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Abstract

In light of global reef decline new methods to accurately, cheaply, and quickly evaluate coral metabolic states are needed to
assess reef health. Metabolomic profiling can describe the response of individuals to disturbance (i.e., shifts in
environmental conditions) across biological models and is a powerful approach for characterizing and comparing coral
metabolism. For the first time, we assess the utility of a proton-nuclear magnetic resonance spectroscopy (1H-NMR)-based
metabolomics approach in characterizing coral metabolite profiles by 1) investigating technical, intra-, and inter-sample
variation, 2) evaluating the ability to recover targeted metabolite spikes, and 3) assessing the potential for this method to
differentiate among coral species. Our results indicate 1H-NMR profiling of Porites compressa corals is highly reproducible
and exhibits low levels of variability within and among colonies. The spiking experiments validate the sensitivity of our
methods and showcase the capacity of orthogonal partial least squares discriminate analysis (OPLS-DA) to distinguish
between profiles spiked with varying metabolite concentrations (0 mM, 0.1 mM, and 10 mM). Finally, 1H-NMR
metabolomics coupled with OPLS-DA, revealed species-specific patterns in metabolite profiles among four reef-building
corals (Pocillopora damicornis, Porites lobata, Montipora aequituberculata, and Seriatopora hystrix). Collectively, these data
indicate that 1H-NMR metabolomic techniques can profile reef-building coral metabolomes and have the potential to
provide an integrated picture of the coral phenotype in response to environmental change.
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Introduction

Coral reefs are among the most productive ecosystems in the

world [1]. Globally, they produce up to 70061012 g C year21 [2]

and provide important services (e.g., fisheries habitat, coastal

protection, and promotion of tourism) that support tropical and

subtropical coastal communities worldwide [3]. Despite the

importance of coral reefs, damaging anthropogenic activities such

as overfishing, pollution, and physical destruction jeopardize their

long-term persistence [4–6]. Of particular concern are recent

increases in sea surface temperatures and ocean acidification that

are driving worldwide declines in coral reef ecosystems [7,8].

Coral susceptibility to environmental stress varies within and

among species [9,10]. This feature reflects the combined

physiology of a diverse assemblage of microorganisms and algal

partners that comprise the coral holobiont [11–15]. While

research has focused on describing differential responses of corals

and their partners to environmental stress [12,13,16–19], the

development of tools that can be broadly deployed and used to

rapidly assess coral health trajectories is still in its infancy.

Applications of ‘omics’ techniques are enhancing these efforts and

are describing coral resistance, resilience, and function [20]. While

there are challenges and limitations in interpreting these large

datasets [20], global analyses of genes [21], transcripts [22], and

proteins [23] are advancing our understanding of holobiont

responses to ecological disturbances. However, these techniques

are currently too expensive to apply in reef-wide monitoring

programs. Consequently, there is still a need for cost-effective

molecular tools that can be proactively used to assess coral

metabolic states.

Metabolites are small molecules that are products and

intermediates of metabolism and play essential roles in biochem-

ical pathways that underpin growth, nutrition, reproduction, and

survival. As such, external disturbances can trigger responses in

the metabolic processes of coral colonies leading to shifts in

metabolite profiles. Despite their broad significance in maintaining

basic biological functions, metabolite research is far from complete

in reef corals. For instance, select groups of compounds, such as

sugars, lipids and mycosporine like amino acids have received

considerable attention in the literature due to their biochemical

roles in maintaining coral metabolism. However, other metabolites

such as steroids, isoprenoids, alkaloids, and sulfur containing

compounds, such as dimethylsulphoniopropionate and acrylate,

are also critical for coral reproduction, growth, survival and

maintenance of symbiotic status [24–27]. A more comprehensive

description of coral metabolite composition could further elucidate
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the role of metabolites and pinpoint metabolic pathways essential

for coral resilience to environmental change, thereby providing a

means to gauge coral biological performance.

Advances in metabolomic technologies provide an opportunity

to quantify many metabolites simultaneously. This holistic

approach takes advantage of metabolite profiling methods using

nuclear magnetic resonance (NMR) and/or mass spectrometry

(MS) techniques to capture organism responses to external

conditions. Changes in the metabolome typically reflect gene

and protein expression [27]. Thus, metabolomics can describe and

integrate complex responses of organisms. These methods are

applicable across scientific disciplines and can identify bioactive

compounds, assess food safety, and describe the function of

unknown genes [28–30]. Of particular interest to coral reef

scientists is the capacity of metabolomic tools to identify

metabolites and profiles that may serve as biomarkers for disease

or stress response [31–34]. These techniques have only recently

been applied to corals [35,36] and extensions of these methods

may enable rapid and cost-effective assessment of coral metabolic

states.

Here, we demonstrate the application of metabolomic profiling

in reef-building corals using proton-NMR (1H-NMR) spectrosco-

py. 1H-NMR metabolomic methods are tractable because they are

relatively inexpensive (typically,$5/sample), reproducible, re-

quire minimal sample preparation, are non-destructive allowing

for repeat analyses using various acquisition experiments, and can

be used in a non-targeted approach to measure multiple

metabolite classes in a single run [37]. Furthermore, 1H-NMR

techniques have been used to quantitatively investigate the

concentration of select metabolites in Acropora spp. corals

[38,39]. To determine the efficacy of profiling reef-building coral

metabolomes using 1H-NMR methods, we conducted three

independent experiments to assess the variability, sensitivity, and

ecological relevance of our methods. First, we investigated

variation in 1H-NMR profiles within and among multiple coral

colonies. Then, we explored the sensitivity of our techniques by

spiking samples with various concentrations of metabolites known

to occur in reef-building corals. Finally, we compared metabolite

profiles from four coral species to determine if our methods

describe signatures inherent to taxonomic divisions. Our results

collectively demonstrate that 1H-NMR techniques are a viable and

powerful tool for assessing the metabolomes of reef-building corals.

Methods

Corals sampled in Hawaii were collected under special activity

permits issued by the Department of Land and Natural Resources

(permit numbers 2011-1, 2012-63) to the Hawaii Institute of

Marine Biology (HIMB). Corals in Taiwan were collected under a

research permit issued to the National Museum for Marine

Biology and Aquarium (NMMBA) from the Kenting National

Park of Taiwan.

Coral Sampling and Metabolite Extractions
Technical, Intra-, and Inter-Colony Variability. Reef-

building coral samples were collected from a small area (ca.

135 m2) of a fringing reef in Kaneohe Bay, Hawaii

(21u25958.280N, 157u47923.550W) using bone cutters and imme-

diately immersed in liquid nitrogen. Samples used to assess intra-

colony and technical variation in metabolite profiles were collected

in December 2011, while those used to assess inter-colony

variability were sampled in June 2013. While coral metabolite

content may change, variability measured in 1H-NMR profiles is

still likely to be comparable within and among colonies through

time. Following sample collection, coral fragments were lyophi-

lized and stored at 280uC prior to metabolite extraction. To assess

technical variation, three replicate fragments from separate

colonies were collected, pooled, and pulverized. From these

samples, 5 replicate extractions were performed. Five fragments of

a single Porites compressa colony, which is a dominant reef-

building coral in Hawaii, and 5 from separate colonies were used

to assess intra- and inter-colony variation in 1H-NMR profiles.

Coral metabolite extracts were obtained following methods

modified from Gordon et al. [40] to allow for increased extraction

times. Solvent choice will significantly influence resulting 1H-

NMR profiles and consequently the interpretation of an individ-

ual’s metabolome. While past studies have used methods combing

polar and non-polar solvents to simultaneously extract hydrophilic

and hydrophobic metabolites [41], the current application of a

70% methanol/water (v/v; 70% MeOH) solvent system was

developed to capture a broad range of the coral’s metabolome

without introducing added variation by minimizing extraction

steps [40].

All P. compressa samples were extracted following extraction

method 1. Only inter-colony samples were re-extracted using

method 2 to determine if variation in metabolite profiles differed

between protocols used in the current study.

Extraction Method 1. 1 mL of pre-cooled 70% MeOH was

added for every 0.7 g of coral to assess technical, intra-, and inter-

colony variability. All extracts were sonicated for 15 min and

shaken for 24 h at 4uC. To ensure samples were fully extracted, a

second solvent volume was added to each coral fragment for an

additional 24 h at 4uC. The two resulting extracts were combined

and cellular debris removed by centrifugation (4000 rpm for

10 min at 4uC). The supernatant containing the extracted

metabolites was removed from the pellet and concentrated using

a speed-vacuum concentrator. Extract weights were obtained prior

to data acquisition and used to normalize 1H-NMR spectra.

Extraction method 2. Five inter-colony samples were also

extracted by adding 2 mL of 70% MeOH (v/v) for every 0.1 g of

coral. Extracts were sonicated for 15 min, mixed on ice for

45 min, and concentrated using a combination of rotary

evaporation and lyophilization. Extract weights were obtained

prior to data acquisition and used to normalize between 1H-NMR

spectra.

Table 1. Flow-through tank conditions prior to sampling of reef-corals at the National Museum for Marine Biology and Aquarium.

Parameter Mean ± SE

Temperature 27.660.03uC

Salinity 33.860.02 ppt

Light 10763.85 mmol photon

*Measurements span the 2-week acclimation period in July 2011.
doi:10.1371/journal.pone.0111274.t001
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Spiking Experiment. Eighteen fragments from a P. com-
pressa colony were collected from a small region (c.a. 135 m2) of a

fringing reef adjacent to HIMB in December 2011. Fragment

volumes were assessed by displacement of deionized (DI) water,

which was used to remove excess salt and to determine the amount

of solvent to add to each nubbin during metabolite extraction.

While the addition of DI water may activate enzymatic pathways

resulting in changes in metabolite composition, the identical

treatment across all samples allows for comparison of coral

metabolomes. Subsequently, fragments were immersed in liquid

nitrogen to halt metabolism. To evaluate the capacity of 1H-NMR

methods to identify differences in concentrations of coral

Figure 1. 1H-NMR profiles of Porites compressa are reproducible within and between coral colonies. (A) PCA comparing Porites compressa
1H-NMR metabolite profiles between technical, intra-colony and inter-colony samples. Profiles from inter-colony P. compressa samples were obtained
using two extraction methods: method 1 and method 2 (B) Boxplots of percent relative standard deviation (% RSD) scores across 1H-NMR variables
comparing technical, intra- and inter-colony variability. The median is indicated (black bar) along with the quartile ranges and outlying values (open
circles). Letters denote Kruskal-Wallis test results (p,0.001). Groups connected by the same letter are not significantly different.
doi:10.1371/journal.pone.0111274.g001

Figure 2. Separation in metabolite profiles after experimental addition of alanine, glucose, and glycolic acid. (A) OPLS-DA model
comparing the control, 0.1 mM, and 10 mM metabolite spiking treatments. Separation within and between treatments is represented by the t-
orthogonal- and t-axis, respectively. Model statistics are reported (Table 2). (B) Corresponding loading plot showing 1H-NMR bin coefficients. Bins
arising from each spiking compound are indicated. Ala = alanine, Glu = glucose, Gly = glycolic acid.
doi:10.1371/journal.pone.0111274.g002
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metabolites, 1 M alanine, 1 M glycolic acid, and 1 M glucose

were combined and diluted with DI water to prepare 0.1 mM and

10 mM metabolite cocktail spikes. Directly prior to metabolite

extraction, 10 mL of the treatment and control (DI water only)

cocktails were added to the surface of each whole coral nubbin

(n = 6/treatment). Five mL of 70% methanol was added to each

fragment for every 1 mL of coral volume (v/v) and metabolites

were extracted following method 2 described above.

Species Comparison. Replicate fragments (n = 8–9) of

Montipora aequituberculata, Pocillopora damicornis, Porites
lobata, and Seriatopora hystrix were collected from Nanwan Bay,

Taiwan (ca. 21u569310N, 120u449560E) in the June of 2011 and

transported to the National Museum for Marine Biology and

Aquarium (NMMBA), Checheng, Taiwan. These coral species are

dominant reef-building corals in Taiwan and represent ecologi-

cally distinct taxa [13] with varying morphological and physio-

logical characteristics [42]. Corals were re-fragmented and

allowed to recover in a flow-through holding tank (environmental

conditions reported Table 1) for two weeks prior to sampling for

metabolome analysis. Corals were briefly rinsed with DI water to

remove excess salts, immediately immersed in liquid nitrogen,

lyophilized, pulverized and transported on dry ice back to the

HIMB where they were stored at 280uC. Metabolites were

extracted following extraction method 2 described above.

NMR Spectroscopy
Coral extracts were reconstituted in 250 mL of deuterium oxide

(D2O) containing 1 mM of 3-(trimethylsilyl)propionic acid sodium

salt (TMSP-d4) to facilitate comparison of resulting profiles to

metabolites in 1H-NMR databases. Extracts were briefly sonicated

and transferred to a 3 mm NMR tube. 1H-NMR profiles were

obtained using a 500 MHz Varian Unity Inova spectrometer

equipped with a 1M/x-broadband 3 mm probe. Spectra were

acquired using a water suppression pulse sequence (PRESAT),

consisting of 132 (extraction method 1) or 64 (extraction method 2)

transients of 32 K data-points with a relaxation delay of 1 s

(extraction method 1) or 3 s (extraction method 2) over a spectral

window of 5500 Hz. Resulting spectra were zero-filled to 64 K

and multiplied by a line-broadening factor of 0.5 Hz prior to

Fourier transformation. Spectra were imported in to MestreNova

(Mestrelabs version 7.1.2), where spectral baselines were adjusted

using Whittiker smoothing and normalized to the total area. Three

alignments were created to compare 1H-NMR (1) profile

variability, (2) spectra spiked with the metabolite cocktails, and

(3) fingerprints among coral species. All alignments were reduced

to ASCII files. Variables corresponding to the residual water

impurity (4.48–4.92 ppm) and an observed acetone contaminant

(2.22–2.27 ppm) were removed. Alignments were imported into

Metabolink (http://metabolink.knoesis.org), where a dynamic

adaptive binning routine was used to identify each peak as a

separate variable [43]. For each alignment, bins were found

between 0.5 to 10 ppm. R statistical environment (version 3.0.0, R

Development Core Team 2013, http//www.R-project.org) was

used for all further analysis, including normalizing spectral

intensities to extract weights for comparison across samples.

Data Analysis
Univariate Analyses. To investigate variability in 1H-NMR

spectra, relative standard deviations (% RSD = mean/standard

deviation 6 100; reported as median % RSD) were calculated

across variables for each group [44]. A Kruskal-Wallis analysis was

applied to compare values among technical, intra-, and inter-

colony spectra from Porites compressa.

Table 2. OPLS-DA Model Results.

Model R2X* R2Y* Q2* p-value

Spiking Experiment 0.09 0.99 0.48 ,0.01

Species Comparison- All Species 0.25 0.95 0.89 ,0.01

M. aequituberculata and P. damicornis 0.25 0.80 0.66 ,0.01

*R2X and R2Y represent the goodness of fit between the X (metabolite data) and Y (predictor values) matrices. Q2 assesses the accuracy and predictability of the model.
A Q2 value close to 1.0 represents a more predictive model.
doi:10.1371/journal.pone.0111274.t002

Table 3. Kruskal-Wallis test results comparing spiking treatments.

Metabolite Treatment
Mean ± SE
(mM g21 extract weight) Chi-Square p-value

Kruskal-Wallis
Groupings

Alanine Control 6.6163.20 11.415 0.0033 b

0. mM 5.1261.09 b

10 mM 145.83637.77 a

Glucose Control 9.5164.54 11.368 0.0038 b

0. mM 3.5460.45 b

10 mM 87.79622.12 a

Glycolate Control ND* 15.725 0.00038 ND

0.1 mM 3.1261.45 b

10 mM 80.09627.66 a

*ND = Not Detected.
doi:10.1371/journal.pone.0111274.t003
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In the spiking experiment, Chenomx NMR Suite 7.6 (Che-

nomx, Inc., Edmonton, Alberta, Canada) was used to identify and

quantify 1H-NMR signals resulting from the metabolite spikes. A

Kruskal-Wallis test was used to statistically compared metabolite

concentrations of alanine, glucose, and glycolic acid among

treatment groups.

Multivariate analysis. All variables from the three align-

ments were scaled to unity and mean centered prior to

multivariate analysis. Both principal component analysis (PCA)

and orthogonal partial least squares-discriminate analyses (OPLS-

DA) were used to investigate patterns in variables arising from 1H-

NMR spectra.

PCA is an unsupervised pattern recognition tool that seeks to

explain the maximum amount of variation inherent to a multi-

dimensional dataset. As such, PCA was applied to investigate

patterns between 1H-NMR profiles. Additionally, PCA was used

to screen for outlying samples. If spectra fell outside a 99%

confidence interval and upon further inspection it was determined

that NMR shims influenced resulting peak shapes and line widths,

spectra were excluded from subsequently analyses (e.g., Fig. S1).

OPLS-DA is a supervised pattern recognition technique that

aims to find the maximum separation between a priori groups

[45,46]. OPLS-DA was applied to discriminate between 1H-NMR

profiles arising from (1) spiking treatments and (2) among coral

species (for source code see http://birg.cs.cofc.edu/index.php/O-

PLS). Model strength was assessed using both R2 and Q2 metrics.

R2 values report the total amount of variance explained by the

model in both the 1H-NMR data (R2X) and independent variables

(R2Y; e.g., spiking treatment or species identity). Q2 reports model

accuracy and is calculated by 10-fold cross validation. The

resulting Q2 statistic was compared to a null distribution to test

model significance (p,0.05). OPLS-DA is advantageous over

analogous methods (e.g., partial least squares-discriminate analysis)

because it looks to partition between-group variation (t) in 1H-

NMR profiles from within-group variation (t-orthogonal), which

enhances the interpretability of the resulting model [46].

Figure 3. Reef-building corals have species-specific 1H-NMR profiles. OPLS-DA models comparing 1H-NMR profiles from (A) Montipora
aequituberculata, Pocillopora damicornis, Porites lobata and Seriatopora hystrix and (B) between M. aequituberculata and P. damicornis only. Separation
within and between species is represented by the t-orthogonal- and t-axis, respectively. Model statistics are reported (Table 2). (C and D)
Corresponding loading plots showing 1H-NMR-bin coefficients. Variables driving separation in the 4-species OPLS-DA model (A) are identified with
numbers corresponding to unknowns (Table 4). Only significant variables are indicated for each model. Ala = Alanine, Trig = Trigonelline, Thre/
Lac = Threonine/Lactate.
doi:10.1371/journal.pone.0111274.g003
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Implementing the n-group OPLS-DA model. OPLS-DA

typically is employed to discriminate between two treatment

groups [46]. However, when there are more than three groups, the

resulting model is influenced by group order. To facilitate

comparing metabolite fingerprints among spiking treatments and

reef-building corals, we developed an iterative strategy based on

the magnitude of Q2 to determine group ordering in the model.

The algorithm finds the maximum Q2 value between the two

groups with the largest separation along the t-axis. Additional

groups are inserted into the model based on the magnitude of Q2.

The overall Q2 value is determined from model projections after

allowing groups to cluster together based on profile similarities.

This strategy allows the OPLS-DA model to dictate where added

groups should reside with respect to those present. Furthermore, it

provides information describing the similarity between groups (i.e.,

groups with similar profiles will have similar t values and be

plotted closer together). Finally, the OPLS-DA algorithm calcu-

lates coefficients describing the contribution of each variable to the

model.

Variable Selection and Metabolite Identification. To

determine which variables drive separation in metabolite compo-

sition among coral species, variable coefficients from the OPLS-

DA model were compared to their null distributions. Null

distributions were calculated by refitting the OPLS-DA model to

the data, in which each variable is independently and randomly

permuted to remove correlation structure. The actual coefficients

were compared to their null distributions and variables in the tails

(a= 0.01) were determined to significantly contribute to the model.

Table 4. Variables driving separation in metabolite fingerprints among coral species.

Bin Center Peak Pattern* Annotation Compound Class

0.938 m Unknown 1 Branch-chained amino acids

0.983 m

1.011 m

1.090 m Unknown 2 Branch-chained amino acids

1.306 Unknown 3 Aliphatic

1.327 d Threonine/Lactate Organic Acid

1.337

1.390 m Unknown 4 Lipid

1.454 d Alanine

1.496

1.740 m Unknown 5 Aliphatic

2.031 m Unknown 6 Aliphatic

2.051 m Unknown 7 Aliphatic

2.072

2.086

2.670 m Unknown 8 Aliphatic

2.707 t Unknown 9 Aliphatic

2.779 s Unknown 10 Aliphatic

2.870 m Unknown 11 Aliphatic

2.986 s Unknown 12 Aliphatic

3.031 m Unknown 13 Aliphatic

3.046 m Unknown 14 Aliphatic

3.160 s Unknown 15 Aliphatic

3.380 m Unknown 16 Carbohydrates

3.555 m Unknown 17 Carbohydrates

3.566 m Unknown 18 Carbohydrates

3.583 m Unknown 19 Carbohydrates

3.649 s Unknown 20 Carbohydrates

3.985 m Unknown 21 Carbohydrates

4.031 s Unknown 22 Carbohydrates

4.321 m Unknown 23 Carbohydrates

5.152 d Unknown 24 Carbohydrates

4.446 s Trigonelline

8.842 m

9.135 m

*Peak patterns: s-singlet, d-doublet, m-multiplet.
doi:10.1371/journal.pone.0111274.t004
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To facilitate identification of the metabolites driving separation

between species, a statistical total correlation spectroscopy analysis

(STOSCY) in the R package MUMA [47] was used to determine

strong correlations between 1H-NMR variables. Highly correlated

variables (r2.0.9) were assumed to originate from the same

compound [48]. Metabolites were assigned by matching peak

positions and patterns to Chenomx 500 MHz spectral libraries.

Results

Technical, Intra-, and Inter-Colony Variability
Variability in Porites compressa 1H-NMR spectra was explored

over 284 spectral bins (variables) describing metabolite profiles.

PCA revealed close clustering of samples among technical and

intra-colony replicates, while inter-colony samples were slightly

more dispersed (Fig. 1A). A Kruskal-Wallis comparison of relative

standard deviation (RSD) scores quantifies these visual patterns,

where technical (median 14.2%) and intra-colony (15.2%) scores

were not statistically different from one another, but both were

significantly lower than inter-colony scores (p,0.001, 35% and

38%, Fig. 1B). While the two extraction methods formed separate

groups (Fig. 1A) in the PCA, RSD scores were not significantly

different following the Kruskal-Wallis analysis (35% vs. 38%).

Thus, while metabolite composition may vary between protocols,

variability in 1H-NMR profiles is similar.

Spiking Experiment
1H-NMR profiles arising from the spiking experiment were

binned into 208 variables. The resulting OPLS-DA model

revealed clear separation of metabolite profiles (Fig. 2, Table 2)

among treatments (p,0.01, R2X = 0.09, R2Y = 0.99, Q2 = 0.45).

Of the three spiked compounds, alanine and glucose, but not

glycolic acid, were successfully identified and quantified in control

spectra. All three metabolites were detected in both the 0.1 mM

and 10 mM spiking treatments (Fig. S2). However, when

comparing mean concentrations across groups for alanine,

glucose, and glycolic acid using a Kruskal-Wallis ANOVA, only

the 10 mM treatment was significantly different from the control

and 0.1 mM groups (p,0.05, Table 3).

Species Comparison
Dynamic adaptive binning identified 152 variables describing

1H-NMR fingerprints arising from Montipora aequituberculata,
Pocillopora damicornis, Porites lobata, and Seriatopora hystrix
aligned spectra. The OPLS-DA model revealed clear significant

discrimination between metabolite profiles originating from P.
lobata and S. hystrix corals. However, OPLS-DA was unable to

separate profiles from M. aequituberculata and P. damicornis (P,

0.01, R2X = 0.25, R2Y = 0.95, Q2 = 0.89; Fig. 3A, Table 2).

Consequently, to determine if OPLS-DA could significantly

discriminate between metabolite profiles from all coral species

analyzed, all possible combinations were modeled (Fig. S3, Table

S1). The OPLS-DA comparison of profiles from M. aequituber-
culata and P. damicornis revealed significant separation in

metabolite profiles (p,0.01, R2X = 0.25, R2Y = 0.79, Q2 = 0.75,

Fig. 2B, Table 2).

From the OPLS-DA model comparing all 4 species, 35 bins

were found to drive separation among coral profiles. STOCSY

categorized these variables into 27 individual compounds

(Table 4), of which only three (alanine, trigonelline, threonine,

and/or lactate) were matched to Chenomx spectral libraries. The

remaining unidentified compounds contain proton signals match-

ing spectral locations of lipids, amino acids, organic acids, and

carbohydrates.

Discussion

1H-NMR metabolomic profiling is reproducible
1H-NMR metabolite profiles obtained from reef-building corals

were highly reproducible. Intra-colony variation in 1H-NMR

spectra from P. compressa was low and equal to that of technical

replicates. As expected, variation in metabolite fingerprints is

higher among different coral colonies. Together, these results

indicate that while metabolite composition is relatively homoge-

neous within a coral colony, genotypic differences among colonies

elevate variability in metabolite profiles. Notably, the variability in

metabolite profiles described here are consistent with reports [44]

for fish, marine invertebrates, and mammals, where relative

standard deviations (RSD) across 1H-NMR bins are lower across

technical replicates (median RSD range 1.6–20.6%) and increase

with biological replication (median RSD range 7.2–58.4%).

Low technical variability is a critical attribute for any method,

including metabolite profiling, that is applied to uncover patterns

associated with shifts in performance or metabolism in response to

ecological drivers. High levels of variation cloud researchers’

ability to detect significant shifts in metabolic performance.

Because 1H-NMR techniques tend to be highly reproducible

[49], they have become popular in monitoring organism health in

response to the environment. For instance, 1H-NMR methods

have uncovered patterns in metabolite profiles across a range of

organisms in response to pollution [50–52], shifts in temperature

regimes [53,54] and increases in ocean acidification [55,56]. We

add to this body of literature by demonstrating that 1H-NMR

metabolite profiling methods are reproducible for reef-building

corals, indicating that this approach is likely to have high value in

monitoring metabolic state either in field or laboratory experi-

ments.

Complete profiles distinguish small differences in 1H-
NMR profiles

The OPLS-DA model discriminated between 1H-NMR

spectra measured from the three spiking treatment groups

(control, 0.1 mM and 10 mM), leading to significant separation

in metabolite profiles (Fig. 2). However, after Chenomx

identified and quantified signals from the spiking compounds

(alanine, glucose, and glycolic acid), a Kruskal-Wallis test only

detected significant differences in the 10 mM treatment group

in comparison to the others (Table 3). These results suggest that

detecting small differences in individual metabolite concentra-

tions (i.e., between the control and 0.1 mM treatments) may be

constrained by dynamic signals within the coral metabolome or

by background noise in 1H-NMR spectra. It is clear that the

majority of the 1H signals arising from alanine, glucose and

glycolic acid fall in regions of high peak overlap in coral 1H-

NMR spectra (Fig. S2 and Fig. S4). This limits the ability to

detect small differences in metabolite concentrations. For

instance, a recent targeted application of 1H-NMR spectroscopy

detected significant differences in dimethylsulphoniopropionate

and acrylate, both of which resonate in regions of low spectral

complexity, as low as 1.4 nmol/mm2 between corals exposed to

ambient and high temperature conditions [39]. These com-

pounds did not contribute to separation in metabolite profiles

among spiking treatments or coral taxa investigated here, which

is expected given that they naturally occur in similar

concentrations across individuals [38]. While targeted studies

using 1H-NMR techniques are informative towards describing

and quantifying known metabolites, shifts in coral metabolomes

may occur inside regions of high peak overlap. Furthermore, by

comparing spectra with multivariate techniques, we can identify
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combined signals that better resolve differences in metabolite

concentrations. Taken together, the current data suggest

multivariate techniques enhance the capacity to identify small

fluctuations in coral 1H-NMR profiles in comparison to

univariate methods. Consequently, when using 1H-NMR

techniques to investigate coral metabolomes analyzing complete

spectra may be more informative than comparing changes in

individual compounds.

1H-NMR profiling methods can detect species-specific
signatures

Our 1H-NMR profiling approach and OPLS-DA indicate that

different reef-building coral species have distinct metabolite

profiles. While the separation in the OPLS-DA model suggests

that spectra from Porites lobata and Seriatopora hystrix are very

different, it has limited the capacity to discriminate between

Pocillopora damicornis and Montipora aequituberculata profiles

(Fig. 3A). However, OPLS-DA can discriminate between P.
damicornis and M. aequituberculata when these two species are

modeled independently of the others (Fig. 3B). These data suggest

that there are distinct elements in coral metabolite profiles that are

both similar between P. damicornis and M. aequituberculata, and

that differentiate the four species.

Using the variable selection algorithm and a STOCSY

analysis [48], 27 compounds from a broad range of metabolite

classes including lipids, amino acids, organic acids, and

carbohydrates contribute to the separation in coral metabolite

profiles. However, of these 27 compounds, only a few were

matched to Chenomx database entries and include trigonelline,

alanine, several branch chained amino acids (e.g., valine,

isoleucine and leucine), and organic acids (threonine or lactate).

Our work highlights the challenges associated with metabolite

identification using 1H-NMR metabolomics. NMR instrumen-

tation is less sensitive than mass spectrometry. Overlapping

signals, variation in sample pH, ionic strength, temperature and

acquisition conditions can obscure accurate database assign-

ments. Past studies have typically identified between 2 and 15

compounds that separate 1H-NMR profiles in non-model

species such as Mytilus edulis or Carcinus maenas exposed to

disturbance (e.g., copper exposure or ocean acidification

[52,56]). In contrast, 1H-NMR-based metabolomics have

identified upwards of 30 metabolites driving differences in the

metabolism of model organisms (e.g., impacts of Mycobacterium
tuberculosis infections in mice [57]). Lack of taxa-specific

metabolite databases reduces the capacity to identify small

compounds in non-model species. To overcome these challeng-

es, research is focused on developing analytical (e.g., cyroprobes,

increases in magnet strength, 2D-NMR techniques; reviewed by

[58,59]), bioinformatics [60–64] and databases tools [65] to

facilitate matching 1H-NMR profiles to known metabolites.

Despite limitations associated with identifying metabolites in
1H-NMR spectra, the patterns in metabolite composition observed

in coral profiles are intriguing. The four species investigated

represent physiologically distinct taxa [42] that respond differently

to environmental disturbances [13]. 1H-NMR profiles are

indicative of metabolite composition and consequently the activity

of metabolic pathways. The observed variation among species

rationalizes further exploration of the metabolome to describe

differential responses of corals to the environment and anthropo-

genic stress.

Conclusions

Our results illustrate the capacity of 1H-NMR metabolomics to

describe, compare and assess coral metabolomes. Future applica-

tion of these methods, coupled with rigorous ecological monitoring

[66], may enable researchers to document shifts in metabolite

composition across time and environmental conditions. As global

climate change and other local stressors continue to threaten reefs,
1H-NMR tools may aid researchers in the rapid assessment of

coral reef metabolic states.

Supporting Information

Figure S1 PCA identifies two outlying metabolite pro-
files when comparing spectra between reef-building
coral species. PCA comparing metabolite profiles between

Montipora aequituberculata, Pocillopora damicornis, Porites.
lobata and Seriatopora hystrix (A) with and (B) without outlying

samples. Ellipse represents a 99% confidence interval.

(EPS)

Figure S2 Complex profiles result in high signal
overlap. Expanded regions of 1H-NMR spectra showing the

location of 1H-resonances for alanine, glucose, and glycolic acid.

Turquoise = control, pink = 0.1 mM, dark blue = 10 mM.

(EPS)

Figure S3 All possible OPLS-DA models demonstrate
reef-building corals have species-specific 1H-NMR pro-
files. (A) 4-species model, (B–E) 3-species models, and (F–K) pair-

wise species comparisons of metabolite profiles from Montipora
aequituberculata, Pocillopora damicornis, Porites lobata and

Seriatopora hystrix. Model statistics are reported (Table S1).

(EPS)

Figure S4 P. compressa profiles are visually similar,
except in regions of spiking compounds. Representative
1H-NMR spectra from the metabolite spiking experiment of the

10 mM (A), 0.1 mM (B) and control (C) treatments.

(EPS)

Table S1 All possible OPLS-DA models comparing reef
coral 1H-NMR profiles.

(DOCX)

Acknowledgments

We thank the University of Hawaii at Manoa’s NMR Facility for assistance

in acquiring the NMR data. We also thank Tung-Yung Fan for coral

collections and aquarium space at the National Museum for Marine

Biology and Aquarium in Taiwan. Additionally, we value the input of

Hollie Putnam, David Horgen, Megan Donahue, Danielle Claar, Ross

Cunning, Robert Mason, Laura Núnez Pons, Nyssa Silbiger and Chris

Wall for their discussion and comments on the manuscript. Finally, we

would like to thank our two reviewers, whose input helped to clarify our

manuscript. This represents HIMB and SOEST contribution numbers

1601 and 9199.

Author Contributions

Conceived and designed the experiments: EMS PA RDG PW CSC.

Performed the experiments: EMS PA. Analyzed the data: EMS PA RDG.

Contributed reagents/materials/analysis tools: RDG CSC PA. Contribut-

ed to the writing of the manuscript: EMS PA PW CSC RDG.

Metabolomics and Reef-Building Corals

PLOS ONE | www.plosone.org 8 October 2014 | Volume 9 | Issue 10 | e111274



References

1. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:

1302–1310.

2. Crossland C, Hatcher B, Smith S (1991) Role of coral reefs in global ocean

production. Coral Reefs 10: 44–64.

3. Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems.

Ecol Econ 29: 215–233.

4. Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, et al. (2001)

Historical overfishing and the recent collapse of coastal ecosystems. Science 293:
629–637.

5. Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation.
Mar Ecol Prog Ser 62: 185–202.

6. Sebens KP (1994) Biodiversity of coral reefs: what are we losing and why? Am
Zool 34: 115–133.

7. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, et al.

(2007) Coral reefs under rapid climate change and ocean acidification. Science

318: 1737.

8. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef
futures under global warming and ocean acidification. Science 333: 418–422.

9. Carilli J, Donner SD, Hartmann AC (2012) Historical temperature variability
affects coral response to heat stress. PLOS One 7: e34418.

10. Guest JR, Baird AH, Maynard JA, Muttaqin E, Edwards AJ, et al. (2012)
Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive

response to thermal stress. PLOS One 7: e33353.

11. Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal

symbionts creates variation in episodes of coral bleaching. Nature 388: 265–269.

12. Hoegh-Guldberg O, Jones RJ (1999) Photoinhibition and photoprotection in

symbiotic dinoflagellates from reef-building corals. Mar Ecol Prog Ser 183: 73–
86.

13. Loya Y (2001) Coral bleaching: the winners and the losers. Ecol Lett 4: 122–131.

14. Sampayo E, Ridgway T (2008) Bleaching susceptibility and mortality of corals
are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci

105: 10444–10449.

15. Mieog JC, Olsen JL, Berkelmans R, Bleuler-Martinez SA, Willis BL, et al. (2009)

The roles and interactions of symbiont, host and environment in defining coral

fitness. PLOS One 4: e6364.

16. Gates RD, Edmunds PJ (1999) The physiological mechanisms of acclimatization
in tropical reef corals. Am Zool 39: 30–43.

17. Coles SL, Brown BE (2003) Coral bleaching-capacity for acclimatization and
adaptation. Adv Mar Biol 46: 183–223.

18. Shick JM, Dunlap WC (2002) Mycosporine-like amino acids and related
gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic

organisms. Annu Rev Physiol 64: 223–262.

19. Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A, et al. (2009)

Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora
pistillata, to short-term thermal stress: the host does matter in determining the

tolerance of corals to bleaching. J Exp Mar Bio Ecol 373: 102–110.

20. Meyer E, Weis VM (2012) Study of cnidarian-algal symbiosis in the ‘‘omics’’

age. Biol Bull 223: 44–65.

21. Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, et al. (2011)

Using the Acropora digitifera genome to understand coral responses to
environmental change. Nature 476: 320–323.

22. Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, et al. (2013)
Genomic basis for coral resilience to climate change. Proc Natl Acad Sci 110:

1387–1392.

23. Peng, Chen, Chen, Lu, Mayfield AB, et al. (2011) Lipid bodies in coral-

dinoflagellate endosymbiosis: proteomic and ultrastructural studies. Proteomics
11: 3540–3555.

24. Gordon BR, Leggat W (2010) Symbiodinium-invertebrate symbioses and the role
of metabolomics. Mar Drugs 8: 2546–2568.

25. Tarrant A, Blomquist C, Lima P, Atkinson MJ, Atkinson S (2003) Metabolism of

estrogens and androgens by Scleractinian corals. Comp Biochem Physiol B -

Biochem Mol Bio 136: 473–485.

26. Tapiolas DM, Motti CA, Holloway P, Boyle SG (2010) High levels of acrylate in

the Great Barrier Reef coral Acropora millepora. Coral Reefs 29: 621–625.

27. Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: current
technologies and future trends. Proteomics 6: 4716–4723.

28. Dunn WB, Ellis D (2005) Metabolomics: current analytical platforms and
methodologies. TrAC Trends Anal Chem 24: 285–294.

29. Field KJ, Lake JA (2011) Environmental metabolomics links genotype to
phenotype and predicts genotype abundance in wild plant populations. Physiol

Plant 142: 352–360.

30. Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical

modeling to understand metabolic networks. Comp Funct Genomics 2: 155–
168.

31. Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, et al. (2014)
Plasma phospholipids identify antecedent memory impairment in older adults.

Nat Med 20: 415–418.

32. Wang W, Wu H (2010) NMR-based metabolomic studies on the toxicological

effects of cadmium and copper on green mussels Perna viridis. Aquat Toxicol 4:
339–345.

33. Bundy JG, Davey MP, Viant MR (2009) Environmental metabolomics: a critical

review and future perspectives. Metabolomics 5: 3–21.

34. Motti C (2012) Environmental marine metabolomics: from whole organism

system biology to ecosystem management. J Marine Sci Res Dev 2: 3.

35. Dunn SR, Thomas MC, Nette GW, Dove SG (2012) A lipidomic approach to

understanding free fatty acid lipogenesis derived from dissolved inorganic carbon

within cnidarian-dinoflagellate symbiosis. PLOS One 7: e46801.

36. Burriesci MS, Raab TK, Pringle JR (2012) Evidence that glucose is the major

transferred metabolite in dinoflagellate-cnidarian symbiosis. J Exp Biol 215:

3467–3477.

37. Bharti SK, Roy R (2012) Quantitative 1H NMR spectroscopy. TrAC Trends

Anal Chem 35: 5–26.

38. Tapiolas DM, Raina, Lutz A, Willis BL, Motti CA (2013) Direct measurement

of dimethylsulfoniopropionate (DMSP) in reef-building corals using quantitative

nuclear magnetic resonance (qNMR) spectroscopy. J Exp Mar Bio Ecol 443:

85–89.

39. Raina, Tapiolas DM, Forêt S, Lutz A, Abrego D, et al. (2013) DMSP

biosynthesis by an animal and its role in coral thermal stress response. Nature

502: 677–680.

40. Gordon B, Leggat W, Motti C (2013) Extraction Protocol for non-targeted

NMR and LC-MS metabolomics-based analysis of hard coral and their algal

symbionts.In: Roessner U, Dias DA, editors. Metabolomics Tools for Natural

Product Discovery SE 210. Methods in Molecular Biology. Humana Press, Vol.

1055. 129–147.

41. Lin CY, Wu H, Tjeerdema RS, Viant MR (2007) Evaluation of metabolite

extraction strategies from tissue samples using NMR metabolomics. Metabo-

lomics 3: 55–67.

42. Yost DM, Wang, Fan, Chen, Lee RW, et al. (2013) Diversity in skeletal

architecture influences biological heterogeneity and Symbiodinium habitat in

corals. Zoology 116: 262–269.

43. Anderson PE, Mahle DA, Doom TE, Reo NV, DelRaso NJ, et al. (2010)

Dynamic adaptive binning: an improved quantification technique for NMR

spectroscopic data. Metabolomics 7: 179–190.

44. Parsons HM, Ekman DR, Collette TW, Viant MR (2009) Spectral relative

standard deviation: a practical benchmark in metabolomics. Analyst 134: 478–

485.

45. Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-PLS). J

Chemom 16: 119–128.

46. Bylesjö M, Rantalainen M (2006) OPLS discriminant analysis: combining the

strengths of PLS-DA and SIMCA classification. J Chemom 20: 341–351.

47. Gaude E, Chignola F, Spiliotopoulos D, Mari S, Spitaleri A, et al. (2012)

MUMA, an R package for metabolomics univariate and multivariate statistical

analysis. Curr Metabolomics 1: 180–189.

48. Cloarec O, Dumas M, Craig A, Barton RH, Trygg J, et al. (2005) Statistical total

correlation spectroscopy: an exploratory approach for latent biomarker

identification from metabolic 1H-NMR data sets. 77: 1282–1289.

49. Ward JL, Baker JM, Miller SJ, Deborde C, Maucourt M, et al. (2010) An inter-

laboratory comparison demonstrates that 1H-NMR metabolite fingerprinting is

a robust technique for collaborative plant metabolomic data collection.

Metabolomics 6: 263–273.

50. Viant M, Pincetich C, Tjeerdema R (2006) Metabolic effects of dinoseb,

diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon

(Oncorhynchus tshawytscha) determined by 1H-NMR metabolomics. Aquat

Toxicol 77: 359–371.

51. Lin CY, Anderson BS, Phillips BM, Peng AC, Clark S, et al. (2009)

Characterization of the metabolic actions of crude versus dispersed oil in

salmon smolts via NMR-based metabolomics. Aquat Toxicol 95: 230–238.

52. Tuffnail W, Mills GA, Cary P, Greenwood R (2008) An environmental 1H-

NMR metabolomic study of the exposure of the marine mussel Mytilus edulis to

atrazine, lindane, hypoxia and starvation. Metabolomics 5: 33–43.

53. Boroujerdi AFB, Vizcaino MI, Meyers A, Pollock EC, Huynh SL, et al. (2009)

NMR-based microbial metabolomics and the temperature-dependent coral

pathogen Vibrio coralliilyticus. Environ Sci Technol 43: 7658–7664.

54. Rosenblum ES, Tjeerdema RS, Viant MR (2006) Effects of temperature on

host-pathogen-drug interactions in red abalone, Haliotis rufescens, determined

by 1H-NMR metabolomics. Environ Sci Technol 40: 7077–7084.

55. Ellis RP, Spicer JI, Byrne JJ, Sommer U, Viant MR, et al. (2014) 1H-NMR

Metabolomics reveals contrasting response by male and female mussels exposed

to reduced seawater pH, increased temperature, and a pathogen. Environ Sci

Technol 48: 7044–7052.

56. Hammer KM, Pedersen SA, Størseth TR (2012) Elevated seawater levels of

CO2 change the metabolic fingerprint of tissues and hemolymph from the green

shore crab Carcinus maenas. Comp Biochem Physiol Part D Genomics

Proteomics 7: 292–302.

57. Shin, Yang, Jeon, Yoon YJ, Cho, et al. (2011) 1H-NMR-based metabolomic

profiling in mice infected with Mycobacterium tuberculosis. J Proteome Res 10:

2238–2247.

58. Grivet, Delort A-M (2009) NMR for microbiology: In vivo and in situ

applications. Prog Nucl Magn Reson Spectrosc 54: 1–53.

Metabolomics and Reef-Building Corals

PLOS ONE | www.plosone.org 9 October 2014 | Volume 9 | Issue 10 | e111274

LC-MS
O-PLS). J
PLS-DA
H-NMR
H-NMR
H-NMR
H-NMR
H-NMR
H-NMR
H-NMR


59. Xi Y, de Ropp JS, Viant MR, Woodruff DL, Yu P (2008) Improved

identification of metabolites in complex mixtures using HSQC NMR

spectroscopy. Anal Chim Acta 614: 127–133.

60. Zheng C, Zhang S, Ragg S, Raftery D, Vitek O (2011) Identification and

quantification of metabolites in 1H-NMR spectra by Bayesian model selection.

Bioinformatics 27: 1637–1644.

61. Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions

and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6: 743–

760.

62. Martin-Pastor M (2014) NMR spectra of complex mixtures. J Agric Food Chem

62: 1190–1197.

63. Jacob D, Deborde C, Moing A (2013) An efficient spectra processing method for

metabolite identification from 1H-NMR metabolomics data. Anal Bioanal Chem
405: 5049–5061.

64. Ludwig C, Gunther U, Günther UL (2011) MetaboLab-advanced NMR data

processing and analysis for metabolomics. BMC Bioinformatics 12: 366.
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