= CHEMICAL THERMODYNAMICS = AND THERMOCHEMISTRY

Partial and Apparent Molar Volume of Azithromycin in Its Solutions in Ethanol, 1-Propanol, and 1-Butanol at 300.15, 305.15, 310.15 K and Ambient Pressure

Nita P. Mohabansi^{a,*}, Anita K. Satone^a, and Sonia N. Hirani^a

^aDepartment of Chemistry, Bajaj College of Science, Jamanalal Bajaj Marg, Civil Lines, Wardha, India *e-mail: nitamohabansi15@gmail.com

Received April 14, 2020; revised August 23, 2020; accepted September 9, 2020

Abstract—The densities and ultrasound velocities in azithromycin solutions in ethanol, 1-propanol and 1butanol at various concentrations and at three different temperatures (T = 300.15, 305.15, and 310.15 K) have been measured. Based on the data obtained, various derived acoustical parameters viz, acoustic impedance (Z), adiabatic compressibility (β), intermolecular free length (L_f), free volume (V_f), Rao's constant (R),

Wada's constant (W), partial molar volume (V_{Φ}), and hence apparent molar volume (V_{Φ}^{0}) of the solute have been calculated. The results are discussed on the basis of the nature of solute-solvent interactions.

Keywords: acoustical, molecular interaction, acoustic impedance, azithromycin, partial molar volume, apparent molar volume

DOI: 10.1134/S0036024421140132

INTRODUCTION

Studies of intermolecular interactions play an important role in understanding the interactions that take place in solutions. Changes in density, viscosity, ultrasound velocity and other parameters from temperature and concentration have been considered by many scientists and shed light on the structural changes occurring in solutions [1-5].

The choice of a suitable solvent is of primary scientific interest in order to obtain the required efficiency, selectivity and kinetics of a chemical process. The presence of hydrogen bonds in polar solvents has a significant effect on the dielectric, physicochemical and acoustic properties of mixtures. Alcohols are widely used as solvents in chemical and pharmaceutical industries, during extraction [6-8], as dispersing agents for nanomaterials [9-12] and for the synthesis of other organic compounds [13–16]. A large number of studies devoted to alcohols and their mixtures at various temperatures and pressures have been carried out using densimetry, viscometry, spectroscopy, and computer chemistry [17–29]. In clinical medicine, undesirable drug-alcohol interactions are of common concern [30]. Heavy drinking and its combined effect with the antibiotics resulted into deadly incidental and intentional poisoning. When a new drug is synthesized, drug-alcohol interactions should be thoroughly studied [30, 31].

Azithromycin (Fig. 1) is a macrolide antibiotic similar in structure to erythromycin. Azithromycin has increased activity against Gram-negative bacteria compared with erythromycin, while maintaining activity against Gram-positive organisms. Azithromycin is characterized by good oral bioavailability, excellent tissue penetration and persistence, and long elimination half-lives [32]. Azithromycin demonstrates good results in vitro against Zika and Ebola viruses [33] and severe respiratory diseases. Recently, the evaluation of azithromycin as a drug for the COVID-19 therapy has started [34–37].

Therefore, in the present article we report the experimental densities, ultrasonic velocities and the derived parameters of azithromycin solutions of various concentrations and at different temperatures: 300.15, 305.15, and 310.15 K in ethanol, 1-propanol, and 1-butanol.

EXPERIMENTAL

In the present study, the chemicals used are ethanol, 1-propanol, and 1-butanol, are of AR grade. These chemicals were used without any further purification. The details of these chemicals are given in Table 1. All the solutions were prepared gravimetrically and are kept hermetically sealed to prevent contact with moisture from the air and evaporation. Solutions were prepared using CONTECH CA 224 analytical balance ($e \pm 0.0001$ g). The solutions of different

Fig. 1. Structure of azithromycin.

molality viz, 0.0144, 0.0275, 0.0394, 0.0503, 0.0602, 0.0694, 0.0779, 0.0858, 0.0931, and 0.1 of azithromycin were prepared in ethanol, 1-propanol, and 1-butanol. The solutions were gently stirred on a magnetic stirrer before measurements. Care was taken to avoid contamination during mixing. The estimated uncertainty of molality value is $u(m) = \pm 1 \times 10^{-3}$. Densities were measured using calibrated pycnometer with nominal volume of 10 cm³. The ultrasonic velocity (*u*) was measured on digital ultrasonic pulse echo velocity meter (Vi Microsystems Pvt. Ltd. model VCT-70) at 2 MHz with an accuracy of 0.1% (2 ± 0.0001 MHz). The estimated uncertainity of ultrasonic velocity is within $u(m) = \pm 1.09$ m s⁻¹. The instrument has a built-in thermostat to maintain the temperature (±0.1 K). Ultrasonic velocity meter was calibrated with triple distilled water and pure methanol at 300.15, 305.15, and 310.15 K.

RESULTS AND DISCUSSION

The comparison of experimentally obtained values of densities (ρ) and ultrasonic velocity (U) of pure liquids with literature values is presented in Table 2.

The experimentally determined values of density (ρ), ultrasonic velocity (*u*) for all solutions of the drug at different concentrations and at *T* = 300.15, 305.15, and 310.15 K are listed in Table 3. The data on density and ultrasonic velocity were used to calculate acoustical parameters [45] viz., acoustic impedance (*Z*), adiabatic

Table 1. Specification and mass fraction purity^a of chemical samples

S.N.	Chemical name	Source	CAS no.	<i>M</i> , g/mol	Fraction purity
1	Ethanol	Merck	64-17-5	46.07	≥99.9%
2	1-Propanol	Merck	71-23-8	60.10	≥99.5%
3	1-Butanol	Merck	71-36-3	74.12	≥99.5%
4	Azithromycin	_	83905-01-5	749	

^a Purity as provided by supplier.

Table 2. Comparison of experimental densities (ρ) and ultrasonic velocity (*u*) of pure liquids with interpolated literature values at 300.15, 305.15, and 310.15 K and atmospheric pressure

Liquids	$ ho imes 10^{-3}$	$kg m^{-3}$	$u, { m m s^{-1}}$				
Elquius	exp.	literature	exp.	literature			
		300.	15 K				
Ethanol	0.7810	0.7893 [38]	1128.2	1127.4 [39]			
1-Propanol	0.7962	0.798 [39]	1188.1	1189.2 [38]			
1-Butanol	0.8042	0.8069 [38] 1227.9		1225.8 [13]			
	305.15 K						
Ethanol	0.7875	0.7873 [38]	1108.9	1109.4 [38]			
1-Propanol	0.7959	0.7955 [40]	1170.1	1169.7 [38]			
1-Butanol	0.7942	0.7946 [42]	1203.2	1203 [44]			
		310.	15 K				
Ethanol	0.7853	0.7855 [38]	1093.1	1092.9 [43]			
1-Propanol	0.7879	0.7873 [41]	1098.3	1093 [41]			
1-Butanol	0.7955	0.7945 [41]	1188.9	1189.5 [43]			

т,	ρ,		$Z \times 10^{-5}$,	$\beta \times 10^{10}$,	$L_{\rm f} \times 10^{11}$,	$V_{\rm f} \times 10^6$,	D	W	$V_{\Phi} \times 10^{-6}$,
mol kg ⁻¹	kg/m ³	<i>u</i> , m s -	${\rm kg}~{\rm m}^{-2}~{\rm s}^{-1}$	$m^2 N^{-1}$	m	$m^3 mol^{-1}$	Λ	"	$m^3 mol^{-1}$
		1	1	Ethanol, T	= 300.15 K			1	I
0.014	772.63	1149.19	8.879	9.592	9.901	2.718	0.0393	1.407	55.123
0.028	780.02	1159.15	9.042	9.499	9.804	2.830	0.0390	1.411	54.191
0.039	791.74	1172.63	9.284	9.352	9.653	3.008	0.0384	1.412	53.958
0.050	800.31	1182.52	9.464	9.247	9.545	3.116	0.0380	1.412	53.755
0.060	805.45	1188.75	9.575	9.181	9.476	3.181	0.0378	1.413	53.58
0.069	817.74	1202.89	9.837	9.041	9.332	3.264	0.0372	1.414	53.392
0.078	824.88	1211.52	9.994	8.943	9.230	3.453	0.0369	1.416	53.25
0.086	830.31	1218.25	10.115	8.875	9.160	3.538	0.0367	1.417	53.128
0.093	836.14	1225.81	10.249	8.810	9.093	3.633	0.0365	1.419	52.994
0.102	842.88	1234.06	10.402	8.723	9.004	3.852	0.0362	1.421	52.842
		•	•	Ethanol, T	= 305.15 K			•	•
0.014	720.34	1077.28	7.760	10.289	10.619	2.534	0.0422	1.438	55.669
0.028	733.45	1092.57	8.013	10.102	10.426	2.661	0.0414	1.440	55.383
0.039	742.31	1103.04	8.188	9.975	10.296	2.820	0.0410	1.444	55.125
0.050	754.02	1116.44	8.418	9.815	10.131	2.935	0.0403	1.446	54.918
0.060	770.31	1135.21	8.745	9.600	9.909	3.042	0.0395	1.448	54.683
0.069	778.67	1145.35	8.918	9.495	9.800	3.108	0.0391	1.449	54.515
0.078	788.88	1157.86	9.134	9.351	9.651	3.302	0.0386	1.451	54.271
0.086	801.79	1172.74	9.403	9.190	9.486	3.416	0.0380	1.451	54.129
0.093	805.74	1178.53	9.496	9.142	9.436	3.501	0.0378	1.456	53.97
0.102	822.32	1197.20	9.845	8.941	9.229	3.758	0.0371	1.457	53.81
				Ethanol, T	'= 310.15 K				
0.014	715.46	1063.38	7.608	10.359	10.692	2.517	0.0425	1.351	56.163
0.028	728.62	1078.68	7.859	10.169	10.496	2.644	0.0417	1.353	55.856
0.039	740.31	1092.39	8.087	10.002	10.324	2.812	0.0411	1.355	55.559
0.050	748.89	1102.72	8.258	9.882	10.200	2.915	0.0406	1.357	55.335
0.060	756.89	1112.31	8.419	9.770	10.084	2.989	0.0402	1.359	55.056
0.069	768.76	1126.05	8.657	9.617	9.926	3.068	0.0396	1.361	54.843
0.078	777.74	1136.86	8.842	9.485	9.790	3.256	0.0392	1.363	54.604
0.086	784.61	1145.27	8.986	9.392	9.693	3.343	0.0389	1.365	54.43
0.093	794.89	1157.58	9.201	9.267	9.565	3.453	0.0384	1.367	54.253
0.102	802.94	1167.07	9.371	9.157	9.452	3.670	0.0380	1.369	54.043
			. 1	-Propanol,	T = 300.15 H	K			
0.014	796.27	1100.54	8.763	9.308	9.607	2.801	0.0382	1.472	71.532
0.028	806.27	1112.39	8.969	9.189	9.485	2.926	0.0377	1.473	71.271
0.039	815.13	1123.23	9.156	9.084	9.376	3.097	0.0373	1.475	71.053
0.050	825.99	1136.60	9.388	8.960	9.248	3.216	0.0368	1.477	70.794
0.060	830.84	1142.59	9.493	8.901	9.187	3.282	0.0366	1.478	70.606
0.069	836.27	1150.62	9.622	8.841	9.125	3.338	0.0364	1.483	70.433
0.078	843.99	1160.88	9.798	8.740	9.021	3.533	0.0361	1.487	70.212
0.086	855.99	1176.65	10.072	8.608	8.885	3.647	0.0356	1.492	69.986
0.093	862.56	1185.10	10.222	8.540	8.815	3.748	0.0353	1.494	69.851
0.102	868.27	1192.51	10.354	8.468	8.741	3.968	0.0351	1.496	69.636

Table 3. Molality (*m*), density (ρ), ultrasonic velocity (*u*), adiabatic compressibility (β), acoustic impedance (*Z*), intermolecular free length (L_f), free volume (V_f), Rao's constant (*R*), Wada's constant (*W*), and partial molar volume (V_{Φ}) for the solution of drug in ethanol, 1-propanol, and 1-butanol at 300.15, 305.15, 310.15 K and atmospheric pressure

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A Vol. 95 Suppl. 1 2021

 Table 3. (Contd.)

т,	ρ,	$u m s^{-1}$	$Z \times 10^{-5}$,	$\beta \times 10^{10}$,	$L_{\rm f} \times 10^{11}$,	$V_{\rm f} \times 10^6$,	R	W	$V_{\Phi} \times 10^{-6}$,
mol kg ⁻¹	kg/m ³	<i>u</i> , 111 5	$kg m^{-2} s^{-1}$	$m^2 N^{-1}$	m	$m^3 mol^{-1}$	R	,,,	$m^3 mol^{-1}$
			1	-Propanol,	T = 305.15 H	K			
0.014	750.27	1035.71	7.771	9.878	10.196	2.639	0.0405	1.438	73.292
0.028	762.27	1049.98	8.004	9.720	10.032	2.766	0.0399	1.441	72.859
0.039	774.84	1065.72	8.258	9.556	9.864	2.943	0.0392	1.444	72.546
0.050	781.99	1074.59	8.403	9.464	9.768	3.044	0.0389	1.446	72.123
0.060	791.99	1086.49	8.605	9.337	9.637	3.128	0.0384	1.448	71.814
0.069	805.99	1103.06	8.891	9.173	9.468	3.217	0.0378	1.449	71.528
0.078	813.99	1112.72	9.057	9.062	9.354	3.407	0.0374	1.451	71.189
0.086	830.56	1131.67	9.399	8.872	9.157	3.539	0.0367	1.451	70.869
0.093	837.41	1141.19	9.556	8.797	9.080	3.638	0.0364	1.456	70.615
0.102	843.72	1148.94	9.694	8.715	8.995	3.856	0.0362	1.457	70.389
			1	-Propanol,	T = 310.15 k	K			
0.014	731.74	1005.29	7.356	7.356	10.454	2.574	0.0415	1.412	74.266
0.028	739.99	1015.03	7.511	7.511	10.334	2.685	0.0411	1.413	73.877
0.039	748.56	1025.61	7.677	7.677	10.210	2.844	0.0406	1.416	73.571
0.050	756.27	1034.85	7.826	7.826	10.100	2.944	0.0402	1.417	73.246
0.060	763.74	1043.73	7.971	7.971	9.994	3.016	0.0398	1.419	73.012
0.069	773.19	1054.69	8.155	8.155	9.869	3.086	0.0394	1.419	72.693
0.078	780.84	1063.78	8.306	8.306	9.751	3.269	0.0390	1.421	72.442
0.086	787.99	1072.19	8.449	8.449	9.652	3.358	0.0387	1.422	72.209
0.093	795.99	1082.02	8.613	8.613	9.552	3.458	0.0383	1.424	72.046
0.102	805.13	1092.87	8.799	8.799	9.426	3.680	0.0379	1.425	71.747
				1-Butanol, 7	T = 300.15 K				
0.014	804.21	1198.42	9.638	9.216	9.512	2.829	0.0378	1.513	89.285
0.028	819.36	1216.20	9.965	9.042	9.333	2.973	0.0371	1.514	88.999
0.039	826.5	1224.86	10.123	8.959	9.247	3.140	0.0368	1.515	88.769
0.050	831.93	1231.50	10.245	8.896	9.182	3.239	0.0366	1.515	88.567
0.060	839.07	1240.28	10.407	8.813	9.097	3.314	0.0363	1.517	88.416
0.069	849.36	1252.39	10.637	8.704	8.984	3.390	0.0358	1.517	88.212
0.078	856.21	1261.75	10.803	8.615	8.892	3.584	0.0356	1.52	88.021
0.086	862.55	1269.79	10.953	8.543	8.818	3.675	0.0353	1.522	87.857
0.093	877.64	1287.62	11.301	8.393	8.663	3.813	0.0347	1.522	87.685
0.102	883.07	1295.15	11.437	8.326	8.594	4.036	0.0346	1.525	87.568
				1-Butanol, 7	T = 305.15 K	-		•	•
0.014	747.93	1113.51	8.328	9.909	10.228	2.631	0.0406	1.461	90.982
0.028	756.21	1125.16	8.509	9.798	10.113	2.744	0.0402	1.467	90.715
0.039	771.07	1143.34	8.816	9.603	9.912	2.929	0.0394	1.47	90.393
0.050	774.50	1148.27	8.893	9.555	9.863	3.015	0.0393	1.473	90.215
0.060	782.21	1158.57	9.062	9.454	9.758	3.089	0.0389	1.477	89.914
0.069	794.35	1173.72	9.323	9.307	9.607	3.171	0.0383	1.479	89.643
0.078	804.79	1188.08	9.562	9.166	9.461	3.369	0.0379	1.486	89.472
0.086	818.79	1204.94	9.866	8.999	9.289	3.489	0.0372	1.487	89.286
0.093	829.07	1217.33	10.093	8.885	9.171	3.602	0.0368	1.489	89.074
0.102	831.03	1222.19	10.157	8.848	9.132	3.798	0.0367	1.495	88.878

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A Vol. 95 Suppl. 1 2021

Tab	le 3.	(Contd.)	1
-----	-------	----------	---

m, mol kg ⁻¹	ρ, kg/m ³	<i>u</i> , m s ⁻¹	$Z \times 10^{-5}$, kg m ⁻² s ⁻¹	$\begin{array}{l} \beta\times10^{10},\\ m^2\ N^{-1} \end{array}$	$L_{\rm f} \times 10^{11},$ m	$V_{\rm f} \times 10^6,$ $m^3 {\rm mol}^{-1}$	R	W	$V_{\Phi} \times 10^{-6},$ m ³ mol ⁻¹
1-Butanol $T = 310.15 \text{ K}$									
0.014	725.64	1012.28	7.346	10.213	10.542	2.553	0.0419	1.408	93.989
0.028	733.93	1025.17	7.524	10.095	10.420	2.663	0.0414	1.415	93.595
0.039	742.5	1036.39	7.695	9.973	10.293	2.820	0.0410	1.419	93.184
0.050	750.21	1048.69	7.867	9.865	10.182	2.920	0.0405	1.422	92.838
0.060	757.64	1063.40	8.057	9.760	10.074	2.992	0.0402	1.425	92.446
0.069	767.64	1075.82	8.258	9.631	9.941	3.064	0.0396	1.429	92.129
0.078	746.21	1088.35	8.121	9.885	10.203	3.124	0.0408	1.433	91.815
0.086	753.36	1099.19	8.281	9.781	10.096	3.210	0.0405	1.436	91.551
0.093	761.27	1112.05	8.466	9.676	9.988	3.307	0.0400	1.441	91.279
0.102	770.5	1124.77	8.666	9.543	9.850	3.521	0.0396	1.445	91.032

Table 4. The apparent molal volume of azithromycin drug in alcoholic solution at different temperature (T = 300.15, 305.15, and 310.15 K)

		300.15 K			305.15 K		310.15 K			
Sr. no.	Sr. Solvent	$V_{\Phi}^{0} \times 10^{-6},$ m ³ /mol	$-S_{\rm m}$	R^2	$V_{\Phi}^{0} \times 10^{-6},$ m ³ /mol	$-S_{\rm m}$	R^2	$V_{\Phi}^{0} \times 10^{-6},$ m ³ /mol	$-S_{\rm m}$	R^2
1	Ethanol	296.2	183.6	0.999	309.8	216.7	0.999	315.3	246.4	0.999
2	1-Propanol	297.8	199.4	0.998	313.8	246.7	0.997	345.4	349.0	0.999
3	1-Butanol	318.9	219.1	0.996	338.3	342.4	0.997	346.9	289.1	0.998

compressibility (β), intermolecular free length (L_f), free volume (V_f), Rao's constant (R), Wada's constant (W), and partial molar volume (V_m) by the following equations:

$$\beta = 1/u^2 \rho, \tag{1}$$

$$Z = u\rho, \tag{2}$$

$$L_{\rm f} = K_{\rm T} \sqrt{\beta},\tag{3}$$

where $K_{\rm T}$ is temperature dependent constant known as Jacobson's constant

$$K_{\rm T} = (93.875 + 0.375T) \times 10^{-8},$$

where T is absolute temperature, free volume

$$V_{\rm f} = [M_{\rm eff} u / K \eta]^{1/2},$$
 (4)

where $M_{\rm eff}$ is effective molecular weight, Rao's constant:

$$R = \left(\frac{M}{\rho}\right)(u)^{1/3},\tag{5}$$

Wada's constant:

$$W = \frac{M(B)^{-1/7}}{\rho}$$
, (6)

where M is molecular weight of solute, partial molar volume of azithromycin:

$$V_{\Phi} = \frac{M_2}{\rho} + \frac{(\rho_0 - \rho)}{m\rho_0 \rho}.$$
 (7)

It is observed from Table 3 that the densities and ultrasonic velocities increase with concentration. Same types of the trends are observed at T = 300.15, 305.15,and 310.15 K. The product of density and ultrasonic velocity is the acoustic impedance (Z). Z increases gradually with increase in concentration and decreases with increase in temperature. This reflects the structure making action through strong hydrogen bonding [46]. Adiabatic compressibility (β) varies inversely to ultrasonic velocity and density (Eq. (2)). With the increase in the molality of the solution, β decreases linearly at the studied temperature. Naik et al. also reported the same trend in the values of β [1]. This indicates the closer packing of the molecules [47]. Intermolecular free length (L_f) is the indicator of the interactions between the solute and solvent due to association between the molecules through H-bonding. With the increase in the concentration, the decrease in the $L_{\rm f}$ values reflects the strong solute- solvent interactions. From the Table 3, it is observed that the value of $V_{\rm f}$ increases with increase in the concen-

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A Vol. 95 Suppl. 1 2021

tration for all studied alcoholic solutions. This may be due to the dispersive forces of the component molecules. The decrease in the Rao's constant and the increase in the Wada's constant values confirms that these alcohols are associated in solution due to dipole–dipole interaction and hydrogen bonding.

The partial molar volume (V_{φ}) of the drug in ethanol, 1-propanol, and 1-butanol were calculated from the density measurements at the different temperatures by using Eq. (7). These V_{φ} values are listed in Table 3. By using the values of the partial molar volumes, the apparent molar volumes ($V^0\varphi$) of the drug were evaluated by using Masson's equation [48] given below:

$$V_{\rm o} = V^0 \varphi + S_m. \tag{8}$$

When V_{φ} are plotted against molality, the intercept on *Y* axis and slope gives the values of the apparent molar volume, $V^{0}\varphi$ and $S_{\rm m}$, respectively. The negative values of the $S_{\rm m}$ listed in Table 4 confirm the drug-solvent interactions [2].

CONCLUSION

In the present work, densities and ultrasonic velocity in the solutions of azitromycin in ethanol, 1-propanol, and 1-butanol were experimentally determined at various concentrations and temperatures (T = 300.15. 303.15, and 310.15 K). By using these values, acoustical parameters of the drug are calculated over the entire concentration range. The obtained data are interpreted in terms of molecular interactions between the drug and the alcohols. The negative values of the apparent molar volume of the solute confirmed the presence of strong H-bonding between the drug and alcohol [49]. The strength of H bonding increases with increase in the concentration and temperature. The extent intermolecular interactions is higher in 1-butanol than in other solvents. The temperature also play the major effect on these interactions.

ACKNOWLEDGMENTS

The authors are thankful to Dr. Om Mahodaya, Principal and the Department of Chemistry, Bajaj College of Science, Wardha for providing all the necessary facilities.

REFERENCES

- R. R. Naik, S. V Bawankar, and S. D. Kukade, Russ. J. Phys. Chem. A 89, 2149 (2015). https://doi.org/10.1134/S003602441511014X
- D. M. Bhattacharya, S. S. Dhondge, and S. P. Zodape, J. Chem. Thermodyn. 101, 207 (2016). https://doi.org/10.1016/j.jct.2016.05.025
- A. D. Arsule, R. T. Sawale, and S. D. Deosarkar, J. Mol. Liq. 275, 478 (2019). https://doi.org/10.1016/j.molliq.2018.10.122

- M. Makarov, G. I. Egorov and A. M. Kolker, J. Chem. Thermodyn. 151, 106233 (2020). https://doi.org/10.1016/j.jct.2020.106233
- A. Dyshin and M. G. Kiselev, J. Chem. Eng. Data 64, 2536 (2019).
- 6. Y. Marcus, Separations 5, 1 (2018). https://doi.org/10.3390/separations5010004
- M. N. Rammunia, Th. U. Ariyadasaa, P. H. V. Nimarshanab, and R. A. Attalage, Food Chem. 277, 128 (2019). https://doi.org/10.1016/j.foodchem.2018.10.066
- Q. Salamat, Y. Yamini, M. Moradi, A. Farahani, et al., J. Separ. Sci. 42 (8) (2019). https://doi.org/10.1002/jssc.201801152
- R. Kevin and D. Hinklei, J. Phys. Chem. C 121, 41 (2017). https://doi.org/10.1021/acs.jpcc.7b07769

 A. A. Dyshin, O. V. Eliseeva, G. V. Bondarenko, et al., Russ. J. Phys. Chem. A 87, 2068 (2013). https://doi.org/10.1134/S0036024413120054

- 11. T. Liu, G. Xu, J. Zhang, H. Zhang, and J. Pang, Colloid Polym. Sci. **291**, 3 (2013).
- A. A. Dyshin, O. V. Eliseeva, G. V. Bondarenko, et al., Russ. J. Phys. Chem. A 89, 1628 (2015). https://doi.org/10.1134/S0036024415090095
- B. Ndaba, I. Chiyanzu, and S. Marx, Biotechnol. Rep. 8, 1 (2015). https://doi.org/10.1016/j.btre.2015.08.001
- B. Gananprakasam, J. Zhang, and D. Milstein, Angew. Chem., Int. Ed. 49, 8 (2010). https://doi.org/10.1002/anie.200907018
- 15. L. U. Nordstrom, H. Vogt, and R. Madsen, J. Am. Chem. Soc. 130, 52 (2008).
- 16. C. Gunanathan and D. Milstein, Angew. Chem. 47, 45 (2008).
 - https://doi.org/10.1002/anie.200803229
- K. A. Kurnia, M. I. A. Mutalib, T. Murugesan, and B. Ariwahjoedi, J. Solut. Chem. 40, 818 (2011). https://doi.org/10.1007/s10953-011-9680-8
- S. J. Barlow, G. V. Bondarenko, Y. E. Gorbaty, T. Yamaguchi, and M. Poliakoff, J. Phys. Chem. A **106**, 10452 (2002). https://doi.org/10.1021/jp0135095
- A. A. Dyshin, R. D. Oparin, and M. G. Kiselev, Russ. J. Phys. Chem. B 6, 868 (2012). https://doi.org/10.1134/S1990793112080106
- M. Sokolova, S. J. Barlow, G. V. Bondarenko, Y. E. Gorbaty, and M. Poliakoff, J. Phys. Chem. A 110, 3882 (2006). https://doi.org/10.1021/jp055931h
- O. V. Eliseeva, A. A. Dyshin, and M. G. Kiselev, Russ. J. Phys. Chem. A 87, 401 (2013). https://doi.org/10.1134/S0036024413030096
- M. Tomšič, A. Jamnik, G. F. Popovski, O. Glatter, and L. Vlček, J. Phys. Chem. B 111, 1738 (2007). https://doi.org/10.1021/jp066139z
- A. M. Bala, W. G. Killian, C. Plascencia, J. A. Storer, A. T. Norfleet, and L. Peereboom, J. Phys. Chem. A 124, 3077 (2020). https://doi.org/10.1021/acs.jpca.9b11245

- 24. D. V. Ivlev, A. A. Dyshin, M. G. Kiselev, and A. M. Kolker, Russ. J. Phys. Chem. A 84, 2077 (2010). https://doi.org/10.1134/S0036024410120125
- 25. G. S. Fanourgakis, Y. J. Shi, S. Consta, and R. H. Lipson, J. Chem. Phys. **119**, 6597 (2003). https://doi.org/10.1063/1.1605384
- D. S. Bulgarevich, Y. Horikawa, and T. Sako, J. Supercrit. Fluids 46, 206 (2008). https://doi.org/10.1016/j.supflu.2008.01.013
- 27. Y. E. Gorbaty and G. V. Bondarenko, Russ. J. Phys. Chem. B 6, 873 (2012). https://doi.org/10.1134/S1990793112080118
- 28. J. M. Andanson, P. A. Bopp, and J. C. Soetens, J. Mol. Liq. **129**, 101 (2006).
- https://doi.org/10.1016/j.molliq.2006.08.019
- 29. A. A. Dyshin, O. V. Eliseeva, and M. G. Kiselev, Russ. J. Phys. Chem. A 86, 563 (2012). https://doi.org/10.1134/S0036024412040073
- 30. T. Launiainen, E. Vuori, and I. Ojanpera, Int. J. Legal Med. **123**, 109 (2009).
- 31. H. J. Carson, Leg. Med. 10, 92 (2008).
- 32. C. P. Digest, Am. J. Hospital Pharm. **49**, 686 (1992). https://doi.org/10.1093/ajhp/49.3.686
- P. Gautret, J. C. Lagier, P. Parola, V. T. Hoang, L. Meddeb, M. Mailhe, B. Doudier, J. Courjon, V. Giordanengo, V. E. Vieira, H. Tissot Dupont, S. Honoré, P. Colson, E. Chabrière, B. la Scola, J. M. Rolain, P. Brouqui, and D. Raoult, Int. J. Antimicrob. Agents 56, 105949 (2020). https://doi.org/10.1016/j.ijantimicag.2020.105949
- N. Bleyzac, S. Goutelle, L. Bourguignon, and M. Tod, Clin. Drug Invest. 40, 683 (2020). https://doi.org/10.1007/s40261-020-00933-3
- 35. J. M. Molina, C. Delaugerre, J. le Goff, B. Mela-Lima, D. Ponscarme, L. Goldwirt, and N. Castro, Med. Mal. Infect. 50, 384 (2020). https://doi.org/10.1016/j.medmal.2020.03.006

- 36. A. Fanin, J. Calegari, A. Beverina, S. Tiraboschi, and G. A. Metodologica, Intern. Emerg. Med. 15, 841 (2020). https://doi.org/10.1007/s11739-020-02388-y
- 37. B. Damle, M. Vourvahis, E. Wang, J. Leaney, and B. Corrigan, Clin. Pharm. Ther. **108**, 2 (2020).
- S. Sreehari Sastry, S. Babu, T. Vishwam, K. Parvateesam, and H. Sie Tiong, Phys. B (Amsterdam, Neth.) 420, 40 (2013). https://doi.org/10.1016/j.physb.2013.03.028
- 39. E. N. Rezanova and R. N. Lichtenthaler, Fluid Phase Equilib. **182**, 289 (2001).
- 40. G. Watson, C. K. Mikkelsen, A. Baylaucq, and C. Boned, J. Chem. Eng. Data **51**, 112 (2006).
- A. Rodríguez, J. Canosa, and J. Tojo, J. Chem. Eng. Data 46, 1476 (2001).
- 42. C. Valles, E. Pérez, M. Cardoso, M. Domínguez, and A. M. Mainar, J. Chem. Eng. Data **49**, 1460 (2004).
- M. Dominguez, C. Lafuente, M. C. López, F. M. Royo, and J. S. Urieta, J. Chem. Thermodyn. 32, 155 (2000).
- 44. J. A. Riddick, W. A. Bunger, and T. K. Sakano, Organic Solvents: Physical Properties and Methods of Purification, 4th ed. (Wiley, New York, 1986), Vol. 2.
- 45. N. Mohabansi, J. Sci. Res. **64**, 352 (2020). https://doi.org/10.37398/JSR.2020.640248
- 46. S. Chauhan, L. Pathania, and M. S. Chauhan, J. Mol. Liq. 221, 755 (2016). https://doi.org/10.1016/j.molliq.2016.06.025
- 47. R. Roy, S. Mondal, S. Ghosh, and S. Jengathe, Russ. J. Phys. Chem. A 92, 2606 (2018). https://doi.org/10.1134/S0036024418130253
- S. Chauhan, L. Pathania, and M. S. Chauhan, J. Mol. Liq. 221, 755 (2016). https://doi.org/10.1016/j.molliq.2016.06.025
- 49. P. V. Tekade, B. U. Tale, S. D. Bajaj, and N. Authankar, Russ. J. Phys.Chem. A 92, 2488 (2018). https://doi.org/10.1134/S0036024418120415