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Simple Summary: The clinical success of cancer immunotherapy targeting immune checkpoints (e.g.,
PD-1, CTLA-4) has ushered in a new era of cancer therapeutics aimed at promoting antitumor immu-
nity in hopes of offering durable clinical responses for patients with advanced, metastatic cancer. This
success has also reinvigorated interest in developing tumor model systems that recapitulate key fea-
tures of antitumor immune responses to complement existing in vivo tumor models. Patient-derived
tumor models have emerged in recent years to facilitate study of tumor–immune dynamics. Microflu-
idic technology has enabled development of microphysiologic systems (MPSs) for the evaluation of
the tumor microenvironment, which have shown early promise in studying tumor–immune dynam-
ics. Further development of microfluidic-based “tumor-on-a-chip” MPSs to study tumor–immune
interactions may overcome several key challenges currently facing tumor immunology.

Abstract: Recent advances in cancer immunotherapy have led a paradigm shift in the treatment
of multiple malignancies with renewed focus on the host immune system and tumor–immune
dynamics. However, intrinsic and acquired resistance to immunotherapy limits patient benefits and
wider application. Investigations into the mechanisms of response and resistance to immunotherapy
have demonstrated key tumor-intrinsic and tumor-extrinsic factors. Studying complex interactions
with multiple cell types is necessary to understand the mechanisms of response and resistance
to cancer therapies. The lack of model systems that faithfully recapitulate key features of the
tumor microenvironment (TME) remains a challenge for cancer researchers. Here, we review recent
advances in TME models focusing on the use of microfluidic technology to study and model the
TME, including the application of microfluidic technologies to study tumor–immune dynamics and
response to cancer therapeutics. We also discuss the limitations of current systems and suggest future
directions to utilize this technology to its highest potential.
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1. Introduction

“The field of cancer research has largely been guided by a reductionist focus on
cancer cells and the genes within them—a focus that has produced an extraordi-
nary body of knowledge. Looking forward in time, we believe that important
new inroads will come from regarding tumors as complex tissues in which mu-
tant cancer cells have conscripted and subverted normal cell types to serve as
active collaborators in their neoplastic agenda. The interactions between the ge-
netically altered malignant cells and these supporting coconspirators will prove
critical to understanding cancer pathogenesis and to the development of novel,
effective therapies”.
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Hanahan and Weinberg, Cell 2000 [1]

Tumorigenesis is a multistep progress driven by acquired (and, in some instances,
inherited) genetic alterations enabling the transformation of normal human cells into tu-
morigenic and, ultimately, malignant cells. During this process, tumor cells acquire several
hallmarks of cancer, including limitless proliferative potential, immortalization, resistance
to cell senescence and apoptosis, escape of cell-cycle checkpoints, sustained angiogenesis,
and adoption of an invasive and metastatic phenotype, as detailed by Hanahan and Wein-
berg in 2000 [1] and 2011 [2]. However, tumors are more than cancer cells; they constantly
interact with normal cells, such as fibroblasts, inflammatory cells, and cells forming vascu-
lature or responding to infection and injury, to create the “tumor microenvironment” that
leads to the acquisition of hallmark callabilities [3]. The immune system has dual roles in
cancer pathogenesis and can be co-opted by tumors to promote tumor growth [4], whereas
it also has the potential to restrict tumor growth [5], thereby providing long-term, durable
disease control.

Over the past two decades, discoveries of genomic characterization in multiple tumor
types have not only advanced our basic understanding of tumor initiation and progression,
but also greatly influenced cancer management by developing new therapies targeting
oncogenic driver mutations, chromosomal rearrangements, or specific pathways affected
by genetic lesions [2,6]. For example, identification of the Bcr–Abl fusion in chronic myeloid
leukemia (CML) led to the development of imatinib, the first targeted cancer therapeutic,
and marked the beginning of the targeted therapy era [7,8]. As with the advance in genome
sequencing technology and comprehensive collaborative efforts across many academic
medical centers, many driver mutations have been identified and prompted the develop-
ment of specific inhibitors or antibodies based on these discoveries, including epidermal
growth factor receptor (EGFR) inhibitors targeting specific driver mutations in EGFR in
lung cancer [9], trastuzumab for Her2-positive breast cancer [10], and BRAF inhibitors for
BRAF-mutant melanoma [11], which now have Food and Drug Administration (FDA)-
approved small-molecule inhibitors as first-line therapies. Targeted therapies such as PARP
inhibitors [12], CDK4/6 inhibitors [13], mTOR inhibitors [14], and VEGF inhibitors [15]
have also been used to target specific pathways involved in cancer growth and metastasis.
Additionally, targeting lineage-specific, non-oncogene vulnerabilities [16], such as anti-
CD20 monoclonal antibodies for some types of lymphoma and leukemia [17] and Bruton’s
tyrosine kinase (BTK) inhibitors and PI3Kδ inhibitors in chronic lymphocytic leukemia
(CLL) [18,19], has demonstrated clinical activity in certain leukemias and lymphomas.

Despite the promising results of targeted therapies in certain types of cancer, less
than 10% of cancer patients have targetable driver mutations [20]. Furthermore, despite
initial high clinical response rates, therapeutic resistance remains common [21]. Acquired
resistance to treatment with anticancer drugs can be caused by a variety of intra-tumoral
factors, such as drug inactivation, drug target alteration, drug efflux, DNA damage repair,
insensitivity to drug-induced cell death, epithelial–mesenchymal transition, and tumor cell
heterogeneity [21,22]. For example, while suppressing BRAF signaling in BRAF (V600E/K)
mutant melanoma cells is effective, multiple resistance mechanisms have been reported
to drive MAPK pathway reactivation [23]. A deep understanding of the mechanisms of
anticancer drug resistance has implications of how to circumvent this resistance, such as
combination therapy [24] and synthetic lethality strategy [25]. In the case of resistance
to BRAF inhibitor discussed above, IGF-1R/PI3K signaling was enhanced in resistant
melanomas, and combined treatment with IGF-1R/PI3K and MEK inhibitors was tested
to induce death of those resistant cells [23]. This gave the rational to explore BRAF/MEK
inhibitor (BRAFi/MEKi) combinations, and three such therapies have been approved by
FDA [26]. Noteworthily, as an alternative resistance mechanism, cancer cells recruit other
cell types (e.g., cancer-associated fibroblast cells, tumor-associated macrophages) to the
TME which can promote therapeutic resistance [27–32]. Thus, there are multiple tumor-
intrinsic and tumor-extrinsic factors that influence response and resistance to molecular



Cancers 2021, 13, 6052 3 of 26

targeted therapies. Elucidating the mechanisms of drug resistance is expected to facilitate
development of new anticancer strategies and overcome resistance [2].

2. Cancer Immunotherapy

Over the past decade, cancer immunotherapy has revolutionized the treatment of can-
cer with the approval of monoclonal antibodies targeting coinhibitory immune checkpoints,
CTLA-4 and PD-1/PD-L1 [26]. Immune checkpoint blockade (ICB) has proven efficacy in
several types of cancer [33–35]. For example, 40–45% patients with metastatic melanoma
respond to single-agent PD1 blockade [36], and 50% benefit from combination immunother-
apy [37]. Notably, durable responses have been found in more than 70% of responding
patients [36]. Additionally, early-phase clinical trials of several anti-PD-(L)1/BRAFi/MEKi
triplet therapy combinations have shown response rates greater than 70% [26].

Despite the great success of ICB in melanoma and other cancers, most patients experi-
ence intrinsic or acquired resistance. To overcome immune resistance, numerous clinical
trials are already undergoing to evaluate novel immune modulatory agents alone or in
combination with anti-PD-1/PD-L1 therapies [35,38–40] However, to date, most of these
approaches have failed to translate into meaningful clinical benefit compared to standard
ICB [41]. Given these challenges, there has been renewed interest in the development
of preclinical models to study human tumor immunity to assess cancer immunotherapy
combinations effectively and efficiently. In parallel, more sophisticated preclinical tumor
models could also help deprioritize ineffective strategies earlier and permit greater focus
on more promising approaches. Additionally, establishing such a clinically relevant model
is expected to advance our understanding of other tumor-extrinsic components in the TME
that affect immune responses, as well as study mechanisms of response and resistance to
ICB and nominate targets for next-generation cancer therapeutics [35,38].

3. Modeling the Tumor Microenvironment

“All models are wrong, but some are useful”.

George E.P. Box (British statistician)

Complex cellular interactions in the TME influence response and resistance to cancer
therapies, including ICB [42]. Developing more sophisticated and clinically relevant TME
models can not only provide a reliable approach to evaluate the efficacy of novel therapeutic
regiments, but also advance our understanding of the interaction between tumor cells
and the TME, which in turn will further promote the identification of effective anticancer
strategies. Along with the development of bioengineering and animal models, multiple
complicated in vivo, 2D, and 3D cancer models have been developed (Table 1).

Table 1. TME models.

Type Models Material Source Applications Advantages Disadvantages Reference

In vivo murine models

Syngeneic tumor models

-Immune-competent mice:
C57BL/6, BALB/c, FVB, etc.

-Transplantable cells: B16, 4T1,
CT26, etc.

-Tumor formation
and progression

-Evaluate antitumor
immune response

-Have physiologically relevant
tumor microenvironment

-Easy to manipulate

-Variability of phenotype
because of the site

of engraftment
-Lack of heterogeneity

[43–47]

Genetically engineered
mouse models (GEMM)

-Immune-competent mice:
C57BL/6, etc.

-Autochthonous
tumor development
-Evaluate antitumor

immune response
-Modeling immune-related

adverse events (irAEs)

-Have naïve TME
-Tumor initiation and

progression driven by relevant
genetic alterations

-Variability in tumor
penetrance and latency

-Low immunogenicity due to
defined alterations

[48–50]

Humanized mouse -Immune-deficient mice: SCID,
NOD, NSG, etc. -Evaluate antitumor therapies

-Reproduce genomic
heterogeneity of human disease

-Have reconstituted human
immune system

-Require autologous immune
system reconstitution

-Low rates and duration of
immune reconstitution

[45,51–53]

2D Coculture

-Tumor cells
-TME components

(macrophages, dendritic cells,
fibroblast cells, etc.)

-Study the interaction between
tumor and immune cells

(cytokine secretion, tumor
killing, etc.)

-Easy to manipulate
-Can be used in

high-throughput study

-Lack of native immune and
stromal components

-Limited reflection in tumor
morphological phenotype

[54,55]
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Table 1. Cont.

Type Models Material Source Applications Advantages Disadvantages Reference

3D

Spheroids

Coculture: cell lines, mouse- or
patient-derived tissues, and

other TME components
(macrophages, T cells, etc.)

-Study the interaction between
tumor and immune cells

-Evaluate antitumor
immune response

-Easy to manipulate
-Can reflect genetic alterations

and keep morphological
phenotype of original tumor

-Lack of native immune and
stromal components [56,57]

Microfluidic devices: cell lines,
mouse- or

patient-derived tissues

-Study the interaction between
tumor and immune cells
-Evaluate the efficacy of

therapeutic combinations
-Profile secreted cytokines

-Require limited material (cells,
media, reagents, etc.)

-Can reflect genetic alterations
and keep morphological

phenotype of original tumor
-Preserve immune cell

population in TME

-Size limitation
-Require microfluidic devices

-Only have native
tumor-infiltrating immune cells
-Cannot model T-cell trafficking

[58–60]

Organoids

Coculture: mouse- or
patient-derived tissues and

other TME components
(macrophages, dendritic

cells, etc.)

-Evaluate antitumor
immune response

-Assessment of tumor
organoid killing

-Easy to enrich and expand
tumor organoids

-Can reflect genetic alterations
and keep morphological

phenotype of original tumor

-Lack of native immune and
stromal components [61–63]

ALI (Air-Liquid Interface)
culture: mouse or

patient-derived tissues

-Study the interaction between
tumor and immune cells

-Evaluate antitumor
immune response

-Assessment of tumor
organoid killing

-Can reflect genetic alterations
and keep morphological

phenotype of original tumor
-Preserve multiple immune
cells and fibroblasts in TME

-Only have native
tumor-infiltrating immune cells
-Cannot model T-cell trafficking

[61,62,64]

3.1. Tumor Heterogeneity and Composition of the TME

Tumors are formed and developed in the TME, which contains not only tumors cells
but also stromal and immune cells [65]. Tumor initiation and progression are influenced by
both inherited or acquired mutations within a tumor and the interaction with the multiple
components in TME around a tumor, including cells, signaling factors, and supportive
structural molecules. Notably, tumor heterogeneity exists between different patients,
as well as within different lesions from the same patient, and in different regions of a
single tumor. Such heterogeneity is also observed within the immune and stromal elements
present in the TME [66]. More importantly, such heterogeneity is dynamic over time [67].

The tumor microenvironment is a highly heterogeneous mix of cellular and noncel-
lular components, including fibroblasts, the extracellular matrix (ECM), mesenchymal
stroma/stem cells (MSCs), vasculature, smooth muscle cells, immune cells, nerves, and sig-
naling factors. In the context of TME, the complexity and diversity of TME and its influence
on response to therapy have been analyzed along with the development of technologies,
such as single-cell RNA sequencing, mass cytometry, and multiparametric imaging [42].
Integrating these moderate/high-resolution TME data can estimate the abundance of
tumor-infiltrating immune and stromal cells and reveal the heterogeneity in immuno-
logical composition and distribution within tumors [42]. On the basis of immunological
composition and status [67–69], Binnewies et al. previously described three types of TME,
consisting of infiltrated–excluded, infiltrated–inflamed, and infiltrated–tertiary lymphoid
structures (TLS) [42]. Infiltrated–excluded TME is characterized by the exclusion of cyto-
toxic T cells (CTLs) from the tumor core and localization of CTLs to the tumor periphery,
in contact with tumor-associated macrophages or ‘stuck’ in fibrotic nests. Infiltrated–
inflamed TME is characterized by an abundance of PD-L1 expression on tumor and myeloid
cells and highly activated CTLs defined by expression of Granzyme B, IFNγ, and PD-1.
Infiltrated–TLS TME contains TLSs, with immunological cell composition like that in lymph
nodes, including B cells, dendritic cells, and Treg cells. Clinical data suggested that CTLs,
conventional dendritic cells (cDC), natural killer (NK) cells, and Th1 helper T cells play
an antitumor role among the infiltrating lymphocytes, while other populations such as
immunosuppressive tumor-associated macrophages (TAMs), regulatory T cells (Tregs),
and myeloid-derived suppressor cells can dampen the antitumor immune response and
play a pro-tumoral role [70]. More recently, by analyzing the transcriptomic information of
more than 10,000 cancer patients across 20 different cancers, Bagaev et al. identified four
TME subtypes—immune-enriched and fibrotic (IE/F), immune-enriched and nonfibrotic
(IE), fibrotic (F), and immune-depleted (D) [71]. The IE/F subtype is immune-inflamed and
was characterized by CAF activation and upregulated angiogenesis-associated functional
gene expression signatures (Fges). The IE subtype is highly infiltrated and shows increased
T-cell activity. Both F and D subtypes lack or have minimal lymphocyte infiltration. The D
subtype is similar to the previously described immune-desert type, having the highest
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percentage of tumor cells; the F subtype shows increased expression level of Fges and
number of CAFs. Further investigation found that these TME subtypes are correlated with
response to immunotherapy, where patients having a favorable immune microenvironment
tend to benefit most from immunotherapy. The patients having the IE TME subtype have
the most favorable overall survival (OS) and progression-free survival (PFS), whereas the F
subtype shows the worst OS [71].

The generation of antitumor immunity is a cyclic process containing seven steps [72].
Briefly, cancer antigens are released from cell-dead cancer cells and taken by DCs, before
being presented in the lymph nodes. This leads to T-cell priming and activation in the
lymph nodes. Next, T cells migrate to tumor tissue and infiltrate the tumor. Thereafter,
T cells recognize cancer cells and mediate killing. Each step in this cycle can be boosted
by immune-stimulatory factors resulting in an enhanced T-cell response, while they can
also be inhibited by immune-inhibitory factors leading to immunosuppression. As the net-
works between immune–immune and immune–tumor interactions become better defined,
it will become possible to characterize different classes of TME and determine which cells,
molecules, and pathways are critical for enhancing antitumor immunity, and in what tumor
contexts. In the meantime, while we are modeling the TME, it is necessary to consider the
complexity and heterogeneity of tumor cells and the TME.

3.2. In Vivo Models

Murine models can provide an intact innate and adaptive immune system allowing
tumors from syngeneic transplantation or genetical engineering to be developed under
the influence of the TME [73]. Syngeneic implantable mouse tumor models remain the
“gold standard” for studying the TME and evaluating immunotherapies. By inoculating
spontaneous, carcinogen-induced, or transgenic tumor cell lines into inbred strains such
as C57BL/6, BALB/c, and FVB mice, syngeneic mice develop tumors that interact with
the host immune system and become immune-infiltrated [73]. Genetically engineered
mouse models (GEMMs) utilize tissue-specific expression of oncogenes and/or tissue-
specific deletion of tumor suppressors to drive autochthonous tumor growth, providing
a native microenvironment and relevant genetic alterations. However, they may have
variability in penetrance and latency, as well as low immunogenicity, because of defined
genomic alterations. Despite the limitations of these models, their wide applications have
provided crucial insights into tumorigenesis, drug resistance, tumor microenvironment
reprograming, and novel combinatory immune therapy evaluation [47,74,75]. Given ob-
served differences between human and murine tumors [76,77], researchers have developed
humanized mouse models to reconstruct the human tumor–immune system in immun-
odeficient host mice with matched human tumor cells and immune cells [73,78]. These
humanized mice provide a promising preclinical model to study tumor–immune cell inter-
actions and evaluate the immunotherapeutic response. However, they require autologous
immune reconstitution and have a relatively low duration of immune reconstitution, limit-
ing their widespread use. Together, although these models are not perfect, they have led to
huge progress in evaluating therapeutic efficacy in implanted human tumor tissue with a
partially reconstituted human immune repertoire.

3.3. 2D versus 3D Culture

Cell culture is a widely used research model to study cell biology, mechanisms of
diseases, and drug sensitivity. Culture of cancer cell lines can be thought of in two broad
categories—2D culture and 3D culture. In this section, we describe them individually and
compare 2D versus 3D approaches to study tumor intrinsic biology and tumor–immune
dynamics, as well as their applications in modeling the tumor microenvironment.

3.3.1. 2D Culture

Traditional 2D culture systems that rely on immortalized cell lines have been widely
utilized by cancer biologists to study tumor biology and test anticancer therapies given
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their low-cost and high-throughput capability, especially studying drugs whose mech-
anism of action is mostly tumor-specific. However, when isolating cells from a tumor
mass and then culturing them in 2D conditions (plastic flasks or dishes), cells lose cell–cell
and cell–extracellular environment interactions, which are critical for their physiological
functions, such as cell differentiation, gene expression, and response to stimulation [79].
Furthermore, as a result of 2D culturing, the cell morphology and cell polarity change [80].
Another shortcoming of 2D culture systems is the lack of complexity and heterogeneity
of the tumor microenvironment, making it a less reliable model system to study complex
cancer biology and test preclinical drugs [81]. In particular, to further improve the effi-
cacy of cancer immunotherapy, there is an increasing need to use methods to model the
TME to further drive immunotherapeutic drug development and rational combination
immunotherapy [82–84]. Because of the disadvantages of 2D systems, there are some “2D
culture variant systems” that have been demonstrated. For example, several groups have
described the method of keeping cell polarity in 2D culture systems by culturing cancer
cells on a model ECM substrate [85,86] or via custom micropatterned substrates such as
micropillars [87].

3.3.2. 3D Culture

Three-dimensional (3D) tumor models are increasingly applied to more faithfully
recapitulate biology observed in vivo [88]. Central to the development of 3D tumor models
are both 3D culture devices and biological materials (“biomaterials”) to serve as the scaffold
in which tumor cells, spheroids, or organoids live and grow. While biomaterials can be
natural or artificially made [89], most 3D tumor models use natural biomaterials purified
from animals or plants that can be enzymatically digested by tumor and/or stromal
cells. The selection of the biomaterial to be used as a scaffold for 3D tumor modeling
is far from trivial as some are biologically active (e.g., ECM components driving cancer
growth [89]) and can offer specific advantages, such as sustaining drug release or generating
bone-like structures [90,91]. Commonly used natural biomaterials in 3D tumor models
include collagen, gelatin, Matrigel, hydrogel, chitosan, alginate, silk, poly-ε-caprolactone
(PCL), and hyaluronic acid [89,92,93]. These biomaterials can be used in alone or in
combination and applied to culture cells or spheroids. Beyond that, some studies have also
reported engineering biomaterials to have specific functions. For example, gelatin hydrogel
microspheres (GM) have been used as a source to continually release drugs [90,94]; PCL
scaffolds have been engineered to have bone-like architecture and mineralization [91,95].

By integrating 3D culture systems and biomaterials, multiple 3D culture models, in-
cluding spheroids, organoids, and 3D bioprinting, have been developed [81,96,97] and ap-
plied in various types of cancers, such as melanoma [59,98], breast [99–101], prostate [102],
bladder [103], pancreas [104], and head and neck [105]. Multicellular tumor spheroids
(MTSs) comprise multiple cancer cells that self-assemble into 3D spherical structures.
Thus, they can capture cellular interactions in a 3D context and can maintain certain cell
morphology, as well as mimic metabolic and proliferation gradients similar to in vivo
conditions. MTSs are usually generated by culturing cells in low-attachment plates, hang-
ing droplets, and scaffolds [96,106]. Depending on the cell sources they are created from,
such as cell lines, multicellular mixtures, and patient-derived tissues, different models
have been demonstrated [107]. Cancer cell line-derived MTSs are commonly used for
convenience and ease of generation, as well as for variety of application, including drug
screening and evaluation of drug penetrance [97]. As cancer cell line-derived MTSs lack
immune cells, a variety of coculture systems have been developed (discussed further in
Section 3.3.5). Together, with more physiological and clinical relevance, there is increasing
interest in tissue-related spheroids for providing a robust approach in pursuing precision
and patient-specific therapy.

Organoids are 3D cell clusters generally created from stem or progenitor cells and em-
bedded in an extracellular matrix to spontaneously form organ-like or tissue-like structures
with cell types typically present in original tissue [85,108,109]. They can be expanded for
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long-term culture, preserve histological and genetic features of the native tissue of origin,
and are amenable to cryopreservation to facilitate long-term, iterative experimentation.
As organoids are also amenable to genetic manipulation, organoid-based 3D tumor mod-
els have been widely applied in many areas, including cancer research [110]. Currently,
organoids models have been generated using a variety of different normal and tumor
tissues, such as lung [111], breast [112], colon [113], and liver [114]. Notably, organoids
generated from tumor specimens grown in air–liquid interface (ALI) culture systems can
preserve the stromal and immune components of the TME [107]. These patient-derived
organoids (PDO) open new avenues for studying tumor–immune dynamics and cancer
therapeutics. They also hold promise for wider application in combination with other tech-
nologies, such as gene editing and microfluidic devices. However, it is worth considering
the impact of organoid media on cell differentiation, as well as some other factors that will
affect drug response, as it has been reported that PDO-based drug efficacy evaluations fail
to present the same response in the clinic [115].

3D bioprinting is an innovative computer-aided engineering technique to generate or-
ganized 3D tissue structures comprising multiple cell types in physiologic 3D models. It can
effectively recapitulate key components of the TME and is amenable to high-throughput
screening or testing drug efficacy in various cancer models [116,117]. However, 3D bio-
printing studies are currently limited by challenges studying autologous immune and
stromal cells mixed with tumor cells in favor of cell-line based reconstitution studies in
which transformed immune and tumor cells are cocultured.

3.3.3. Comparison between 2D and 3D

3D cell cultures differ from traditional 2D cultures in terms of cell features, cell–cell
interactions, cellular mechanics, and nutrient gradients. Depending on the type of culture
chosen, cell behavior differs in many aspects, as reviewed elsewhere [118]. Here, we discuss
cell growth, differentiation, gene expression, and drug sensitivity.

Several studies have compared the effects of 2D and 3D culture methods on cell growth,
gene expression, and differentiation. Chitcholtan et al. showed that tumor cells lines in
2D culture have a higher proliferation rate compared to 3D culture with a reconstituted
basement membrane (rBM). However, cells in 3D cultures increase the expression of β4
and β1 integrins, indicating enhanced polarization and differentiation. Lee et al. found
that spheroids generated from oral cancer cell lines have a high proportion of cancer-
initiating cells, which is probably due to 3D culture-induced EMT with the support of the
downregulation of E-cadherin and upregulation of fibronectin, Sox2, Oct4, and Nanog.
Moreover, CD133 and ALDH, two putative stem-cell markers were observed to be increased
in 3D culture conditions [119].

Several studies have also reported that tumor cells are less sensitive to anticancer
drug treatments in 3D compared to 2D culture. For example, a recent study reported
that aggregated spheroids derived from breast cancer cell lines can prevent paclitaxel-
caused apoptosis [120]. Similar findings were observed with prostate cancer lines exposed
to antineoplastic drugs paclitaxel and docetaxel in 2D and 3D culture conditions [121].
Another separate study reported that an ex vivo 3D Ewing sarcoma model cultured in
electrospun PCL scaffolds was more resistant to drug treatments in comparation with 2D
culture and had significant differential gene expression enriched in insulin-like growth
factor-1 receptor and rapamycin pathways [95]. Given that cells cultured in 3D have a
gradient from the surface to the center of a spheroid or organoid in terms of attaining
ingredients from the cultural media, whereas cells in 2D have equal access to nutrients and
drug, cells, especially in the center of the 3D setting, tend to be less sensitive to drugs due
to this gradient. Notably, this difference in implied geometry between 2D and 3D cultures
is an important factor to understand physiological response [118].

In this regard, 3D culture offers a more physiologically relevant environment to evalu-
ate drug efficacy, as well as an ideal system to screen potential drug targets. For example,
Takahashi et al. performed 3D culture-based CRISPR to identify NRF2 as a target to induce
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ferroptosis death in lung tumor spheroids cells [122]. However, it must be emphasized
that the platform of choice is often dictated by the specific process of interest, and that
model-specific features may influence the findings, necessitating cross-model validation.

3.3.4. Evaluating Tumor–Immune Interactions in 2D Culture Systems

Given the complexity of tumor–immune cell interactions in vivo, several commonly
used reductionist systems have been reported to study these interactions via 2D coculture
system. Coculture systems with defined TCR-specific T cells recognizing well-characterized
antigens are powerful tools, such as the murine transgenic OT-1 mice designed to recognize
the SIINFEKL peptide derived from the xenoantigen ovalbumin (OVA) expressed by tumor
cells [55]. For in vitro studies, CD8 T cells isolated from spleens or lymph nodes from OT-1
T-cell receptor (TCR) transgenic mice are cocultured with syngeneic tumor cells stably
expressing OVA antigen. Since OT-1 cells have a TCR that is specific for OVA, this system
has been widely used to study T-cell biology, tumor sensitivity, and screening targets
of sensitizing T cell-mediated attack [55]. Additionally, a variant coculture system has
been reported by several groups via in vitro transduction of a TCR into primary mice or
human T cells and paired antigens to tumor compartments [54,57,123]. Other studies have
described coculture systems using in vitro CD8 expanded T cells with matched tumor cells
from both mice and humans. For example, Gestermann et al. demonstrated a human
autologous melanoma–T cell coculture and found that LAG3 and PD1 plus LAG3 inhibition
can promote antitumor immunity [56].

3.3.5. Evaluating Tumor–Immune Interactions in 3D Culture Systems

With the increasing development of tissue culture technology, 3D culture models have
been used to advance many fields of cancer immunology research. Given the homogeneity
of cell line-based spheroids, researchers have tried to coculture spheroids and immune com-
ponents derived from matched tumors to study tumor–immune interactions [124]. Studies
has been reported to coculture tumor spheroids with T cells [124], macrophages [105],
stromal fibroblasts [125], and NK cells [126]. As the study of autologous immune cells is
more biologically relevant and may offer greater insights compared to 3D models reliant on
a heterotypic culture of unrelated cell lines, evaluation of patient-derived tumor spheroids
with autologous immune cell types has gained interest. It has been reported that NK
and T cells are able to infiltrate into colorectal tumor spheroids and affect their viabilities,
accompanying the upregulation of HLA-E, an inhibitor ligand of NKG2A expressed by NK
and CD8 T cells [127]. Recently, Blasio et al. reported a human organotypic skin melanoma
culture (OMC) system, leveraging the decellularized dermis as a scaffold to coculture
keratinocytes, fibroblasts, and immune cells with melanoma cells. By reconstructing the
TME with multiple cell components, tumor growth was observed; supportively, the charac-
terization of the conversion of cDC2s into CD14+ DCs indicated an in immunosuppressive
phenotype [128]. Another group utilized a coculture system of monocytes with autol-
ogous spheroids from head and neck squamous cell carcinoma (HNSCC) or its benign
control to predict prognosis by analyzing the coculture secretion [129]. They found that
secreted IL-6 in a coculture of monocytes and benign spheroids can predict recurrence and
prognosis, whereas, in a coculture with monocytes and malignant spheroids, it predicts
recurrence; on the other hand, another secretion, monocyte chemoattractant protein (MCP)-
1, did not predict prognosis. Moreover, 3D spheroid culture can be integrated with other
technologies to extend its application. For example, to identify potential targets to enhance
antibody-dependent cell-mediated cytotoxicity (ADCC), researchers incorporated a 3D
tumor spheroid microarray in the development of a high-throughput screening system
to study natural killer cell-mediated cytotoxicity [130]. Briefly, through 3D coculture of
NK92-CD16 cells with pancreatic (MiaPaCa-2) and breast cancer cell lines (MCF-7 and
MDA-MB-231) in a 330 micropillar–microwell sandwich platform, cancer cells showed a
dose response to paclitaxel and antibodies. An additional approach of using spheroids to
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advance cancer immunotherapy has been demonstrated by incorporation spheroids with
microfluidic devices, as described in more detail in Section 5.

Although the lack of immune components in epithelial-only PDOs limits their appli-
cation in functionally modeling the ICB response, multiple reports have demonstrated the
potential use of organoid technology in the study of cancer immunotherapy, either by cocul-
turing organoids with immune cells or using the ALI method. Dijkstra et al. reported that
cocultures of autologous tumor organoids and paired peripheral blood lymphocytes can be
leveraged to enrich tumor-reactive T cells [62]. Further analysis indicated that these T cells
can be further used to evaluate the efficiency of killing of matched tumor organoids, provid-
ing an approach to assess the sensitivity of tumor cells in response to T-cell-mediated killing.
Another study demonstrated the construction of complex organotypic models via coculture
of primary pancreatic cancer organoids with stromal and immune components of the
tumor microenvironment, which in this context can successfully induce cancer-associated
fibroblast activation and tumor-dependent lymphocyte infiltration [104]. Additionally,
several similar organoid models generated from melanoma, chondroma, glioblastoma,
and colorectal carcinoma have been developed to study responses to immune checkpoint
blockade via coculture systems [63,131–133]. In another aspect, Neal et al. validated ALI
as a method of propagating PDOs or mouse tumors in syngeneic immunocompetent hosts
to preserve immune cells (T cells, B cells, NK, and macrophages) infiltrated in tissue
and the TCR spectrum. They further demonstrated that human and murine PDOs can
be successfully used to model the response to ICB by observing the activation of tumor
antigen-specific TILs and tumor killing [64].

4. Microfluidic Technology

Microfluidics is a technology that allows one to manipulate tiny (10−9 to 10−18 L)
amounts of fluids to flow in channels of hundreds of millimeters in size [134–137]. As the
cell volume-to-extracellular fluid volume ratio is more than one for tumor cells and im-
mune cells within the TME (i.e., smaller volumes of extracellular fluid), the size scale of
microfluidic devices makes them very suitable for biological application to study and
model the TME [135]. Another feature of microfluidic technology is its low Reynolds
number (Re), which refers to the ratio of inertial to viscous force on a fluid [135]. With a low
Re value, the fluid flow in microfluidic systems is laminar, meaning that mass is transferred
mainly through diffusion. This makes it possible to generate a concentration gradient of
soluble factors temporally and spatially in a microfluidic system. Microfluidic devices are
also called “organ chips” or “tissue chips”, using plastic material or other optically clear
materials to form perfused hollow microchannels, which can mimic vasculature [83,138].
While polydimethylsiloxane (PDMS) is often used to make microfluidic devices, several
prototypes of rigid thermoplastic polymers (e.g., polycarbonate, cyclic olefin copolymer)
have been validated to overcome the key limitations of PDMS, such as the adsorption of
hydrophobic molecules and evaporation [139–141]. Additionally, as with the development
of microfluidic technology and the enthusiasm to optimize this system to better mimic
physiological conditions, many complex microfluidic devices have been developed for
specific functions [142–147]. Overall, in the past decade, microfluidic technology has been
greatly developed, and numerous advantages have extended their applications in a variety
of fields, as discussed in detail in the next section.

5. Modeling Cancer in Microfluidic Chips

“A key consideration in the development of new microfluidic methods in aca-
demic research should be whether the use of microfluidics introduces truly
enabling functionality compared to current methods. When a potential applica-
tion passes this test, the chances of contributing useful technology to the field are
substantially higher”.

Sackmann et al. Nature 2014 [134]
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By integrating microfluidic technology with 3D culture systems, researchers can con-
trol matrix structure, matrix stiffness, cellular composition and ratio, flow rates, and other
features. Those devices can also be combined with or applied to high-resolution and
real-time imaging to explore various preclinical analysis in a specific organ or disease
context [83,138]. Numerous kinds of microfluidic devices have been developed to capture
structural and functional properties of human organs or organ-specific disease states. Be-
cause of these advantages, microfluidic devices are increasingly used not only to study
cellular processes essential for cancer growth and progression, but also for preclinical
drug testing using clinically relevant physiologic conditions [116]. As such, microfluidic
device-based cancer models may pave the way for developing platforms for functional
precision cancer medicine to perform drug sensitivity testing using “living biopsies” from
cancer patients to inform therapeutic decisions. Microfluidic technology has been ap-
plied to the study of numerous aspects of cancer biology and cancer immunotherapy
(Figure 1 and Table 2), including tumor growth, cancer cell extravasation, angiogenesis,
immunotherapeutic response, and drug screening, as discussed below.
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Table 2. Microfluidic technology in cancer modeling.

Applications Models Experiment Design Microfluidic Features Reference

Cancer growth and
progression

Tumor growth
Coculture cancer cells with

fibroblasts With fibronectin-rich matrix [99]

Culture cancer cells with/without
treatment of fibrin

A bifurcated microfluidic device
allowing comparison between two

different cell environments
[148]

Tumor migration
and extravasation

Treat cancer cells with different
secreted factors Use a monolayer of endothelial cells to

mimic microvasculature
[149,150]

Coculture cancer cells with fibroblast [151]

Angiogenesis Test the effects of multiple angiogenic
factors on angiogenesis

Use biomimetic model to reconstitute
angiogenic sprouting in

microfluidic device
[152,153]

Cancer metastasis
Treat cancer cells with

proinflammatory cytokine (e.g., IL-6)
Have lymph vessel–tissue–blood

vessel structure [154]

Treat cancer cells with
proinflammatory cytokine (e.g., TNFα)

Use a monolayer of endothelial cells to
mimic microvasculature [155]
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Table 2. Cont.

Applications Models Experiment Design Microfluidic Features Reference

TME and
cancer–immunity

cycle

TME modeling

Coculture tumor spheroids with other
TME components (e.g., CAF, stroma

cells, endothelial cells)
Culture spheroids [156–158]

Vascularized system modeling Contain interconnected microchannels
to model a highly vascularized system [159]

ECM and interstitial flow modeling Modeling biophysical features, such as
ECM and interstitial flow in TME [160]

Oxygen concentration modeling

Include three parallel connected tissue
chambers and an oxygen scavenger

channel to control
oxygen concentration

[161,162]

Study the interaction between tumor
and immune cells

Culture murine- and patient-derived
organotypic tumor spheroids

(MDOTSs/PDOTSs)
[60,138]

Immune cell migra-
tion/recruitment

Identify potential factors
(e.g., chemokine, cytokines) affecting

immune cell migration

Integrate microscopy technology with
microfluidic chips or use microfluidic

devices designed for co-culture
[98,103,163,164]

T lymphocyte
activation

Monitor T-cell activation by analyzing
CD69 expression

Use a chip containing microelectrodes
to get dielectrophoretic manipulation [165]

Monitor T-cell activation by analyzing
the binding of T cells to TNFα-treated
human umbilical vein endothelial cells

(HUVECs)

Adjustable shear stress [166]

Clinica- related
applications

Therapy assessment

Evaluate the efficacy of therapeutic
combinations Culture MDOTSs/PDOTSs [60,138]

Coculture cancer spheroids with
natural killer cells or

antibody–cytokine regimens

Use a monolayer of endothelial cells to
mimic microvasculature [167]

Disease and
therapeutic

response
monitoring

Analyze CTCs from patients to predict
prognosis and evaluate

progression-free survival and overall
survival of patients

Exploit antibody-coated magnetic
particles targeting EpCAM to detects

and quantify CTCs
[168–172]

Capture exosome to monitor
immunotherapeutic response

Employ immunomagnetic
beads/antibodies/chips to capture and

measure exosomal tumor markers
[173–175]

Study intra-tumoral heterogeneity in
microfluidic devices with scRNA-seq
and understand therapeutic evasion

Incorporate different scRNA-seq
techniques into microfluidic chips

(e.g., droplet microfluidics,
Microwell-seq microfluidics)

[176–178]

Monitor immune cell heterogeneity

Timelapse imaging microscopy-based
microfluidic platform [179]

Microfluidic devices integrating single-
cell barcoding chip (SCBC) or antibody

microarray (BOBarray)
[180–182]

Drug screening

Test drug toxicity with bio-printed
hepatic spheroids

Use hepatic spheroids as material
source to directly print liver tissue into

the microfluidic device
[183]

Evaluate the response of thyroid tissue
to radioiodine sensitivity/adjuvant

therapies in real time

Culture live-sliced human
thyroid tissue [184]

Provide dynamic and combinatorial
drug screening Culture pancreatic organoids [185]

Chemotherapeutic drug testing and
efficacy evaluation

Integration of microfluidics and
electrical sensing modality [186]

This table summarizes the applications of microfluidic devices in different cancer models. CTC, circulating tumor cell; EpCAM, epithelial
cellular adhesion molecule; scRNA-seq, single-cell RNA sequencing; CAF, cancer-associated fibroblast.
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5.1. Tumor Growth

One of the hallmark features of cancer cells is sustained proliferative signaling [2],
leading to uncontrolled cell growth. 3D microfluidic devices have been used to explore
interactions among different cell subtypes (e.g., cancer-associated fibroblasts, CAFs) and
factors (e.g., extracellular pH) in the TME that affect cancer cell proliferation. To inves-
tigate the effect of fibroblasts and ECM proteins on cancer cell growth and migration,
Lugo-Cintrón et al. cocultured breast cancer cells with fibroblasts in a microfluidic device.
They found that fibroblasts promoted cancer cell growth and induced more migration
by increasing the level of metalloproteinases (MMPs) in media [99]. To investigate the
effect of pH on tumor viability, Lam et al. employed a bifurcated microfluidic device
and compared cell proliferation capability between culturing MDA-MB-231 breast cancer
cells in media with and without fibrin, which can interact with acid-neutralizing calcium
carbonate (CaCO3) nanoparticles [148]. The authors found that nanoCaCO3 treatment
inhibited tumor cell growth, whereby the media pH was increased from 7.14 to 7.25 and
the intracellular pH was decreased from 7.6 to 7.05, suggesting that low pH promotes cell
proliferation. Using the same device, they also cocultured cancer cells and fibroblasts, fol-
lowed by treatment with nanoCaCO3, further confirming that nacoCaCO3 can specifically
inhibit the growth of tumor cells rather than surrounding fibroblasts. The nanoCaCO3
treatment buffered the pH within the normal physiological range and inhibited tumor cell
proliferation. Such a model allows studying tumor growth in a 3D culture environment,
as well as the effect of pH on tumor growth, which a 2D system cannot provide.

5.2. Tumor Migration and Extravasation

Cancer cell extravasation is the process whereby circulating tumor cells transmi-
grate through blood vessels to form deposits at secondary sites. Microfluidic modeling
has enabled evaluation of both tumor cell/endothelial cell migration and extravasation
of tumor cells from model endothelial-lined blood vessels. Compared to conventional
methods of studying cell migration (e.g., transwell assays and scratch assays), such a
microfluidic-based platform uses a monolayer of endothelial cells in the media channel to
mimic microvasculature, providing a more physiologically relevant microenvironment to
investigate cancer–vascular crosstalk and to identify factors involved in the regulation of
the migratory potential of tumor cells. By utilizing this technology, several secreted factors
have been reported to be involved in cancer extravasation by regulating cancer–vascular
crosstalk [149]. In particular, the authors established an organotypic microfluidic model
by coculturing breast cancer cells and endothelial cells derived from pluripotent stem
cells in a collagen–fibrinogen matrix and found that increased levels of secretion of IL-6,
IL-8, and MMP-3 were positively correlated with extravasation [149]. In a separate study,
Chen et al. developed a microfluidic device with a central gel region suspended with
human umbilical vein endothelial cells (HUVECs) and two side gel regions suspended
with normal human lung fibroblasts (NHLFs), with each gel region flanked by two media
channels. Using such a microfluidic device, the authors demonstrated that β1 integrin was
required for tumor cell to form stable protrusions and initiate migration [151]. A different
study from the same group, using microfluidic devices having a vasculature compartment
formed by HUVECs in fibrin gels, Chen et al. demonstrated enhanced melanoma cell
migration promoted by tumor cell-derived CXCL1 and by neutrophil-derived IL-8 [150].
Tumor-associated macrophages (TAMs) have been shown to promote tumor cell migra-
tion. When inflammatory breast cancer cells were treated with macrophage-conditioned
medium, they became more migratory. Further analysis showed that several macrophage-
derived chemoattractants (e.g., interleukins 6, 8, and 10) contributed to this metastatic
phenotype [187]. Underscoring the differences between experimental systems, a similar
study demonstrated a role for TAM-derived TNFα in promoting the migratory capability
of tumor cells [100].
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5.3. Angiogenesis

Angiogenesis is of particular importance for tumor growth. Multiple microfluidic-
based angiogenesis models have been developed to mimic the initiation of new vessel
formation in vitro [152]. One of these studies demonstrated reconstituting angiogenic
sprouting in a microfluidic device and how to apply this model to identify the effect of
potential angiogenic inhibitors on sprouting morphogenesis in vitro [152]. In particular,
using this model, the authors observed a series of key events of neo-vessel formation within
a 3D extracellular matrix. The authors further explored the role of angiogenesis inhibitors,
such as vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) inhibitor and
sphingosine-1-phosphate receptor (S1PR) inhibitor, trying to connect a specific stimulus to
a defined morphogenetic process. In addition, there is a model trying to integrate math-
ematical and computational methods within a microfluidic platform. This combination
represents a powerful way to test multiple experimental parameters on cell migration and
angiogenesis. Ayensa-Jimenez et al. utilized this approach to examine how cells responded
to VEGF gradients and how cell migration was affected by cell density and by the device
features such as width and length [153].

5.4. Cancer Metastasis

Metastasis is a complex process, during which a few cells from the primary tumor mi-
grate to a secondary organ after going through a series of sequential steps [188]. Metastasis
contributes to 90% of human cancer deaths [189]; thus, it is of importance to investigate
the mechanisms underlying this critical step in cancer progression. Emerging data have
reported multiple factors to be implicated in metastasis. For example, Cho et al. [154]
developed a three-channel microfluidic device having a lymph vessel–tissue–blood vessel
structure to study the effects of inflammatory cytokines in lymphatic metastasis and found
that IL-6 induces epithelial–mesenchymal transition (EMT) by mediating intercellular in-
teractions in the TME. A similar study utilized a two-channel system—one channel coated
with endothelial cells to mimic vasculature and the other containing breast cancer cells
embedded in Matrigel—and found that proinflammatory cytokine TNFα is necessary for
cancer metastasis [155]. In addition to secreted factors, tumor cell integrins, and ECM
components, immune cells have been reported to promote or inhibit cancer metastasis.
Kim et al. described the functions of macrophages and monocytes in regulating the forma-
tion of the cancer metastatic niche, identifying a novel role for monocyte-derived matrix
metalloproteinase 9 in cancer cell extravasation [190].

5.5. Modeling the TME

Tumor models that faithfully recapitulate key components of the TME may facilitate
applications to predict sensitivity to cancer therapeutics, paving the way for personalized
or precision functional medicine strategies. Microfluidic devices are ideal for such ap-
plications, as multiple components in TME can be individually controlled. For instance,
Jeong et al. demonstrated a microfluidic chip allowing the coculture of tumor spheroids
with CAFs to monitor their reciprocal interaction, providing a platform to study the
crosstalk of tumor cells and CAFs [156]. Another similar approach has been adapted to
model tumor cell–stroma interactions [157], as well as the interaction between tumor and
endothelial cells [158]. Additionally, microfluidic devices have also been developed to
mimic other features of the TME. For example, Michna et al. described a new platform
containing interconnected microchannels to model a highly vascularized system [159].
Huang et al. discussed the approaches of modeling biophysical features, such as the ECM
and interstitial flow in TME [160], while other studies focused on developing microfluidic
chips to control oxygen concentration [161,162]. In another aspect, 3D culture technol-
ogy (e.g., spheroid, organoid) allows keeping the naïve TME components on devices,
providing more physiological relevance. One such approach is based on murine- and
patient-derived organotypic tumor spheroids (MDOTSs/PDOTSs), of which the cellular
compositions include not only tumors cell, but also lymphoid and myeloid populations and
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subpopulations, making it an ideal system to study the TME ex vivo [60,138]. Furthermore,
MDOTSs/PDOTSs have also been used to evaluate therapeutic response, as described in
Section 5.8 and elsewhere [60].

5.6. Immune Cell Migration/Recruitment

Modeling immune cell migration is vital to understand tumor–immune dynamic
interactions and immunotherapeutic response. By integrating microscopy technology, cell
migration modeled by microfluidic chips can be monitored in real time. Numerous studies
have employed microfluidic technology to explore the role of immune cell migration in
cancer development, as well as identify the potential factors affecting this process and
the effect of migration on the response to immunotherapy. One study demonstrated
the application of a microfluidic system containing lumen-based vascular component to
study neutrophil–endothelial interactions, revealing a key role of interleukin-8 (IL-8) in
promoting neutrophil chemotaxis and priming [163]. Recruited neutrophils increased the
local production of reactive oxygen species (ROS), which promoted increased cell adhesion
and upregulation of chemokine receptors.

On the other hand, cancer cells also play an important role in affecting immune cell mi-
gration, which is mostly through secretion of cytokines or chemokines. By coculturing hu-
man pancreatic adenocarcinoma cells and macrophages in a microfluidic device, one group
found that those tumor cells promote macrophage migration by secreting chemokines
IL-8 and C–C chemokine ligand 2 (CCL2). A similar study demonstrated that bladder
cancer cells inhibit antitumoral M1 macrophage polarization but promote pro-tumoral M2
macrophage polarization through lactate-mediated macrophage chemotaxis [103]. Another
study elucidated that chitinase 3-like 1 (CHI3L1), an enzymatically inactive mammalian
chitinase, interacts with the extracellular matrix of melanoma cells, increasing the secretion
of various cytokines, such as CCL2, and growth factors, such as vascular endothelial growth
factor A (VEGF-A) [98]. Therefore, the secretome influences immune cell recruitment to
the vascular endothelium, in turn affecting immunotherapeutic response.

5.7. T Lymphocyte Activation

An effective response to ICB involves effector CD8+ T function. Although multi-
ple assays have been employed to detect T-cell activation and effector T-cell function,
several studies have reported different levels of T-cell activation between 2D and 3D
models [191,192]. Thus, it is valuable to monitor T-cell activation within 3D environments
in real time under both native and stimulus conditions. Kirschbaum et al. described an
approach to activate T cells mediated by contact with anti-CD3/anti-CD28-presenting
microbeads, using a chip containing microelectrodes for dielectrophoretic manipulation;
this allowed the assembly of specific beads on cells, which could further induce T cells to
express CD69 after overnight cultivation [165]. Park et al. employed a microfluidic system
to monitor the interaction between leukocytes and endothelial cells and applied it to iden-
tify potential drugs that may modulate this interaction [166]. By controlling shear stress,
the authors developed a microfluidic environment where activated T cells were able to
bind to HUVECs pretreated with tumor necrosis factor-alpha (TNF-α). To confirm whether
this system could monitor T-cell activation, the authors cocultured autoreactive T cells
from patients with systemic lupus erythematosus (SLE) and activated HUVECs and found
higher binding ability in comparison with incubated with T cells from a person without
SLE. Next, the authors further investigated the role of immunosuppressors tacrolimus and
cyclosporin A in blocking the bindings of these autoreactive T cells to HUVECs.

5.8. Therapy Assessment

Despite the great success of cancer immunotherapy in recent years, long-term durable
responses are still observed in a minority of patients due to intrinsic and acquired resis-
tance. Rational combination therapy has shown promising results in many types of cancer
compared with monotherapy. As the number of combination therapies is ever increasing,
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there is an unmet need to develop a platform that can accurately predict the efficacy of
these therapies in the preclinical and clinical settings in a timely manner. 3D microfluidics
has been used to test immunotherapeutic response to ICB alone or in combination with
other regimen(s) using MDOTSs/PDOTSs [60,138]. To leverage this system to evaluate im-
munotherapeutic response, a variety of sensitive and resistant syngeneic models were used
to validate the robust functions of this system. Using fluorescence-based live/dead imaging,
the authors demonstrated T-cell-mediated killing ‘on chip’. Then, such a strategy applied
to MDOTSs/PDOTSs, revealing that TBK1/IKKε inhibition can sensitize melanoma cells
to PD-1 blockade [60]. Using same approach, Deng et al. identified that a combination of
CDK4/6 inhibitors and PD-1 blockade enhances treatment efficacy by promoting T-cell
infiltration and activation [58]. Meanwhile, Sade-Feldman et al. performed scRNA-seq and
defined two different CD8+ T cell states, CD8+CD39−TIM3− (DN, double-negative) and
CD8+CD39+TIM3+ (DP, double-positive), which can be used as a predictor for the success
or failure of checkpoint immunotherapy [59]. To further validate this, DN and DP CD8+ T
cells were enriched from CT26-GFP murine tumors and reintroduced into MDOTSs with
100-fold DN CD8+ T cells, DP CD8+ T cells, or a 1:1 mixture (DN:DP) with or without
anti-PD1 treatment. The authors found that DN cells support antitumor activity in this ex
vivo system. Other forms of cancer immunotherapy include cell-based immunotherapy
and cytokine therapy. One study developed a microfluidic model with one monolayer of
endothelial cells adjacent to breast cancer spheroids on each side and showed enhanced
cytotoxicity around spheroids when treated with natural killer cells and a combination of
antibody-cytokine regimens [167]. Another study leveraged spheroids containing cancer
cells and fibroblasts with the addition of PBMCs to test the efficacy of a new immune
cytokine and T cell bispecific antibody with or without IL-2 [193].

5.9. Disease and Therapeutic Response Monitoring

Disease and therapeutic response monitoring is required for making clinical decisions
and prognostication. Numerous microfluidic devices have been adapted to function in
these areas. Currently, a microfluidic device designed by CellSearch has been approved by
the FDA to predict prognosis and evaluate progression-free survival and overall survival
of patients [168]. This device exploits antibody-coated magnetic particles targeting EpCAM
to detect and quantify circulating tumor cells (CTCs) of epithelial origin in the whole blood
of patients with metastatic breast cancer, prostate cancer, and colorectal cancer [168,194].
By setting a predetermined threshold, the number of detected CTCs is used as a parameter
to predict prognostic outcome. Beyond this, there are several other devices that can be used
for CTC isolation [169–172]. In addition to CTCs, several immune-affinity microfluidic
devices have been applied to capture exosomes in liquid biopsy. One of them is from
ExoSearch. With enriched blood plasma exosome in microfluidic devices, immunomagnetic
beads are employed to capture and measure exosomal tumor markers (such as CA-125,
EpCAM, and CD24) [173]. A similar device from ExoChip uses antibodies against CD63 to
isolate, quantify, and recover exosomes with intact RNA for exosomal microRNA profiling
via open array analysis [174]. Another device called the nPLEX (nano-plasmonic exosome)
sensor simultaneously isolates the exosome through CD24, CD63, and EpCAM markers
and detects them by surface plasmon resonance (SPR) [175]. As some exosomes have been
shown to dampen antitumor immunity, it is promising to monitor immunotherapeutic
response-related markers (e.g., PD-L1) on the exosome to predict ICB efficacy [195].

Single-cell RNA sequencing has proven to be a powerful and transformative tech-
nology to study intra-tumoral heterogeneity. Progress in microfluidics technology and
development in cellular barcoding have enabled the integration of microfluidic and scRNA-
seq, which enables profiling of intra-tumor heterogeneity and deepens the understanding
of transcriptional programs and cell states associated with therapeutic evasion. Several
groups have reported this application. Demaree et al. reported a single-cell sequenc-
ing (SiC-seq) platform with high-throughput and low-deviation characteristics in droplet
microfluidics [176]. Han et al. demonstrated a Microwell-seq platform with high through-
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put [177]. Habib et al. developed a droplet microfluidic platform (DroNc-seq) to conduct
single-cell nuclear RNA-seq [178]. Such an integration of microfluidic technology and
scRNA-seq holds promise to further advance clinical validation and develop more effective
personalized medicine. To monitor immune cell heterogeneity, Merouane et al. devel-
oped a timelapse imaging microscopy-based microfluidic platform in nanowell grids to
study cell-to-cell interactions between tumor and immune cells in real time [179]. Another
microfluidic platform developed by the Heath group is based on a single-cell barcoding
chip (SCBC), containing arrays of microwells with immobilized barcode-like antibodies
for proteins and other detections [180]. A similar technique called beads-on-barcode anti-
body microarray (BOBarray) was reported by Yang et al. [181], whereas Armbrecht et al.
proposed single-cell protein profiling with barcode beads [182].

5.10. Drug Screening

There has been increased interest in developing 3D tumor models to improve can-
cer drug development given the limited fraction of candidates that are ultimately FDA-
approved and the staggering cost of drug development [196–198]. Microfluidic-based drug
testing enables a reduction in the volume of reagents required and can be adapted for
parallelization and potential automation. Although most microfluidic device-based drug
screening applications are at a proof-of concept stage, several groups have tried to develop
microfluidic systems to perform drug screening. For example, Bhise et al. developed a
liver-on-a-chip platform via 3D printing technology using hepatic spheroids as the ma-
terial source to directly print liver tissue into the microfluidic device [183]. The authors
further proved that bio-printed hepatic spheroids can be cultured long-term in devices
and used as a drug toxicity testing platform. In a separate study, Riley et al. described
a microfluidic platform that can maintain thyroid tissue slices ex vivo for a minimum
of 4 days and be used to evaluate the response of thyroid tissue to radioiodine sensitiv-
ity/adjuvant therapies in real time [184]. Schuster et al. reported an automated microfluidic
device designed for combinatorial and dynamic drug screening using pancreatic tumor
organoids [185]. This microfluidic platform includes 200 individual chambers, enabling
the loading of temperature-sensitive gels and an overlaying channel layer, thus allowing to
test 20 independent fluidic conditions, with culturing for more than 14 days. Additionally,
Pandya et al. demonstrated a microfluidic device developed for drug screening in a 3D
cancer microenvironment [186]. In this model, involving the integration of microfluidics
and electrical sensing modality, devices can be used for chemotherapeutic drug testing and
efficacy evaluations in less than 12 h.

6. Challenges, Opportunities, and Future Directions

Challenges—Microfluidic 3D MPSs offer several advantages over traditional 2D culture
systems for preclinical studies evaluating the TME, although several challenges remain re-
lated to pre-device, on-device, and post-device processes and analytics. When considering
the use of patient-derived biospecimens, the tumor size and types of biopsies are critical
factors that affect the successful establishment of a reliable environment retaining physio-
logically relevant components of the tumor and TME. For example, core needle biopsies
offer scant cellular material; such biopsies may be better suited for organoid culture [199]
and/or single-cell RNA sequencing than organotypic cultures. Even with good-quality
specimens to study, 3D culture is a time-consuming process requiring several hours to a few
days to process specimens, generate cultures, and monitor response. Furthermore, variable
parameters in culture conditions, such as media, different ECM components and their
concentration, and growth factors can affect the function of whole system. In a preprint
study, Raghavan et al. (https://www.biorxiv.org/content/10.1101/2020.08.25.256214v2,
last accessed 29 November 2021) compared the transcriptional state of 23 metastatic PDAC
needle biopsies and matched 48 organoid models via scRNA-seq. The authors found that
the supplement in organoid media can affect transcriptional cell state. In a separate study,
Dijkstra et al. found that the murine basement membrane matrix (Geltrex) used in their

https://www.biorxiv.org/content/10.1101/2020.08.25.256214v2
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coculture system can activate human CD4+ T cells and prompt nonspecific immune re-
sponses [62]. Additionally, some microfluidic device-based applications require expensive
microscopes to acquire high-content imaging and deconvolution for 3D imaging [200],
limiting their wide application. While reduced materials are needed in microfluidics,
the limited number of cells also precludes certain analyses (e.g., Western blotting, mass
spectrometry). Beyond this, the isolation and collection of single cells from microfluidic
devices are challenging albeit possible.

Although microfluidic technology has been leveraged to model tumor development,
tumor–TME interactions, and response to cancer therapeutics with promising and exciting
results, the extent to which current microfluidic cancer models approximate biological
processes observed in vivo remains unclear. Most microfluidic cancer models are capable of
recapitulating specific aspects of cancer biology and/or the tumor–immunity cycle, and it
remains to be seen if a single model will be able to mimic the complexity of a living organ-
ism. In the short term, it will be important to perform comprehensive analyses of emerging
microfluidic-based 3D cancer models to demonstrate the ways in which key biological pro-
cesses differ in comparison with traditional 2D models. Furthermore, researchers entering
the field should be aware of the advantages and limitations of specific model systems in
order to select the appropriate 3D model system to study specific biological processes of
interest. The importance of cross-model validation cannot be overstated, and key biological
insights derived from 3D microfluidic studies should be validated with complementary
model systems to ensure scientific rigor.

Opportunities—The unique features of microfluidic devices provide many advantages
compared with other systems in various aspects. First, the small size of operating sys-
tems is compatible with limited input material, making it compatible with samples with
limited size, such as patient-derived samples. This facilitates reduced consumption of
precious patient materials and reagents, all in an experimental system that offers greater
physiological relevance. Microfluidic systems can be used across cancer types to study
a variety of important biological processes including tumor–immune dynamics. In the
meantime, 3D microfluidic modeling of the TME has demonstrated utility in evaluating
novel cancer immunotherapy combinations [58,169,170]. Integration with other established
and emerging technologies may facilitate deeper understanding of these model systems.
For example, microfluidic-based MDOTS/PDOTS studies have used several terminal as-
says, including fluorescence-based live/dead assay, bulk RNA sequencing, single-cell
RNA sequencing, flow cytometry analysis, and immunofluorescence [60,138]. Several
groups [173–175] have leveraged microfluidic approaches to enrich and conduct exosome
analysis, which can not only increase the sensitivity of assays, but also provide flexibility
in design. With advancing developments in tissue engineering, microfluidic systems allow
perfusion of vascularized structures to increase microenvironment control and facilitate
real-time imaging analysis [201]. Moreover, microfluidic techniques have also enabled
efforts to profile the TME [177], identify prognostic biomarkers [169,171], and study the
response to ICB [60], thus promoting the development of personalized medicine. Because
of these above-mentioned advantages, microfluidics has become particularly valuable for
cancer modeling, investigating tumor–immune cell interaction, and providing diagnostic,
predictive, and therapeutic value to boost cancer therapy.

Future Directions—Despite the success of immunotherapy in many types of cancer,
only 20–30% of tumor patients across tumor types have been shown to be able to benefit
from ICB treatment. Even in those small portions of patients with response, some of them
will acquire resistance to their treatment. Thus, one of the future directions is to identify
robust biomarkers predictive of response (or resistance). Another direction is to leverage
these technologies to study mechanisms of resistance and further identify and validate
new therapeutic regimen(s) to overcome resistance. One potential approach is to integrate
microfluidic technology with other various technologies. For example, integration of
scRNA-seq and microfluidic technology allows profiling immune cells in devices, which
have been shown to predict response to anti-PD1 therapy [202]. Alternatively, performing
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BH3 profiling to identify apoptotic blocks in cancer cells has been shown to provide
diagnostic value to guide effective rational therapies [203]. In addition, isolating resistant
cells after treatment presents an opportunity to study resistance in detail and ultimately
find a way to circumvent it. While researchers have proposed many strategies to overcome
resistance, future developments should focus on providing approaches to evaluate their
efficacy in reliable preclinical murine tumor models [60]. This will not only reduce the
cost of animal testing, but also improve the rate of success in clinical trials. Furthermore,
these devices must be able to conduct multiple different tests in a singular chip to fit their
high-throughput features. On the other hand, developing next-generation microfluidic
models which can model tumor-draining lymph nodes, recruitment of naïve lymphocytes,
and TLS formation/activity represents another direction to advance our understanding of
TME, promote drug development, and overcome drug resistance.

As microfluidic devices have been reported to be used in diagnosis, response pre-
diction, response monitoring, resistance study, and drug efficacy validation, one obvious
question is whether 3D microfluidic models can/will become clinical tools for tailored,
personalized, and precision cancer therapies. Recently, Ooft et al. conducted a clinical
trial based on patient-derived organoid drug response, providing a cautionary tale [115].
In this study, 31 organoids were generated from 54 eligible patients out of 61, and 25 of
them were subjected to drug screening, with 19 organoids showing responses to one or
more drugs. However, despite drug sensitivity in organoids, patients did not demonstrate
clinical responses with the same treatment. This suggested that parameters, including
culture success rate, clinical deterioration of patients during standard of care, and ratio-
nal design of drug panels, should be considered in organoid-guided clinical studies and
probably other similar models. Although there are issues in current models before they
can be applied into clinical studies, some microfluidic chips have been approved by the
FDA, such as the CellSearch Chip being used for CTC enrichment [168]. Efforts are needed
from many aspects to address the above issues to evolve microfluidic devices from bench
to bedside.

7. Conclusions

Cancer therapies have advanced substantially over the past decade, especially the
use of targeted therapies and immunotherapies. Despite the success of both targeted and
immune-based cancer therapies, intrinsic and acquired resistance remains a persistent
challenge. Advancing our understanding of the heterogeneity of the tumor and TME and
the dynamic nature of tumor–immune interactions will require further investigation. With
multiple combination therapies, new biomarkers, and inhibitory receptors being proposed
to guide our approaches to diagnosis, prognosis, and therapy, there is a need for more
sophisticated preclinical models that translate to human immunity and provide reliable
functional applications, such as studying organ-specific immune contexture and allowing
efficient/effective assessment of immunotherapy combinations. The use of microfluidic
devices maintaining physiological accuracy and features in patient tumors and the TME
for studies in cancer immunotherapy provides new opportunities. The integration of 3D
culture with microfluidic technology to model tumor–immune dynamics, whether using
explanted patient-derived tumor tissue or “enhanced” models in which immune cells
are added, holds promise to address the remaining challenges. The estimated cost for a
successful cancer drug is about 1 billion USD, and roughly 90% of drugs entering phase I
clinical trials fail to offer clinical benefit and are not developed further. Thus, leveraging
microfluidic technology with 3D culture systems, ideally with patient-derived tumor
tissue, to evaluate efficacy has the potential to reduce time and cost for drug development.
Furthermore, microfluidic devices are amendable to perform several multi-omics studies
and real-time imaging analyses, which will enable the study of tumor–immune interactions
and mechanisms of therapy resistance, as well as the identification and evaluation of novel
cancer therapeutics. Taken together, it is promising that microfluidic modeling of the tumor
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microenvironment can potentially be incorporated into clinical practice to advance cancer
immunotherapy and precision medicine.
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