(Fig. 1b and Table 1). Only one out of the four sets of S 
and S + IM each, was considered as dataset B while all 
four together as dataset C. All four sets of S + IM and R 
were included in dataset D. The validation sets from Tan 
et al. [15] and Guo et al. [16] were referred to as dataset E 
and F respectively.

A common spectral ion library was generated for data-
sets B and C while a separate library was created for 
dataset D. The spectral ion library for datasets B, C and 
D was generated by pooling the IDA runs of the corre-
sponding biological replicates and analysing in Protein 
Pilot software v4.5 (Sciex, USA) with paragon algorithm, 
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to obtain protein identities. The parameters used were 
as follows: Cysteine alkylation—IAA, digestion—trypsin 
and no special factor was chosen. The search effort was 
set to ‘thorough ID’ and false discovery rate (FDR) anal-
ysis was enabled. Proteins identified with 1% FDR were 
considered. The search was carried out against UniProt 
database (November 2016 release) containing human 
proteins as well as E. coli β-gal. The result (.group) file 
thus generated served as the spectral ion library. For 
dataset A the spectral ion library deposited by Navarro 
et  al. [12], generated by pooling individual libraries of 
constituent human, yeast and E. coli peptides, was used. 
For datasets E and F comprehensive human SWATH 
library with about 10,000 proteins deposited in SWATH 
Atlas by Rosenberger et al. [18] was used.

SWATH data analysis
Spectral alignment and targeted data extraction of the 
swath runs of all six datasets were carried out in Peak 
View 2.2 software using MS/MS ALL with SWATH 
acquisition microapp (Sciex, USA). Proteins from spec-
tral ion library identified with 1% FDR were first imported 
into Peak View 2.2 software. Retention time calibration 
was carried out using iRT peptides for datasets A, E and 
F and E. coli β- gal peptides for datasets B-D. Processing 
settings were used to filter the ion library, where up to 6 
peptides per protein and 6 transitions per peptide with 
peptide confidence threshold of 99% and FDR of 1%, 
were chosen for quantification. Modified peptides were 
excluded from extraction. Extracted ion chromatogram 
(XIC) window was set to 5 min for datasets A, B, C, E, 
F and 15 min for dataset D with XIC width of 50 ppm. 
The MS/MS extracted peak areas from the filtered results 

were exported to Marker View software v1.3 (Sciex, USA) 
for quantification. The marker view output raw data file 
with list of proteins and their peak areas were used for 
further analysis.

Normalization of SWATH Data
The raw data of all datasets was processed and analyzed 
in Normalyzer (Fig.  1c), wherein it was log2 trans-
formed and then normalized globally (G) or locally (R) 
using 10 statistical methods. Global normalization is 
carried out without consideration of affiliation of the 
sample such as replicate, control group, test group, etc. 
[10]. In SWATH-MS since each sample is run individu-
ally, errors can arise irrespective of their origin. Thus, 
in the present study global normalization methods 
were included. However, since the study focuses on 
identification of normalization method conducive to 
biomarker identification, retention of distinguishing 
features of the comparison groups was necessary while 
normalizing the data. This was achieved by includ-
ing local normalization methods for analysis [10]. The 
normalization methods include locally estimated scat-
terplot smoothing (Loess-R, Loess-G) which assumes 
non-linear relationship between the bias in the data and 
magnitude of protein intensity; robust linear regression 
(RLR-R, RLR-G) which assumes that the bias in data is 
linearly dependent of the magnitude of the measured 
protein intensity; variance stabilization normalization 
(VSN-R, VSN-G) which aims at making the sample 
variances nondependent from their mean intensities 
and bringing the samples onto the same scale; quan-
tile normalization which forces the distribution of the 
samples to be the same; total intensity (TI-G), average 

Table 1  Details of datasets

Datasets Source Constituents Purpose—in this study

Dataset A Pride ID—PXD002952 3 samples of 65% human, 30% yeast, 5% E. 
coli peptides (Control)

3 samples of 65% human, 15% yeast, 20% E. 
coli peptides (Test)

Reference set—a well-defined dataset with 
predictable quantification

Dataset B In vitro experiments carried out in this study 3 samples of K562/S cells (Control)
3 samples K562/S + IM cells (Test)

Study set to check comparability of observa-
tions in defined (A) versus undefined (B) 
datasets

Dataset C In vitro experiments carried out in this study 12 samples of K562/S cells (Control)
12 samples K562/S + IM cells (Test)

Larger dataset (C) to check the application of 
observations from small dataset (B)

Dataset D In vitro experiments carried out in this study 12 samples of K562/S + IM cells (Control)
12 samples K562/R cells (Test)

Larger dataset (D) to check the consistency of 
observations in independent large datasets

Dataset E Pride ID—PXD006106 10 samples of untreated HeLa Kyoto cells 
(Control)

10 samples of formaldehyde treated HeLa 
Kyoto cells (Test)

Validation set to check the consistency of 
observations in independent large datasets

Dataset F Pride ID—PXD000672 18 non-tumorous kidney tissue samples 
(Control)

18 tumorous kidney tissue samples (Test)

Validation set to check the consistency of 
observations in independent large datasets
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intensity (AI-G) and median intensity (MedI-G) nor-
malization methods wherein intensity of each variable 
is divided by sum of intensities, mean of sum of intensi-
ties, median intensities of all variables respectively [8, 
10].

Marker view v1.3 along with quantitation also pro-
vides options for sample normalization using either 
total area sums (TAS) wherein total area of all peaks 
in a sample is considered or using area of the selected 
peaks or internal standard (IS). In this study spiked 
iRT peptides and trypsin digest of E. coli β- gal served 
as an internal standard for dataset A, E, F and data-
sets B–D respectively. In TAS as well as IS normaliza-
tion, the peak areas of each sample were normalized 
by multiplying with its corresponding scale factor. The 
scale factor for TAS method was obtained by dividing 
the average of total area of all samples by the total area 
of each sample while for IS method the average area 
of internal standard of all samples was divided by the 
area of internal standard of each sample. Data normal-
ized by the above two methods i.e. TAS and IS was log2 
transformed before running through Normalyzer, to 
generate the evaluation report.

The normalization efficiency of all 12 methods was 
assessed through ‘Normalyzer’ quantitatively by pooled 
intragroup coefficient of variation (PCV) and qualita-
tively by relative log expression (RLE) plot as reported in 
earlier studies [8, 10].

Identification of differentiators from normalized data 
and cluster analysis
Differentiators were identified from the data of all data-
sets normalized by 12 methods based on the criteria of 
p-value, fold-change and a combination of both (Fig. 1d). 
To obtain p-value, log2 transformed data, normalized 
by different normalization methods from compari-
son groups were assessed by Student’s t-test using IBM 
SPSS statistics 21. Differences in protein intensities with 
p-value ≤ 0.05 were considered statistically significant 
and chosen as differentiators. The fold change difference 
in protein levels was calculated from the peak area values 
and a cut-off of 1.5-fold change was applied. Further, the 
efficiency of differentiators obtained from data normal-
ized using the 12 methods to segregate the comparison 
groups was assessed by cluster analysis. The peak areas 
of differentiators identified using p-value (≤ 0.05), fold 
change (1.5 fold) and combination of both were used as 
inputs for cluster analysis (Fig.  1d) in Genesis software 
v.1.8.1. Hierarchical clustering was performed with the 
following parameters: Agglomeration rule − Average 
linkage WPGMA and Calculation parameters − Cluster 
experiments.

Results
Identification and quantitation of proteins by SWATH‑MS
In this study, each of the four biological replicates of 
K562 S, S + IM and R, underwent one IDA run for the 
generation of spectral ion library followed by three DIA 
runs for SWATH-MS analysis, thereby resulting in a 
total of 4 IDA and 12 DIA runs for K562 S, S + IM and 
R each. Samples with improper chromatogram were 
eliminated from analysis sets leaving 11 runs each in 
S and R in datasets C and D respectively (Fig.  1b). In 
dataset F, there were 2 technical replicates for each 
sample. Upon spectral alignment and filtering of ion 
library, 4404, 1450, 1757, 1808, 7057 and 5316 pro-
teins that fulfilled the criteria (described in Methods 
under ‘SWATH data analysis’) were further used for 
quantification of datasets A, B, C, D, E and F respec-
tively. Quantities of the identified proteins were further 
assessed for variation.

Assessment of variation in un‑normalized data
The quantified log2 transformed ‘un-normalized’ data 
of each dataset was evaluated based on RLE plot, which 
assesses the inter- and intra-group alignment of the repli-
cates qualitatively. In RLE plot, samples should be aligned 
around zero. Any deviation would indicate discrepan-
cies in the data [10]. Among the datasets constituted of 
single set of samples, alignment around zero was seen in 
all the representative samples of dataset A (Fig. 2a) and 
50% of those in dataset B (Fig. 2b). Datasets C (Fig. 2c), 
D (Fig.  2d) and F (Fig.  2f ) comprising of multiple sets, 
showed considerable deviation from zero in replicates as 
well as between groups in RLE plots, indicating the need 
for normalization of SWATH-MS data.

Identification of optimum method for normalization using 
‘Normalyzer’
The efficiency of 12 different normalization methods to 
normalize datasets A–F, was assessed quantitatively and 
qualitatively in ‘Normalyzer’ using PCV and RLE plots 
respectively. PCV reflects the ability of a normalization 
method to decrease intragroup variation between techni-
cal and/or biological replicates [8]. The results indicated 
that, VSN-G-normalized data consistently showed lesser 
intra-group variation in all datasets compared to data 
normalized by other methods (Fig.  3I). Additionally, in 
datasets B–F VSN-R normalized data also reduced intra 
group variation. Further, qualitative assessment of the 
normalization methods with lowest PCV (VSN-G and 
VSN-R) by RLE plot indicated that only VSN-G showed 
good inter and intra group alignment among the repli-
cates in all datasets (Fig. 3II). Thus, VSN-G was identified 
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Fig. 2  Analysis of unnormalized SWATH data for datasets A–F (a–f) by RLE plot: Qualitative assessment of the spread of data shows that the test and 
control groups vary in their spread of values in all datasets except a and e 
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Fig. 3  I PCV plot: Quantitative assessment of twelve normalization methods indicates that VSN-G has less PCV in all datasets along with VSN-R in 
datasets B–F. II RLE plot: Qualitative analysis of methods with less PCV, by RLE plot revealed good inter group alignment only in VSN-G in all datasets
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as the optimal normalization method using ‘Normalyzer’ 
based evaluation.

Assessment of VSN‑G normalized data by cluster analysis
Differentiators identified from data normalized by 
VSN-G method based on p-value, fold change and a com-
bination of both were subjected to cluster analysis. Dif-
ferentiators identified by all three criteria could segregate 
the comparison groups appropriately in datasets A, B and 
D but not in dataset C, E and F (Fig. 4). Though VSN-G 
was identified as optimal normalization method based 
on PCV and RLE plots, the differentiators identified did 
not show consistent efficiency in clustering. In order to 
understand the contribution of VSN-G normalization to 
improper clustering of datasets C, E and F, differentiators 
identified by all three criteria, from data normalized with 
the remaining eleven methods were assessed for their 
clustering ability. The aim was to detect if any other nor-
malization method could improve segregation of datasets 
C, E and F while retaining the efficient segregation of 
datasets A, B and D in VSN-G normalized data.

Assessment of data normalized by methods other 
than VSN‑G by cluster analysis
As observed in VSN-G normalized data, clusters 
obtained from data normalized with the remaining 
eleven methods yielded improper clustering in datasets 
E and F. Thus the improper features of clusters i.e. for-
mation of separate cluster by a few normal samples in 
datasets E and F; segregation of a pair of normal samples 
(N9 and N18) with tumor samples in dataset F was taken 
as a consistent feature across normalized data for these 
two datasets and was not applied to eliminate a cluster as 
imprecise. While retaining these features, clear segrega-
tion of the remaining control and test samples was con-
sidered as acceptable clustering efficiency of datasets E 
and F. Based on this relaxed criteria, it is seen in Fig.  5 
(Detailed dendrograms for cluster analysis is given in 
Additional file 1) and Table 2 that differentiators identi-
fied based on p-value efficiently segregate the compari-
son groups for data normalized by majority of methods. 
On the other hand, differentiators identified based on 
fold change could not segregate the comparison groups 
in majority of the datasets. The ability of differentiators 
obtained from the combination of p-value and fold-
change to segregate sets therefore could be attributed to 
the influence of p-value. Based on the above experimen-
tal evidence p-value is chosen as the criteria for differen-
tiator identification in this study.

Of the 11 normalization methods assessed, differen-
tiators identified based on p-value from data normal-
ized by 3 methods (Loess-R, TI-G and AI-G) segregated 
the comparison groups precisely in all datasets (Fig.  5). 

These were further evaluated using more stringent cri-
teria to identify the most optimal method for biomarker 
discovery. The criteria was to sub-cluster the technical 
replicates, of control and test groups, belonging to each 
biological replicate precisely in datasets C, D and F. Data-
set E was not subclustered as each sample was run only 
once [15]. A scoring system was used to achieve this, 
wherein the ability to segregate control and test groups 
was given a score of 2. In dataset F, for every control 
which segregated separately from the major control clus-
ter, a negative score of 1 was given. Thereafter for every 
correct subgrouping of the technical replicates of control 
and test, a score of 1 was given. The total score was calcu-
lated as score for precise clustering (2) + score of − 1 for 
each control which clustered separately from the major 
control cluster in dataset F (not applicable to other data-
sets) + score for co-segregation of technical replicates in 
test and control (1)(Fig. 6).

As mentioned earlier, the efficiency of biomarkers lies 
in their ability to accurately stratify the heterogenous 
groups in a given population. It is evident from Fig. 6 that 
differentiators obtained from Loess-R normalized data 
could not only stratify the comparison groups precisely, 
but also had maximum sub-stratification score in the 
three large datasets assessed, thereby indicating its suit-
ability for biomarker discovery.

Discussion
This study has addressed two previously unattended 
issues in analysis of quantitative SWATH-MS data, 
especially relevant to clinical proteomics—(i) experi-
mental demonstration of ideal method of data normali-
zation which does not diminish the vital features of the 
data necessary for segregation of comparison groups (ii) 
experimental verification of criteria for identification of 
differentiators. Carefully chosen sets of samples, mimick-
ing the biological and experimental variations which can 
influence the data were included in the study. The refer-
ence set from public domain (dataset A) represented a 
quantitatively defined set wherein the differences in rela-
tive proportions of the constituents between samples 
made fold-differences in protein quantities predictable. 
The study set (datasets B–D) on the other hand repre-
sented the heterogeneity inherent to biological samples 
as in S cells and those contributed by extraneous manipu-
lations such as treatment with imatinib in S + IM and R 
cells. The validation set (dataset E and F) were analyzed 
to confirm the findings obtained in the earlier sets. While 
analysis of single sets in dataset A and B allowed to evalu-
ate differences between quantitatively defined (dataset 
A) and undefined set (dataset B), multiple sets in data-
set C, D, E and F allowed for evaluation of the consist-
ency of observations within quantitatively undefined 
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Fig. 4  Hierarchical clustering of differentiators obtained from VSN-G normalized data based on I- p-value, II- fold change, III- p- value together with 
fold change
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sets. Further the reference, study and validation sets dif-
fered in the depth of spectral ion library, the choice of 
calibrants for retention time calibration as well as peak 
intensities. They are the prototypes of variation of meth-
odologies observed in the reported literature. Analysis 
of these samples was designed to identify a strategy for 
normalization of SWATH-MS data which is applicable 
universally.

The differences in datasets throw light on certain valu-
able aspects of experimental design. Detection of greater 
number of proteins in dataset A, E and F as compared 
to B, C and D could be attributed to deeper spectral ion 
library. For dataset A, library was generated by pooling 
individual libraries of constituent human, yeast and E. 

coli peptides while for datasets E and F extensive human 
protein library was used. It could also be due to use of 
iRT peptides for retention time calibration in dataset A, 
E and F which allows high-quality spectral library gen-
eration. Retention time calibration of datasets B, C and D 
had been carried out using spiked peptides of E. coli beta 
galactosidase which span a limited range of retention 
times. This represents the studies where retention time 
calibration has been carried out using highly conserved 
and abundant endogenous peptides or spike-in peptides 
other than iRT [19, 20].

The extent of variation among un-normalized data-
sets, when assessed by RLE plot, showed a progressive 
increase from dataset A to D and F (Fig. 2). This increase 

Fig. 5  Ability of differentiators to cluster the study groups distinctly

Table 2  Clustering efficiency of  differentiators identified based on  p-value, fold change and  combination of  both, 
from data normalized by 12 methods

Datasets Clustering efficiency

p-value Fold change Both

A 100% (12/12 methods) 100% (12/12 methods) 100% (12/12 methods)

B 100% (12/12 methods) 42% (5/12 methods) 92% (11/12 methods)

C 75% (9/12 methods) 0% (0/12 methods) 75% (9/12 methods)

D 92% (11/12 methods) 25% (3/12 methods) 92% (11/12 methods)

E 100% (12/12 methods) 0% (0/12 methods) 100% (12/12 methods)

F 42% (5/12 methods) 66.6% (8/12 methods) 25% (3/12 methods)
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in variation could be attributed to increase in sample het-
erogeneity, as dataset A, generated by addition of defined 
proportions of constituents, was less heterogenous and 
had more precise quantification. Dataset B on the other 
hand, was not a defined set and thus would exhibit vari-
ations inherent to any biological system. In datasets C 
and D, the probability of variation increased as the het-
erogeneity increased due to inclusion of greater number 
of samples. Dataset E which also involved cell lines as in 
datasets C and D, showed least variation which reflects 
precision in experimentation but is not commonly 
observed due to experimental errors. Dataset F included 
human samples which are inherently heterogenous. Such 
variations are a commonplace in clinical samples and 
reflect in the assessment of un-normalized data based on 
RLE plot. These observations emphasized the need for 
normalization of SWATH-MS data.

In most of the previously reported SWATH-MS stud-
ies, data has been normalized by TAS [21–29], median 
[15, 30–32], TI [33–36], quantile [37–39] and IS [40, 41] 

methods. In this study, to identify the optimum normali-
zation method, datasets A–F were normalized using 10 
normalization methods from Normalyzer and 2 methods 
from Marker View software, which included the above 
mentioned methods used in previous studies. Their nor-
malization efficiency in Normalyzer was evaluated based 
on PCV and RLE plots. VSN-G was found to efficiently 
normalize not only dataset A with minimum variation 
but also datasets B-F with considerable variation (Fig. 3). 
This indicates that VSN-G could have a broad applica-
bility for normalization of SWATH-MS data. VSN nor-
malization has also been reported to efficiently normalize 
data generated by DIA using LTQ orbitrap [8]. Consider-
ing wide use of SWATH-MS for biomarker identification, 
the utility of VSN-G normalized data for biomarker dis-
covery was assessed based on its ability to yield differen-
tiators which segregate the comparison groups precisely.

Differentiators could be identified by comparing quan-
tities of proteins in comparison groups based on p value, 
fold change or combination of both. PubMed search 

Fig. 6  Evaluation of efficiency of p-value based differentiators to sub-stratify the technical replicates. Proper clustering of test and control groups is 
given a score of 2 and proper sub-clustering of technical replicates of each set indicated by red line, is given a score of 1. In dataset F, a score of -1 is 
given to each control which formed a cluster outside the major control or test cluster, indicated by blue line
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revealed that in over 134 human SWATH related publi-
cations in a span of 5 years (2012-Mar 2018), 45 studies 
(33.6%) were aimed at identifying differentiators between 
control and test groups. Out of these 45 studies, we 
observed that 14 studies (31.1%) used statistical signifi-
cance (p-value), 6 studies (13.3%) used fold change and 
25 studies (55.6%) used both (p value and fold change) 
as criteria to identify differentiators. While experimental 
evidence for either choosing the criteria for differentia-
tor identification (p-value, fold change or combination of 
both) [42, 43] or their cut-off values [44] is available for 
transcriptomic data, no such studies are reported for MS 
data. Our study provides the first experimental evalua-
tion of choice of criteria to identify differentiators from 
SWATH-MS data for biomarker discovery based on their 
ability to segregate comparison groups- an essential fea-
ture of biomarkers, by cluster analysis. Cluster analysis 
revealed that differentiators identified based on p-value, 
from data normalized by 12 methods, could segregate the 
comparison groups with maximum efficiency in 5 out of 
6 datasets (Fig. 5). Hence p-value was chosen as the crite-
ria for differentiator identification in this study.

VSN-G, though was identified as optimal normali-
zation method based on PCV and RLE plots, the dif-
ferentiators identified did not efficiently cluster the 
comparison groups in all datasets (Fig.  4), thereby rais-
ing question on its suitability for biomarker discovery. 
Loess-R, a method ranked lower in ‘Normalyzer’ based 
evaluation, on the other hand, yielded differentiators 
with maximum clustering as well as sub-clustering effi-
ciency in all datasets assessed (Fig. 6), thereby making it 
suitable for biomarker discovery by SWATH-MS. This 
may be due to the differences in the assumptions made 

for normalization by these methods. The perceived treat-
ment of data is depicted in Fig. 7. VSN-G aims at mak-
ing the sample variances non-dependent on their mean 
intensity thereby bringing the samples onto the same 
scale. This assumption remarkably reduces the intensity 
differences between samples so as to achieve optimum 
normalization. However, the reduction in intensity differ-
ences is not conducive to identification of differentiators 
and in turn segregation of comparison groups (Fig.  7I) 
Loess normalization on the other hand, probably retains 
the differences between intragroup protein intensities by 
assuming non-linear relationship between biases in the 
data and the magnitude of protein intensity—a feature 
essential for segregation of comparison groups (Fig. 7II).

We thus propose that apart from statistically recom-
mended criteria for evaluation of methods for nor-
malization, a biologically relevant criteria like precise 
stratification of data should be assessed before a normali-
zation method is used for biomarker identification from 
SWATH-MS data.

Conclusion
This study for the first time has identified VSN-G as 
method for optimum normalization of SWATH-MS data 
based on statistical criteria. Acknowledging the extensive 
use of this technology for biomarker discovery this study 
has also identified the normalization strategies conducive 
to this application. In the process, p-value based identi-
fication of differentiators has been demonstrated to be 
most suitable for biomarker discovery from SWATH-
MS data. While VSN-G normalization was not found 
conducive to biomarker discovery in this study, Loess-R 
normalization was observed to retain features of the data 

Fig. 7  Should application dictate the choice of normalization method for SWATH-MS data?
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necessary to yield differentiators which could segregate 
the comparison groups efficiently. The probable effect 
of two normalization methods on the data which are 
responsible for these observations are depicted in Fig. 7. 
The study has thus demonstrated the need to base the 
choice of normalization method on the application of the 
data.

Additional file

Additional file 1. Dendrograms representing hierarchical clustering of 
control and test groups based on differentiators obtained by p-value, fold 
change or both in both datasets.
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