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Iron metabolism and tumor biology are intimately linked. Iron facilitates the production

of oxygen radicals, which may either result in iron-induced cell death, ferroptosis, or

contribute to mutagenicity and malignant transformation. Once transformed, malignant

cells require high amounts of iron for proliferation. In addition, iron has multiple regulatory

effects on the immune system, thus affecting tumor surveillance by immune cells. For

these reasons, inconsiderate iron supplementation in cancer patients has the potential

of worsening disease course and outcome. On the other hand, chronic immune activation

in the setting of malignancy alters systemic iron homeostasis and directs iron fluxes into

myeloid cells. While this response aims at withdrawing iron from tumor cells, it may impair

the effector functions of tumor-associated macrophages and will result in iron-restricted

erythropoiesis and the development of anemia, subsequently. This review summarizes

our current knowledge of the interconnections of iron homeostasis with cancer biology,

discusses current clinical controversies in the treatment of anemia of cancer and focuses

on the potential roles of iron in the solid tumor microenvironment, also speculating on yet

unknown molecular mechanisms.
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INTRODUCTION

There are numerous interconnections between iron homeostasis and cancer biology. However,
our knowledge of many of these links is largely descriptive and based on data obtained from in
vitro models using immortalized cell lines or from in vivo animal models employing xenogeneic
tumor cell transplantation. Many of the potential roles of iron in cancer, generally, and in the tumor
microenvironment (TME), specifically, have therefore not been formally addressed in human
tumor entities and patient cohorts yet.

One aspect of the interconnection between iron and cancer is based on the fact that excess labile
iron is toxic and catalyzes the formation of reactive oxygen species (ROS) via Fenton-/Haber-Weiss
chemistry (1). As a consequence, iron may drive the malignant transformation of cells
by directly damaging DNA, eventually leading to mutagenic transformation, or through
protein and lipid modifications within malignant cells, resulting in more aggressive tumor
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behavior (2). When iron-dependent lipid peroxidation exceeds
the cell’s glutathione-mediated anti-oxidative defense capacity,
inactivation of glutathione peroxidase (GPX)-4 culminates in a
unique form of iron-induced cell death known as ferroptosis
(3). On the other hand, proliferation of neoplastic cells regularly
occurs at an enhanced rate, requiring increased iron supply
because DNA replication is an iron-dependent process (4, 5).
DNA polymerases and helicases contain iron-sulfur groups,
rendering DNA replication one of the numerous synthetic and
metabolic pathways that rely on iron as essential co-factor (6).
Therefore, the availability of iron to tumor cells may affect
either cell survival or growth rate and the course of disease,
consequently. In addition, cellular iron availability impacts on
mitochondrial respiration, ATP (for adenosine triphosphate)
and mitochondrial radical formation, but also controls cellular
metabolism and aerobic glycolysis via its regulatory effects on
citric acid cycle enzymes (7, 8). In addition, neovascularization

Abbreviations: ACD, anemia of chronic disease; AHS, anti-hepcidin strategy;
AOC, anemia of cancer; APC, adenomatous polyposis coli; ATP, adenosine
triphosphate; BMP6, bone morphogenic protein-6; CD, cluster of differentiation;
CHOP, CCAAT-enhancer-binding protein homologous protein; CDK, cyclin-
dependent kinase; CKD, chronic kidney disease; CML, chronic myeloid leukemia;
CREB-H, cyclic AMP response element-binding protein H; DAMP, danger-
associated molecular pattern; DC, dendritic cell; DCIS, ductal carcinoma in situ;
DFO, deferroxamine; DMT1, divalent metal transporter-1 AKA SLC11A2; DNA,
deoxyribonucleic acid; EC, endothelial cell; EDTA, ethylenediaminetetraacetic
acid; EGF, epidermal growth factor; EMT, epithelial-mesenchymal transition; EP,
erythroid progenitor; EPO, erythropoietin; ER, endoplasmatic reticulum; ERFE,
erythroferrone; ERK, extracellular signal-regulated kinases; ESA, erythropoiesis-
stimulating agent; FIH, factor inhibiting HIF; FPN1, ferroportin-1 AKA SLC40A1;
FT, ferritin; FTL, ferritin light chain; FTH, ferritin heavy chain; GAPDH,
glyceraldehyde-3-phosphate dehydrogenase; GDF15, growth differentiation
factor-15; GM-CSF, granulocyte-macrophage colony-stimulating factor; GPX4,
glutathione peroxidase-4; Hb, hemoglobin; HFE, hemochromatosis-associated
gene/protein; HJV, hemojuvelin; HH, hereditary hemochromatosis; HMOX1,
heme oxygenase-1; ID, iron deficiency; IEC, intestinal epithelial cell; IFN-γ,
interferon gamma; IKK, IκB kinase; IL, interleukin; IO, iron overload; IRE,
iron-responsive element; IRP, iron-regulatory protein; JAK, Janus kinase;
JMJ, Jumonji-type protein; LCN2, lipocalin-2 AKA NGAL (for Neutrophil
gelatinase-associated lipocalin); LCNR, lipocalin-2 receptor AKA SLC22A17; LF,
lactoferrin; LIP, labile iron pool; LPS, lipopolysaccharide; MAP kinase, mitogen-
activated protein kinase; MDM2, mouse double minute-2; MDS, myelodysplastic
syndrome; MDSC, myeloid-derived suppressor cell; MM, multiple myeloma; MRI,
magnetic resonance imaging; mRNA, messenger ribonucleic acid; miRNA, micro
ribonucleic acid; NCOA4, nuclear receptor coactivator-4; NF-κB, nuclear factor
kappa-light-chain-enhancer of activated B cells; NOS2, nitric oxide synthase-2
AKA inducible NOS; NSCLC, non-small cell lung cancer; NK, natural killer;
NKT cell, natural killer T cell; NTBI, non-transferrin-bound iron; ODD, oxygen-
dependent domain; PAMP, pathogen-associated molecular pattern; PCBP2,
poly(RC) binding protein-2; PDGF, platelet-derived growth factor; PHD, prolyl
HIF dioxygenases; RBC, red blood cell; RCT, randomized controlled trial; RNS,
reactive nitrogen species; ROS, reactive oxygen species; SCARA5, scavenger
receptor class A member-5; SLC, solute carrier; SMAD, homologs of Sma andMad
(mothers against decapentaplegic) proteins; STAT, signal transducer and activator
of transcription; STEAP3, six-transmembrane early antigen of the prostate-
3; TAD, transactivation domain; TAM, tumor-associated macrophage; TBI,
transferrin-bound iron; TC cell, cytotoxic T cell; TFR, transferrin receptor; TGF-ß,
transforming growth factor-ß; TH cell, T helper cell; TIL, tumor-infiltrating
lymphocyte; TIM2, T cell immunoglobulin and mucin domain protein-2; TLR4,
toll-like receptor-4; TREG cell, regulatory T cell; TME, tumor microenvironment;
TNF, tumor necrosis factor; TRIM, transfusion-related immune modulation;
VEGF, vascular endothelial growth factor; VHL, von Hippel-Lindau tumor
suppressor; WNT, wingless-related integration site.

is affected by iron because of its impact on hypoxia inducible
factor (HIF) activation and vascular endothelial growth factor
(VEGF) production and on the function of endothelial cells (EC)
(9, 10). Also, tumor-associated macrophages (TAMs) and EC
diversely interact in the TME, and some of these interactions are
modulated by iron availability, impacting on tumor progression
and metastasis formation (11–16).

Cancer biology and immune surveillance are inseparably
interconnected (17). A central nexus of this linkage is the
competition for iron between neoplastic cells and the immune
system which takes place both at the systemic level and
in the microenvironment (18). Presumably, immune-driven
adaptations of iron homeostasis in the presence of inflammatory
stimuli have evolved during evolution as mechanisms to fight
off bacteria and other pathogens, most of which require iron
as essential growth factor (19–21). However, similar regulations
occur when cancer cells are detected by the immune system
because pathogen-associated molecular patterns (PAMP) and
danger-associated molecular patterns (DAMP) elicit identical
responses. The adaptation of systemic iron homeostasis to
these inflammatory stimuli is orchestrated by soluble mediators
including cytokines, such as interleukin (IL)-6 and acute-phase
reactants, such as hepcidin and α1-antitrypsin (22–27). In
addition, ROS and reactive nitrogen species (RNS), generated to
damage cancer cells, also affect the way immune cells handle iron
at the systemic level and in the TME (28, 29). Increased iron
uptake into myeloid cells along with reduced iron export result
in iron storage and sequestration in the mononuclear phagocyte
system (MPS). Iron accumulation in the MPS may affect innate
immunity in either direction. Typically, T helper type-1 (TH1)-
driven pathways are inhibited by macrophage iron overload (IO),
whereas ROS-induced pro-inflammatory signaling events are
stimulated by iron (30). Which of these pathways predominate in
anti-tumor immunity remains to be determined, though, because
many results have been obtained in non-neoplastic inflammatory
models (31–34). As a side effect or iron sequestration in the MPS,
this trace element is less available for hemoglobin (Hb) synthesis
by erythroid progenitors (EPs) in the bone marrow. Taken
together, multiple mechanisms contribute to the alterations of
iron homeostasis observed in cancer patients, which progress to
clinically evident anemia of cancer (AOC).

AOC is extremely common and occurs in∼40–70% of cancer
patients (35, 36). Importantly, the anemia affects organ function,
and a higher degree of AOC is associated with reduced quality of
life and survival of cancer patients (37, 38). Therefore, treatment
of AOC is warranted but the benefit-to-risk ratio has to be
carefully considered on an individual basis because therapy-
associated effects on the underlying malignancy have been
observed, too. For example, treatment with iron, erythropoiesis-
stimulating agents (ESAs) or packed red blood cells (RBCs),
administered to treat or correct the AOC, all carry the potential to
promote tumor cell proliferation or impair anti-tumor immunity
and have been associated with a shortened survival or recurrence
of cancer (39–41). Theoretically, this is also true of novel
therapeutic options for anemia of chronic disease (ACD) or
AOC, especially the ones that target the hepcidin-ferroportin
(FPN)-1 axis or HIF activation. On the other hand, many cancer
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cells rely on GPX4 to evade ferroptosis, rendering it an attractive
target for tumor therapy. To avoid unintended effects, we need
prospective clinical outcome data from rigorously conducted
prospective randomized controlled trials (RCTs) as well as a
more profound understanding of the multiple interconnections
between ironmetabolism and tumor occurrence and progression.
This review provides an overview of our current knowledge of
some of these interconnections.

FERROPORTIN-1 FORMS THE “IRON
GATE” TO THE CIRCULATION

Iron homeostasis is tightly maintained because too little iron
impairs cell metabolism and function whereas too much iron
is potentially toxic (42, 43). In mammals, the major regulated
step in systemic iron homeostasis is its transfer to the circulation
at sites of iron absorption or recycling because no controlled
excretory mechanism exists (44). The principal protein to
mediate iron transfer from cells to the circulation is FPN1, the
only ferrous iron exporter known. FPN1 is highly expressed
in iron-recycling macrophage populations, such as red-pulp
macrophages (RPMs) in the spleen and Kupffer cells (KCs) in the
liver, at the basolateral surface of absorptive intestinal epithelial
cells (IECs) in the duodenum and proximal jejunum and in the
synzytiotrophoblast (45, 46). FPN1 mediates efflux of ferrous
iron and cooperates with either of three multi-copper oxidases
able to convert ferrous iron to its ferric form, i.e., hephaestin,
ceruloplasmin, and zyklopen (47, 48). In the extracellular space,
ferric iron is bound by apo-transferrin (TF). TF is the key iron
transport protein in plasma, accepts one or two iron atoms
per molecule and distributes them as holo-TF throughout the
body for cellular uptake by transferrin receptor (TFR)-1 and
utilization, for example by the erythron (Figure 1).

Given its position as a gatekeeper to the circulation,
FPN1 expression is controlled by several mechanisms ranging
from transcriptional to post-translational regulation: (i) Iron-
containing heme moieties stimulate FPN1 transcription via
the stress-sensitive transcription factor Nrf2 (for nuclear factor
(erythroid-derived 2)-like 2) (49), while increased iron levels
in cells can also mitigate FPN1 transcription by a thus far not
specified mechanism (50, 51). (ii) FPN1 mRNA translation is
fine-tuned by two miRNAs, miR-485-3p and miR-20a (42, 52).
The latter mechanism may be of special relevance for tumor
cells as exemplified by the fact that in non-small cell lung
cancer (NSCLC), increased miR-20a levels are found in biopsies,
and miR-20a represses FPN1 expression and enhances iron
availability for in vitro proliferation (53). (iii) An iron-responsive
element (IRE) is present in the 5′ untranslated region of FPN1’s
mRNA. Iron deficiency (ID) in the cytoplasm is detected by
iron-regulatory proteins (IRPs)-1 and−2, which enhances their
activity to bind to the IRE and thereby inhibit FPN1 translation.
By virtue of this mechanism, iron export is turned off when
intracellular iron is already scarce. The IRP/IRE system appears
to be relevant for tumor cell proliferation, too, in that activation
of IRP2 along with an increase in iron content is documented for
prostate cancer cells in vitro (54). Unexpectedly, overexpression

of IRP1 impairs the growth of lung cancer cells transplanted
into nude mice despite increased TFR1 levels (55). (iv) Most
importantly, the transport activity of FPN1 is regulated post-
translationally by its ligand hepcidin (Figure 1).

HEPCIDIN LEVELS REGULATE SYSTEMIC
IRON HOMEOSTASIS

Hepcidin is the body’s iron-regulatory hormone and it acts in
a negative feedback manner: Hepcidin binds to FPN1, closes
its iron transport pore and induces its retraction from the cell
surface with the subsequent induction of its degradation, thus
blocking cellular iron export via FPN1 (45, 56). Therefore, high
hepcidin levels, as observed in malignancy-driven inflammation,
reduce iron transport to the circulation and cause iron retention
in the MPS. Hepcidin is primarily formed and secreted by
hepatocytes and its expression underlies multiple regulatory
mechanisms which integrate the partly opposing measured
variables that indicate both, systemic iron supply and demand.
For example, an increase in body iron stores stimulates bone
morphogenic protein (BMP)-6 production by sinusoidal EC in
the liver (57) (Figure 1). BMP6 then acts on adjacent hepatocytes
and induces hepcidin via the SMAD (homologs of Sma and Mad
(mothers against decapentaplegic) proteins) pathway (58). In
contrast, elevated serum iron levels act on hepatocytes themselves
which carry a sensory protein complex of TFR1, TFR2, HFE
and hemojuvelin (HJV) on their cell surface (59). Iron sensing
by this complex also activates SMAD signaling, and hepcidin
transcription, consequently (60, 61). Therefore, increasing serum
iron levels are rapidly sensed by hepatocytes and balanced
out by hepcidin secretion. Proinflammatory cytokines typically
stimulate hepcidin expression, too. This effect is best described
for IL-6. Specifically, IL-6, produced by macrophages and many
other cell types, induces STAT3 (for signal transducer and
activator of transcription-3) phosphorylation and thus hepcidin
transcription, which contributes to the pathogenesis of ACD, as
outlined below (62–64).

In contrast to inflammatory signals, absolute ID attributable
to bleeding episodes or insufficient iron absorption, results in
a decrease of hepcidin levels. This downregulation promotes
iron absorption and re-distribution from the MPS to secure
iron delivery for Hb synthesis and cellular functionality (65–
67). In the setting of anemia, additional factors contribute
to a reduction of hepcidin synthesis. A central repressor is
erythroferrone (ERFE), a mainly erythropoietin (EPO)-inducible
protein secreted by EPs (68–70). Hepcidin also needs to be
repressed in hypoxia so that iron can be directed to erythropoietic
progenitors for Hb synthesis (71). Central factors suppressing
hepcidin production in anemia or hypoxic conditions include
EPO and growth differentiation factor (GDF)-15 as well as
platelet-derived growth factor (PDGF)-BB, the latter inhibiting
hepcidin transcription via CREB-H (for cyclic AMP response
element-binding protein H) (71–75). The transcription factor
CREB-H is also essential to induce hepcidin in response to
endoplasmatic reticulum (ER) stress, and this transcriptional
induction is modified by CHOP (for CCAAT-enhancer-binding
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FIGURE 1 | Systemic iron homeostasis in malignancy and potential effects of therapeutic intervention. After absorption by intestinal epithelial cells (IECs; depicted in

the left lower corner) in the duodenum and upper jejunum, iron is loaded onto transferrin (TF) and distributed throughout the body as TBI (for transferrin-bound iron).

TBI levels in the circulation are sensed by hepatocytes (depicted in the left upper corner) via transferrin receptors-1 and−2 (TFR1 and TFR2). An increase in iron levels

in plasma results in the secretion of hepcidin antimicrobial peptide (HAMP). HAMP is also induced upon tissue iron loading, which results in the release of

bone-morphogenic protein (BMP)-6 by liver sinusoidal endothelial cells (SECs; left upper corner). In addition, the cytokine interleukin-6 (IL-6) stimulates HAMP

production by hepatocytes in inflammatory conditions, such as neoplasia. HAMP binds to ferroportin (FPN)-1 and blocks its iron export function, particularly in

macrophages (MΦ; right upper corner), which results in iron sequestration and storage in ferritin (FT). FT can also be secreted by macrophages and taken up from

plasma via specific receptors, such as SCARA5 (for scavenger receptor class A member-5). In the setting of malignancy, macrophages and other types of immune

cells also secrete tumor necrosis factor (TNF). Among numerous functions, TNF inhibits the proliferation of erythroid progenitors (EP; right lower corner) in the bone

marrow and their responsiveness to erythropoietin (EPO) produced in the kidneys (not depicted). Therapeutic options (depicted in orange) for cancer-related anemia

include oral and intravenous iron preparations, anti-hepcidin strategies (AHS), erythropoiesis-stimulating agents (ESAs), and packed red blood cells (RBCs). All of

these medications have potential side effects (depicted in turquois) on immune cells. For example, intravenous iron and packed RBCs can result in macrophage iron

overload and impair their anti-tumor immune functions or facilitate the proliferation of tumor cells (Tu; depicted in the center, including dying [left-hand side] and

proliferating [right-hand side] tumor cells). Cell types are indicated in bold; processes in italic. BMPR, BMP receptor; DMT1, divalent metal transporter-1; ERFE,

erythroferrone; EPOR, EPO receptor.

protein homologous protein), STAT3 and SMAD5 (76–78).
Because ER stress is also exerted by chemotherapeutics, ER
stress-sensitive transcription factors provide another potential
link between iron metabolism and cancer (79, 80). In conclusion,
FPN1 and hepcidin form a functional unit that constitutes
the central regulator of systemic iron homeostasis both under
physiological and pathological conditions including cancer.

SYSTEMIC IRON HOMEOSTASIS IN
TUMOR PATIENTS

The recognition of tumor cells and of neoantigens provides a
strong stimulus for the immune system (81, 82). Both, innate

immune mechanisms and T cell responses against malignant
cells result in the production of a myriad of cytokines, such as
interferon (IFN)-γ, tumor necrosis factor (TNF), IL-1ß, IL-6,
IL-10, IL-13, and IL-22, all of which also impact on iron fluxes
in the MPS contributing to the development of hypoferremia
and hyperferritinemia as typical immune-driven alterations of
iron metabolism (83–90). For example, IFN-γ, produced by
TH1 cells, NKT (for natural killer T) cells and other cell types,
increases DMT1 (for divalent metal transporter-1) expression in
the MPS while decreasing FPN1 levels, thus contributing to iron
sequestration (91). TNF, secreted by many cell types including
TH1 cells, monocytes and macrophages, has similar effects,
causing an imbalance between iron import and export in favor
of the former, whereas IL-10 may mainly stimulate ferritin (FT)
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translation and thus iron storage (84, 91, 92). These alterations
divert iron fluxes into the MPS and make it unavailable for
erythropoiesis, a condition known as functional ID (93), a major
hallmark of AOC.

ANEMIA OF CANCER

Both IFN-γ and TNF have other pleiotropic effects and also
inhibit EPO expression in the kidney and erythropoiesis in
the bone marrow, aggravating the degree of AOC (94, 95).
The latter effects are based on the fact that IFN-γ inhibits
the proliferation of EPs and that TNF induces ROS, which
damage them (96). Moreover, it is feasible to assume that
these and other mediators also cause functional alterations in
the bone marrow microenvironment, for instance by shifting
hematopoiesis toward the myelopoietic direction or by impairing
iron transfer from erythroid island macrophages to EPs. In
addition, absolute ID may be present in cancer patients because
of bleeding episodes, for example from malignant ulcers in the
gastrointestinal or urogenital tract, extensive blood sampling,
surgery or other interventions (97, 98). Furthermore, many
other mechanisms may contribute to the development of AOC
depending on the specific tumor entity. In multiple myeloma
(MM), for example, IL-6 is produced by stromal cells and
malignant cells themselves within the bone marrow and it
appears to stimulate hepcidin production distantly in the liver
(99). Another pathogenetic factor often contributing to the
occurrence of AOC is the infiltration of the bone marrow by
malignant cells which may affect erythropoiesis by nutrient and
space deprivation, by damage to hematopoietic stem cells and
by disruption of the integrity and function of erythroid islands
and stem cell niches (40). These mechanisms may be most
relevant in hematopoietic malignancies, such as acute leukemia
in which a rapid expansion of malignant clones in the bone
marrow takes place. Also, radiotherapy and chemotherapeutics
have toxic effects on the bone marrow, thereby affecting all
lines of hematopoiesis including RBC production and circulatory
half life. Moreover, disease- or therapy-associated hemolysis
or microangiopathy, malnutrition and comorbidities, such as
chronic kidney disease (CKD) can contribute to AOC and affect
its frequency and severity.

In summary, the AOC can be considered a subgroup of the
ACD because of their similar pathophysiology. AOC is extremely
common, occurs in various types of malignancy and is present in
∼40–70% of cancer patients (35, 36). Its prevalence is affected
by the type of cancer and by anti-tumor treatment and, if left
untreated, it worsens as the disease progresses. Importantly, the
AOC is associated with a shorter survival of cancer patients, as
its occurrence and severity is associated with a more advanced
disease (37, 38).

TREATMENTS OPTIONS FOR
CANCER-RELATED ANEMIA

Anemia may negatively impact on the quality of life and cardio-
vascular performance of cancer patients, necessitating treatment

of AOC. To date, we lack information on whether correction
of the anemia exerts beneficial, neutral or detrimental effects
toward the course of the underlying malignant disease. Of
note, the pivotal therapy of AOC is the cure of the causative
malignancy, which often results in resolution of anemia over
time. As this may not always be feasible, other treatments
have been used or are in development to correct Hb levels.
Therapeutic options for the AOC include ESAs alone or
combined with iron supplementation, blood transfusions and
newly emerging treatment options with anti-hepcidin strategies
(AHS) and PHD (for prolyl HIF dioxygenases) inhibitors
(Figure 1).

In the setting of cancer and normal kidney function, ESAs
help to overcome the resistance of the erythron to EPO. This
growth factor is often suppressed by cytokines and, in the
setting of AOC, circulates at concentrations too low for the
degree of anemia. However, EPs are not the only cell types
responsive to EPO. EPO and ESAs also may have extra-
erythropoietic effects because the EPO receptor (EPOR) is
expressed by many cell types other than EPs (100). EPOR has
also been detected on many malignant cells, including NSCLC
and breast cancer cells, although some controversy exists on
the specificity of antibodies used to detect EPOR by means
of immunohistochemistry (101–104). In breast cancer, there
appears to be a negative correlation between EPOR expression
and disease outcome, possibly because EPO counteracts p53-
dependent apoptosis through induction of anti-apoptotic Bcl-
XL (for B-cell lymphoma-extra large) (105, 106). In addition,
EPO may stimulate the expression of TFR1, which increases TBI
uptake into cells and can enhance the availability of iron for
proliferation of malignant cells (107). EPOR is also present on
immune cells including macrophages, B cells and T cells and may
therefore exert diverse immune-modulatory effects (108, 109). In
macrophages, EPOR ligation inhibits the activation of the NF-
κB (for Nuclear factor kappa-light-chain-enhancer of activated B
cells) subunit p65. As a consequence, pro-inflammatory effector
pathways are impaired in EPO-stimulated macrophages (110).
Similarly, EPO also reduces the autoreactivity of T cells. On the
other hand, EPO beneficially affects the B and T cell responses
against malignant cells in a mouse model of MM, suggesting
differential effects of EPO and EPOR in various disease entities
(111, 112).

PHD inhibitors form a novel class of drugs for the
treatment of anemia. Their efficacy has been investigated in
patients with CKD. However, their safety profile in cancer
patients or in elderly individuals at increased risk of cancer
remains to be assessed. A recent work dealing with the safety
and efficacy of the PHD inhibitor roxadustat in a murine
model of spontaneous mammary carcinoma demonstrates
an improvement of cancer-related anemia together with
increased VEGF production in the malignant tissue. In spite
of that, no net boosting of tumor onset or progression is
observed. The lack of reports concerning other tumor types
and safety of iron and PHD application calls for further
research and the long-term outcomes of currently ongoing
phase III studies with different PHD inhibitors are awaited
(66).
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TRANSFUSION-RELATED IMMUNE
MODULATION

Blood transfusions may affect the outcome of cancer, too (113–
115). This may be attributable to the fact that packed RBCs
inevitably contain damaged cells and other immune-modulatory
compounds. Stringent quality control, short-term storage and the
depletion of leukocytes and platelets aim at reducing the risk of
transfusion-related immune modulation (TRIM). Nevertheless,
RBC damagemay occur during and after transfusion, for instance
due to mechanical stress or minor blood group incompatibilities,
which releases free Hb, heme and iron. Free Hb impairs
immunity and is a predictor of mortality in patients with
sepsis and during extracorporal membrane oxygenation, partly
because free heme elicits apoptosis (116–118). However, whether
these observations are also relevant to other inflammatory
conditions, such as neoplasia is unknown. Similarly, NTBI
is implicated in TRIM in preterm infants, but this requires
verification in adults and in the setting of malignancy (119). RBC
transfusions may, however, directly deliver various forms of iron
to tumor cells. Furthermore, RBCs themselves affect immune
cell functions. For example, they inhibit T cell proliferation via
direct cell-cell contact and affect the functions of dendritic cells
(DCs) (120, 121). Importantly, monocytes and iron-recycling
macrophages in the spleen and liver take up damaged RBCs
via scavenger receptors, degrade Hb using lysosomal enzymes
and heme oxygenase (HMOX)-1 and export iron via FPN1
(122, 123). FPN1+ iron-recycling monocytes may provide iron
to tumor cells in their vicinity, especially in the liver, where these
monocytes reside in large quantities, or after loading of ferric
iron onto TF. In addition to RBCs and their compounds, anti-
inflammatory cytokines and immune-modulatory extracellular
vesicles may be present in blood products and affect anti-tumor
immunity either systemically or in the TME. Therefore, both
soluble and cellular factors may contribute to the immune-
modulatory effects of RBC transfusions in cancer (Figure 1).

IRON SUPPLEMENTATION IN CANCER
PATIENTS

Iron supplementation is a treatment option for anemic cancer
patients with absolute ID. In the setting of immune activation
secondary to cancer or other diseases, though, absolute ID
is difficult to define as higher cut-offs for serum FT have
to be employed. To date, no gold standard biomarker test
is available which can differentiate between absolute and
functional ID in the setting of inflammation (124–126). However,
current clinical practice guidelines propose that a serum FT
< 100 ng/ml indicates absolute ID and a TSAT < 20%
together with a serum FT > 100 ng/ml characterizes functional
ID in cancer patients (127). Oral iron formulations often
cause gastrointestinal side effects and may be ineffective in
AOC, especially when hepcidin levels are high, limiting oral
bioavailability (128, 129). In addition, in vitro experiments
suggest that at least two forms of oral iron, ferric citrate and

ferric EDTA (for ethylenediaminetetraacetic acid), at supra-
physiological concentrations can activate the EGF (for epidermal
growth factor) receptor andMAP (formitogen-activated protein)
kinase signaling cascade in colon cancer cells, suggesting that
these seemingly harmless compounds may have oncogenic
potential when used at excess dosages (130). Intravenous iron
preparations are an alternative to oral iron and constitute iron-
carbohydrate nanoparticles which are engulfed and handled by
myeloid cells (131) (Figure 1). Efficacy and long-term safety of
intravenous iron formulations for the treatment of AOC are still
under debate and should be evaluated in prospective RCTs. Most
studies available suggest that intravenous iron supplementation
in solid tumor patients is well-tolerated, replenishes iron stores
and increases Hb levels, thus reducing the need for ESA
or blood transfusion (132). However, data on effects of iron
supplementation on tumor biology and long-term outcome
of cancer patients are still scarce and a matter of serious
concern. Until such data become available, a restrictive iron
supplementation regimen is warranted for symptomatic patients
with AOC but application thresholds for Hb and FT remain to be
defined based on clinical data (133, 134).

ANTI-HEPCIDIN STRATEGIES (AHS)

AHS target hepcidin production, its circulatory concentrations
or its effect on FPN1, thereby aiming to restore iron
delivery from the MPS to the circulation. While these
effects mean to provide iron for erythropoiesis, they
also may supply iron to tumor cells or affect anti-tumor
immunity. As for hepcidin production, BMPR/SMAD
and IL-6R/STAT3 signaling constitute two attractive
pathways to pharmacologically suppress hepcidin
production.

In vitro, BMP6 has both stimulatory and inhibitory effects
on tumor cells. BMP6 facilitates bone metastasis in an in
vivo model (135). By contrast, treatment with BMP6 inhibits
proliferation of breast cancer cells in vitro (136). Moreover,
BMP6, secreted by prostate cancer cells, stimulates macrophages
to produce IL-1α which in turn promotes tube formation by EC,
a prerequisite for tumor neovascularization (137). Furthermore,
BMP6 stimulates RNS production by macrophages but this
has not been reported for TAMs yet. Given BMP6’s opposing
effects, neutralizing antibodies administered to treat AOC may
affect the underlying malignancy in either direction. Similar to
BMP6 neutralization, BMPR phosphorylation can be inhibited
to decrease hepcidin production. The small molecule LDN-
193189 is efficient in doing so and ameliorates ACD in a non-
neoplastic rat model (27). ERFE analogs or other hypoxia- or
erythropoiesis-driven inhibitors of hepcidin production, such
as PDGF-BB, GDF-15 or PHD inhibitors may have similar
effects and may become promising treatment options for ACD
and AOC. Notably, endogenous heparins inhibit BMP/SMAD
signaling, too. Based on this observation, heparin derivatives that
lack anti-thrombotic but retain hepcidin-repressing effects have
been developed. These compounds are effective in the treatment
of ACD (138). Again, no prospective clinical data are available
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on the course of the underlying malignancy when hepcidin is
suppressed to treat AOC.

Blockade of IL-6 signaling with tocilizumab, a humanized
antibody directed against its cytokine receptor, is efficient in
treating ACD in an animal model of arthritis and in Castelman’s
disease patients in an RCT (139, 140). In a retrospective analysis
of patients with rheumatoid arthritis, long-term treatment with
tocilizumab did not affect the expected rate ofmalignancies (141).
Furthermore, the concerted blockade of IL-6 receptor and IL-
8 receptor inhibits breast cancer metastasis in mouse xenograft
models, suggesting that inhibition of hepcidin induction via the
IL-6/STAT3 pathwaymay be a rather safe approach to treat AOC,
at least in some tumor entities (142).

Direct neutralization of hepcidin can be achieved with
antibodies, anticalins, or Spiegelmers, all of which are being
evaluated for the treatment of ACD. Thus far, the hepcidin-
neutralizing antibody LY2787106 is efficient in mobilizing iron
in the setting of AOC (143). However, without further follow-
up, the long-term safety of either of these treatment strategies for
cancer patients is difficult to predict. Therefore, we need large
RCTs with relevant clinical endpoints to assess the efficacy and
safety of recently developed treatment options for AOC and to
define optimal therapeutic start- and endpoints in a prospective
fashion.

A QUADRIGA OF IRON-BINDING
PROTEINS IS PRESENT IN PLASMA

There are at least four iron-binding proteins in plasma which
carry the potential to either deliver iron to tumor cells or deprive
it from them: TF, lactoferrin (LF), FT, and lipocalin (LCN)-
2 can bind iron in different forms and their content of and
affinity for iron as well as the distribution of corresponding
cell surface receptors between normal nucleated cells and tumor
cells may determine whether the latter can benefit from these
proteins as iron sources (Figure 2). In addition, non-protein
bound labile iron, not detectable in healthy individuals, can occur
in the extracellular space in malignancies, especially in patients
with acute myeloid leukemia or myelodysplastic syndrome
(MDS) during conditioning for allogenic hemopoietic stem cell
transplantation (144, 145).

Since TF is the key iron transport protein circulating in
plasma, TFR1-mediated iron uptake is a simple and efficient
iron acquisition strategy for malignant cells (Figure 2). Not
surprisingly, overexpression of TFR1 has been found in many
tumor entities including breast cancer, esophageal cancer,
melanoma and glioblastoma cells (146–149). In addition,
compounds targeting TFR1 are under consideration for
molecular imaging and therapy of various tumor entities
including B and T cell lymphomas (150, 151).

LF is a TF homolog with two binding site for ferric iron
whose affinity exceed TF’s by far (152). It is the predominant
iron-binding protein in breast milk, saliva and tear fluid but
also present in plasma. LF delivers iron to cells expressing
specific receptors, one of which is GAPDH (for glyceraldehyde-
3-phosphate dehydrogenase), a multifunctional protein present

in the cell membrane of macrophages and other cell types (153,
154). GAPDH can also be secreted for subsequent autocrine
uptake of LF or TF into cells (154, 155). Although malignant
cells express GAPDH, uptake of LF-bound iron may be of minor
importance for their iron supply because LF’s predominant
effect on breast, colorectal and other cancer cells in vitro
is to impair signaling and cell cycle progression, to inhibit
proliferation and to induce cell death (156–158). In line with
these anti-neoplastic effects, mice lacking LF aremore susceptible
to dysplasia in the colon elicited by chronic inflammation
(159). In addition, LF affects immune cell function and the
composition of the intestinal microbiome but the impact of
these observations on cancer biology are unknown (160, 161).
However, it is interesting to note that a conjugate of LF and
doxorubicin has beneficial effects in a prostate cancer model
in vivo (162). Taken together, LF appears to have diverse anti-
neoplastic effects and its therapeutic potential warrants further
studies.

Macrophages secrete FT, which subsequently circulates in
plasma in an iron-poor form (163). Serum FT can deliver
iron to cells which carry corresponding receptors on their
surface (Figure 2). TFR1 mediates binding and uptake of
ferritin heavy chain (FTH) by some human cell types including
erythroid cells, and TIM2 (for T cell immunoglobulin and
mucin domain protein-2) fulfills a similar function in mouse
cells (164, 165). Analogously, SCARA5 (for scavenger receptor
class A member 5) is the receptor for FTL (166). Tumor cells
may express FT receptors allowing them to utilize serum FT
as iron source. Nevertheless, the expression of SCARA5 on
tumor cells inhibits cell proliferation and migration because it
impairs several signaling events including VEGF expression and
ERK (for extracellular signal-regulated kinases) activation (167).
High serum FT levels in cancer patients are associated with
more aggressive clinical course and poor treatment response
but it is unknown whether high FT actively contributes to
disease progression or is a biomarker reflecting systemic immune
activation (168), which is well-known to be associated with a poor
prognosis of cancer (169).

LCN2 may contribute to both iron uptake and iron release
by several cell types including cancer cells and TAMs (Figure 2).
Among many functions, LCN2 acts as soluble scavenger for
siderophores (170, 171). Siderophores are small iron-chelating
molecules originally identified in bacteria but also produced by
higher organisms including fungi and mammals (172–174). They
bind ferric iron with extraordinarily high affinity and catecholate-
type siderophores themselves are bound by LCN2. Thereafter,
complexes of iron, a catecholate-siderophore and LCN2 are
recognized by cell surface receptors including LCNR andmegalin
and thus mediate iron import into cells, which may contribute
to the survival of thyroid carcinoma and other malignant
cells (175, 176). However, LCNR has the intriguing property
of providing bi-directional iron transport capacity because it
can also accept intracellular LCN2 after binding of an iron-
laden siderophore in the cytoplasm (177). Due to the fact that
the oncogenic tyrosin kinase BCR-ABL (for breakpoint cluster
region-Abelson) represses LCNR expression, iron-deprivation
via the LCN2-LCNR pathway is inactive in BCR-ABL+ CML
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FIGURE 2 | Putative interactions of tumor cells and tumor-associated macrophages. Myeloid cells, including tumor-associated macrophages (M8; right-hand side)

possess multiple mechanisms to acquire iron including the uptake of non-transferrin-bound iron (NTBI) via divalent metal transporter (DMT)-1, endocytosis of

transferrin-bound iron (TBI) via transferrin receptor (TFR)-1 and phagocytosis of aged or damaged red blood cells (RBCs). RBCs contain large amounts of iron

incorporated in hemoglobin. The degradation of hemoglobin by proteases and heme oxygenase (HMOX)-1 releases free iron into the labile iron pool (LIP). An increase

in the LIP then facilitates the production of reactive oxygen species (ROS), which activate nuclear factor-kappa B. In contrast, labile iron impairs the generation of

reactive nitrogen species (RNS) via nitric oxide synthase-2. In the extracellular space, iron is present in at least four molecular forms, i.e., bound to transferrin (TF),

bound to lactoferrin (LF), bound to siderophores (Sid) and lipocalin (Lcn)-2, and incorporated in ferritin (FT). All these forms may supply iron to tumor cells (Tu; left-hand

side) because of their expression of specific receptors, possibly including the scavenger receptor A member (SCARA)-5, which binds FT. In addition,

non-transferrin-bound iron (NTBI) may be present in the tumor microenvironment and acquired via DMT1. Once in the tumor cell’s cytosol, labile iron can stimulate cell

growth and DNA replication, induce mutagenesis or result in ferroptosis. Ferroptosis is a specific form of programmed cell death which is initiated by an increase in the

LIP and in ROS production. ROS inactivate glutathione peroxidase (GPX)-4 after depletion of glutathione (GSH). Similarly, the degradation of FT by ferritinophagy, an

autophagic process requiring the FT chaperone NCOA4 (for nuclear receptor coactivator-4), frees iron and can induce ferroptosis. On the other hand, iron can also be

exported from the cytosol via ferroportin (FPN)-1 on tumor cells. However, this process is reduced when levels of hepcidin antimicrobial peptide (HAMP) in the

circulation or in the tumor microenvironment are high. Cell types are indicated in bold; processes in italic. DNA, deoxyribonucleic acid; Nrf2, nuclear factor

(erythroid-derived 2)-like-2.

(chronic myeloid leukemia) cells, rendering them resistant to
apoptosis (178). Expression of LCN2 is also associated with
epithelial-mesenchymal transition (EMT), invasion, progression
and metastatic spread of many types of cancer cells including
those of breast, cholangiocellular, intestinal or prostate origin
but model-specific differences exist (179–183). In addition, LCN2
forms a complex with matrix metalloproteinase (MMP)-9 (184).
This stabilizes MMP9 activity and may contribute to metastatic
spread (185). In mice with breast cancer, the oncogene HER
(for human epidermal growth factor receptor) induces LCN2
expression and antibody-mediated blockade by trastuzumab
antagonizes this effect (186). In prostate cancer cells, NF-κB
as well as mutation or loss of p53 result in enhanced LCN2
expression (187). In addition, pro-inflammatory cytokines, such
as TNF, IL-1ß, and IL-17 stimulate LCN2 expression via NF-
κB (188, 189). The latter pathway opens the possibility that the
immune response directed against tumor cells in fact induces a
LCN2-dependent survival strategy but the biological or clinical
significance of this putative paracrine mechanism has not been

experimentally addressed yet. On the other hand, LCN2 has
immune-modulatory effects itself which may help to limit
tumor growth (190–195). Of note, LCN2 also stimulates VEGF
expression via HIF and thus tumor angiogenesis (196). It is
possible that LCN2-mediated iron depletion is an underlying
mechanism but this has to be experimentally addressed (197).
In conclusion, LCN2 has diverse functions in the cross-talk of
different cell types in the TME and in cellular iron metabolism.

CELLULAR IRON HOMEOSTASIS

While circulating hepcidin levels have a major impact on the iron
content of FPN1-expressing cells, additional mechanisms exist
to maintain cellular iron homeostasis by balancing iron uptake,
release and storage. The relative contribution of mechanisms for
iron uptake is slightly different between cell types, though. For
many of these, including EPs, enterocytes, B and T cells, TFR1 is
assumed to be the quantitatively most important iron acquisition
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protein. TFR1 enables receptor-mediated endocytosis of TBI
from the circulating iron pool (42). The endosome containing
holo-TF and TFR1 is acidified, which results in dissociation of
the complex into its components, TFR1, TF, and iron. Thereafter,
ferric iron is converted to its divalent form by a reductase,
such as STEAP3 (for six-transmembrane epithelial antigen of
the prostate-3) before it can be shifted to the cytoplasm via
DMT1 (198). DMT1 is also present in the cell surface membrane,
where it mediates the uptake of ferrous iron in cooperation
with the reductase duodenal cytochrome B (DcytB). After entry
into the cytoplasm, ferrous iron is stabilized by a chaperone,
PCBP2 (for Poly(RC) binding protein-2), until further utilization
(199, 200). In the cytoplasm, labile iron can be incorporated
into FT for storage. FT is a multimer that consists of 24 FTH
and FTL subunits, assembled in cell-type specific proportions.
In EPs and macrophages, FTH is the predominant subunit,
possibly because these cells are exposed to the fastest iron fluxes
and FTH is the only subunit carrying the ferroxidase activity
essential for iron storage (201). In order to make FT-stored iron
metabolically available again, FT needs to be degraded by an
autophagosomal mechanism that relies on NCOA4 (for nuclear
receptor coactivator-4) as cargo receptor (202, 203). After re-
entry into the cytoplasmatic labile iron pool (LIP), iron can be
used for metabolic or synthetic purposes, such as incorporation
into iron-containing enzymes. Excess iron can also be exported
out of the cytoplasm by the activity of FPN1. Asmentioned above,
the expression of many iron-handling proteins, such as TFR1,
DMT1, FT, and FPN1 is fine-tuned at the post-transcriptional
and translational level via IRP/IRE interaction (204, 205). The
IRP system is of different importance for various cell types,
though. For instance, it is essential for IECs whereas proper
macrophage function in the absence of infectious agents does not
require IRP (206, 207). However, putative functions of IRPs in
TAMs have not been experimentally tested to date.

Inmanymacrophage populations including TAMs, the uptake
of aged or damaged RBCs by scavenger receptors contributes
to iron acquisition to a substantial extent (208, 209). In
addition, free Hb and heme are cleared from the circulation in
complex with the plasma proteins haptoglobin and hemopexin,
respectively (210, 211). This uptake is enabled by receptor-
mediated endocytosis via CD163 and CD91, protects from
oxidative damage by freeHb and heme and suppliesmacrophages
with iron.

FERROPTOSIS, A UNIQUE FORM OF
IRON-INDUCED CELL DEATH

Ferroptosis is a form of regulated cell death sui generis that
is elicited by iron-induced lipid peroxidation (3). The early
events of ferroptosis are interconnected with ferritinophagy
because NCOA4-facilitated FT degradation can provide free
labile iron (212) (Figure 2). In the subsequent series of events
culminating in iron-induced cell death, reduced glutathione
peroxidase (GPX)-4 activity results in glutathione depletion and
thus in increased susceptibility to oxidative stress. The tumor
suppressor protein p53 induces ferroptosis via modulation of

cysteine/glutamate metabolism with a direct impact on cellular
oxidative stress, and p53 mutations, encountered in many types
of cancer, result in the loss of p53-driven ferroptotic activity
and tumor cell survival (213). It is thus not surprising that
GPX4, ferroptosis and cancer are linked in several tumor entities
including breast cancer, sarcomas and B cell lymphomas (214). In
addition, the established anti-neoplastic drug sorafenib induces
ferroptosis in hepatocellular carcinoma cells in vitro and novel
compounds targeting GPX4 are effective in renal cell carcinoma
and diffuse large B-cell lymphoma in vivo (215). Therefore,
pharmacological modification of ferroptosis is a novel pathway
for the treatment of both hematologic and solid malignancies.

IRON REGULATES CELL PROLIFERATION,
METABOLISM, AND SIGNALING IN
CANCER

As stated above, iron is essential for cell division and basic
metabolic processes and hence indispensable for living cells
including malignant ones. From a canonical point of view,
cancer cells frequently demonstrate excessive proliferation rates
and high metabolic turnover, and are thus believed to require
more iron than their non-malignant counterparts. This notion
is supported by concomitant visualization of iron content in
tumor tissue and the physiological storage organs spleen and
liver. For example, iron accumulation in mammary tumors
of mice go hand in hand with depletion of systemic stores,
suggesting active iron mobilization to satisfy cancer cell needs
(216). Overexpression of FT, TFR1, and DMT1, dysregulation
of IRPs and of the FPN1-hepcidin axis in favor of an iron-
loading phenotype of cancer cells is linked to accelerated tumor
progression (217–226). In line with this concept, application
of iron chelators, dietetic iron depletion, and interference with
the hepcidin-FPN1 dyad to withdraw iron from malignant cells
is successful in cancer therapy in vivo and in vitro (227–
233). Of note, phlebotomy has been demonstrated to reduce
the prevalence of and death from cancer, too (234, 235).
Other reports, however, contradict this point of view and
demonstrate that increasing cellular and systemic iron stores
may, paradoxically, keep tumor progression at bay (236–238).
Hence, it is likely that an equilibrium of iron levels that meets
metabolic needs but still does not cause cellular damage, impair
oncogenic signaling or induce ferroptosis has to be established in
cancer cells to sustain disease progression.

There are several mechanisms by which iron influences
tumor cell growth in a positive or negative manner: (i) as a
catalyst in non-enzymatic reactions of ROS generation, (ii) as a
cofactor of enzymes involved in cell division like ribonucleotide-
diphosphate reductase, (iii) as regulator of cell cycle control
proteins, (iv) as a participant in pro- and anti-oncogenic
signaling, and, finally (v), as a key component of the hypoxic
response and metabolic as well as epigenetic re-programming,
mediated by 2-oxoglutarate dioxygenases (239, 240). In a pre-
malignant setting and in tumor progression, ROS generation
and DNA damage resulting from it, may increase mutation rate
and lead to a (more) malignant phenotype. This phenomenon
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is, indeed, reported in the animal model of HFE-associated
hereditary hemochromatosis (HH), Hfe−/− mice. There, high-
iron diet increases the level of DNA damage in colon and
mammary tissue and forms a possible mechanistic link between
dietary iron and elevated colon carcinoma risk (241–244). On
the other hand, IO and/or the occurrence of cellular labile iron
in cancer cells may promote cell death via the same ROS-
dependent mechanism, especially in combination with pro-
apoptotic signaling and upon treatment with some chelating
compounds (245, 246).

Stalling of the cell cycle and induction of apoptosis in iron-
depleted cancer cells is a common observation made in multiple
cancer cell lines (227, 231, 247, 248). The underlying mechanism
is still not fully elucidated and can involve the distortion of
cyclin expression and CDK (for cyclin-dependent kinase) activity
pattern, as well as interference with the MDM2/p53 (for mouse
double minute-2) pathway (231, 249–251). In addition, heme-
iron directly interacts with p53 in normal hepatocytes and liver
carcinoma cells and decreases its stability (252).

Iron has either attenuating or stimulatory effects on multiple
signaling pathways. Iron affects NF-κB signaling by several
mechanisms, such as increased peroxynitrite generation and
subsequent tyrosine nitration in the inhibitory subunit of the NF-
κB complex, IκBα, which may lead to its enhanced degradation
(253). Iron on its own boosts IKK (for IκB kinase) activity as well
(254). Of note, such enhancement of NF-κB, the master regulator
of tumor-promoting inflammatory environment, may critically
contribute to carcinogenesis (255). Iron plays a pivotal role in the
stimulation of pro-inflammatory and oncogenic STAT3 signaling
in colonic and hepatocellular carcinoma, too (256–258). And iron
binding and activation of CDK1 with subsequent JAK2 (for Janus
kinase-2) stimulation is a possible mechanistic explanation for
this interplay. Iron is also shown to be involved in EMT, which
is crucial for metastasis. This process, in turn, is under control of
TGF-ß (for transforming growth factor-ß), WNT (for wingless-
related integration site) and NOTCH signaling; all of which are
stimulated by cellular iron loading and inhibited by its chelation
(259–262).

The family of 2-oxoglutarate-dependent dioxygenases
encompasses enzymes possessing ferrous ions in a non-heme
and non-sulfur-cluster form in their active centers, requiring
the citrate cycle intermediate 2-oxoglutarate as a cofactor for
their activity and utilizing O2 as oxidizing substrate for catalyzed
reactions. With those three components determining their
activity, such proteins can be regarded as universal sensors
of iron levels, energy status and oxygen levels in cells (263).
Two most prominent subfamilies of 2-oxoglutarate-dependent
dioxygenases are (i) Jumonji-type (JMJ) histone demethylases
and (ii) HIF prolyl/aspartyl hydroxygenases. The link of the HIF
hydroxygenases to iron metabolism of the normal and cancer
cell will be discussed below in more detail.

JMJ histone demethylases are a group of enzymes sharing
common structural motifs and a specificity for histone methyl-
lysines (264, 265). As such, JMJ proteins are responsible
for remodeling of the epigenetic landscape and tuning of
the expression pattern in response to changes in energy
status of the cell, oxygenation and iron levels (266–273).

Importantly, a broad spectrum of the subfamily members
displays overexpression and aberrant activity leading to
oncogene expression, metabolic re-programming and cell cycle
dysregulation in diverse malignancies (264, 274–279). In line,
pre-clinical studies with murine models of prostate, mammary
and lung cancer demonstrated high anti-neoplastic activity of
JMJ-type demethylase inhibitors stressing the importance of
JMJ-controlled epigenetic changes for malignancy (279–283). In
addition, in mammary and ovarian cancer models, such blockers
demonstrate interesting properties as they are particularly
effective in targeting cancer stem cells, which often cannot be
effectively reached by conventional chemo- and radiotherapy
(282–284). Although ferrous iron constitutes a vital component
of the JMJ-type enzymes, there are only few reports published to
date, which systematically focus on the interplay between cellular
iron status, JMJ enzyme activity and changes of epigenetic
landscape of tumor cells. It is expected though that ID, e.g.,
due to chelation, should dampen activity of the JMJ proteins
and, as a consequence, increase the general abundance of
methyl-lysine repressing marks leading to downregulation of
oncogene expression. There is indeed a major increase in histone
methylation after iron chelation with deferroxamine (DFO),
linking them to alterations in p21 and p53 expression (272).
Interestingly, particular iron chelators specifically inhibit JMJ
activity (285, 286); whole-genome epigenetic studies and reports
on their anti-neoplastic properties are, however, still missing.

IRON AND THE HYPOXIC RESPONSE ARE
LINKED IN NORMAL AND MALIGNANT
CELLS

Systemic and cellular adaptation to changeable concentrations
of oxygen in the environment and within the tissue stays
under control of evolutionary-conserved pathway of iron- and
2-oxoglutarate-dependent prolyl/aspartyl hydrogenases, PHDs,
FIH (for factor inhibiting HIF), and HIFs (287–289). Under
physiological O2 concentrations, both PHDs and FIH retain
their full activity and hydroxylate proline residues in the
oxygen-dependent domain (ODD) and asparagine residues in
the transactivation domain (TAD) within HIF1α and HIF2α
transcription factors. The PHD-mediated ODD hydroxylation
causes ubiquitination by VHL (for von Hippel Lindau) Ub-ligase
and targets the proteins for degradation. The TAD hydroxylation
catalyzed by FIH, in turn, has no effect on protein levels
but strongly inhibits its transcriptional activity. Under hypoxic
conditions, activity of PHDs and FIH is diminished, enabling
HIF1α and HIF2α accumulation, dimerization with the HIF1β
coactivator, nuclear translocation and induction of the hypoxic
response at the transcriptional level (289–292). Expression of
HIF1α and HIF2α is tissue specific with substantial overlap in the
repertoire of regulated genes. In tumor biology, HIF1α is believed
to be of specific importance. The repertoire of HIF1α-induced
genes encompasses angiogenic factors, such as VEGF and PDGF
molecules, stroma and immune differentiation signals and a
variety of amino acid and sugar transporters as well as enzymes
of oxygen-independent energy metabolism (287, 289, 293–296).
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Activation of HIF1α at the early stages of carcinogenesis is
crucial for the survival of the malignant cell since rapid cell
division leads to shortages in oxygen and nutrient availability.
HIF1α activation enables recruitment of blood vessels to the
rudimentary neoplasm (so called angiogenic switch) and shifts
the energymetabolism toward oxygen-independent glycolysis (so
called glycolytic switch), with both these features being regarded
as key properties of cancer (289, 295, 296).

Apart from oxygen concentration, iron availability is another
factor determining activity of PHD and FIH hydroxylases, since
redox-active iron ions are part of their catalytic centers. Along
this line, modulation of cellular iron levels by chelation (e.g.,
with DFO) or iron supplementation can stimulate or inhibit
the activity of these enzymes, respectively (263, 290, 297).
Interestingly, the size of iron stores is inversely correlated with
the degree of HIF-dependent respiratory response in humans as
well (298). In DCs, FT has a pivotal role in the regulation of
HIF1α as induction of FT by inflammatory stimuli decreases the
LIP and hence iron available for PHD metalation and activity
(299). As a result, scavenging of labile iron by FT causes HIF1α
accumulation even at physiological O2 concentrations. Whether
analogous mechanisms are active in other cell types, particularly
malignant cells, remains to be investigated. Few reports, however,
give some hints that the interplay of iron and HIF1α can bear
significance for cancer biology. For impacting on cancer cell
and tissue iron levels by means of TFR1 downregulation or
dietary ID leads to increased HIF1α activity culminating in
increased VEGF formation and cancer graft vascularization (10).
In addition, dietary ID can accelerate mammary tumor growth
and metastasis, and the activation of NOTCH signaling and
HIF1α by ID is discussed as explanation of these paradoxical
effects (237). In addition, low dietary iron intake affects tumor
growth and susceptibility toward anti-VEGF therapy, and low
iron diet results in a substantially better vascularization of the
tumors (300). The net tumor growth is, however, decelerated
following dietary ID as a result of slower tumor cell proliferation.

The question whether the functional iron/HIF1α interaction
bears biological importance pertains to the management of
AOC in the clinical setting as well. On one hand side, iron
supplementation in any form (oral or intravenous) in cancer
patients may bear a risk of faster progression due to stimulation
of cancer cell proliferation as demonstrated in numerous pre-
clinical reports (232, 259, 300). On the other, the same treatment
may, in addition to improving quality of life of the patient,
impair tumor metabolic adaptation and vascularization resulting
in better outcome (10, 301). A novel class of drugs for the
treatment of anemia, so called PHD inhibitors, which cause
HIF1α stabilization, is discussed above (302, 303).

IRON HANDLING BY TUMOR-ASSOCIATED
MACROPHAGES AND ITS IMPLICATION
FOR CARCINOGENESIS

Tumors can be considered as organ-like structures with complex
interactions between transformed and non-transformed cells.
Stroma cells are needed to support the malignant potential of

tumor cells, but tumors are additionally infiltrated by a wide
range of immune cells, such as TAMs (304). TAMs can represent
up to 50% of a tumor’s mass and studies evaluated a significant
link between TAM number and density with a poor prognosis of
the underlying malignant disease (305–307).

Following the conventional M1/M2 classification, TAMs
are typically M2-like cells and as such characterized by
high expression of HMOX1, mannose receptor and scavenger
receptor-A (308–313). M2-like TAMs preferentially home to
hypoxic areas of the tumor, where their pro-tumoral activities
are promoted (314). However, in cancer induced by chronic
inflammation, TAMs can display an inflammatory M1-like
phenotype or overlapping M1/M2 characteristics (315–317). In
addition, specific microenvironmental signals may be important
for different TAM activation states within the same tumor
(294). In mammary tumors, two different microenvironments
are infiltrated by different TAM subsets: (i) Sessile TAMs with
high phagocytic capacity and expression of M2-like markers
are present. (ii) Migratory TAMs are observed and produce
EGF to attract cancer cells (318–321). The diversity and
heterogeneity of TAMs in breast, lung, pancreas, brain and liver
cancers is increasingly appreciated, too (322). It is thus likely
that some TAM populations support tumor progression and
development of metastasis, whereas others have anti-tumoral
activities. Further insight in the microenvironmental stimuli,
including iron, effector molecules and signaling pathways, that
drive TAM heterogeneity within a tumor may be important to
establish options to specifically target, inhibit or destroy pro-
tumoral TAM populations in cancer patients.

As already stressed, macrophages residing in normal tissues
can be regarded as “gate-keepers” of iron metabolism, i.e., cells
which take up iron, store it in excess and export it to cover the
needs of the surrounding cells. This role can also be supposed
for TAMs in the TME and macrophage polarization dictates
the way they are handling iron: whereas FThigh, FPN1low M1-
like macrophages are predisposed to iron withdrawal, restriction
and storage, the FTlow, FPN1high M2-like subtype promotes iron
export and iron redistribution to the extracellular space. TAMs
display a strongly M2-polarized phenotype in most types of
malignancies and are ascribed such “iron-donating” features that
may contribute to their tumor-promoting properties (323). In
line with this model, human M2-skewed macrophages boost
proliferation of human cancer cells in vitro in an iron- and
FPN1-dependent manner (324). Data obtained with animal
models and human tumor tissue further stress the “iron gate-
keeper” and “iron donating” phenotype of TAMs. In murine
primary lesions of the prostate or breast as well as in lung and
brain metastasis, iron-storing macrophages can be visualized by
magnetic resonance imaging (MRI) and histology (325, 326).
In the human setting, iron deposition and expression of the
iron turnover machinery (i.e., FPN1, hepcidin, TFR1, and FT)
is significantly enriched in the macrophage and lymphocyte
compartment (327, 328). Some indirect hints for the preferential
active iron uptake by TAMs in the TME can be inferred from
MRI, microscopy and cytometry studies using iron nanoparticles
to specifically label this cell type (329–332). An interesting
additional phenomenon is the fact that TAM-derived FT acts on
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malignant mammary epithelium as a growth factor (333). These
growth-promoting effects of FT are, however, independent of its
iron content.

The canonical view on iron homeostasis stresses the central
role of the sole iron exporter FPN1 and its antagonist, hepcidin.
In accord with it, FPN1, highly expressed on alternatively
activated TAMs, should constitute the exclusive pipeline of
the macrophage-tumor cell iron transfer. Its functionality may,
however, not operate optimally under high systemic hepcidin
levels in cancer patients and in the inflammatory, hepcidin-rich
TME (219, 223, 327, 334). Importantly, increased hepcidin
is unequivocally linked to accelerated tumor progression
in experimental animals and in breast cancer individuals
(219, 224, 225). This paradox suggests either a hepcidin-
independent regulation of FPN1 in TAMs or the existence
of alternative iron transport routes in the TME. The former
possibility is supported by the data obtained in human
breast carcinoma (327). There, elevated FPN1 levels in the
macrophage infiltrate can be discerned in ductal carcinoma in
situ (DCIS) and ductal carcinoma as compared to normal breast
tissue. Concomitantly, the same stages of breast carcinogenesis
demonstrate substantially increased hepcidin. The existence of
FPN1-independent iron export can, in turn, be inferred from
few reports identifying TAMs as the main source of LCN2 (335–
337). Two reports dealing with the macrophage-epithelium iron
transfer in mammary carcinoma describe a critical contribution
of macrophage-secreted LCN2 to optimal proliferation and iron
supply of cancer cells in vitro (338, 339) (Figure 2).

The great majority of literature on TAMs and iron refers to
research on breast cancer. However, iron transfer in the TME
may be subject to mechanisms specific to a given tumor entity.
An interesting phenomenon, apparently contradicting the “iron-
donating” phenotype of TAMs is observed in a murine lung
carcinoma model. There, TAMs dwelling in hemorrhagic regions
surprisingly demonstrate excessive iron loading and the classical
M1 phenotype with a notable upregulation of NOS2 and toxicity
against malignant cells (332). Mechanistically, such properties
are provoked by ingestion of damaged RBCs reaching the
tumor parenchyma via leaky tumor vasculature. Of great clinical
interest, the M1 phenotype can also be induced by treatment
of tumor-bearing mice with iron microparticles resulting in net
tumor suppression (332).

Summarizing, TAMs, in parallel to “physiological” tissue-
resident macrophages, can be regarded as the key nexus of iron
homeostasis in the TME. These cells, however, can function
both as tumor-promoting donors of the element and/or as iron-
laden tumor cytotoxic leukocytes. For it remains open whether
damaged RBCs, ingested apoptotic cells, which are widespread in
the malignant milieu, TAM-derived siderophore-bound iron, FT
or TBI from the systemic circulation pose such an iron source
(332, 337).

IRON CONTROLS T CELL FUNCTION

The microenvironment of solid tumors also contains tumor-
infiltrating immune cells (TILs), including B cells and T cells,

natural killer (NK) cells, neutrophils, myeloid-derived suppressor
cells (MDSCs), and TAMs, and the function of all of these cells
may be affected by iron (340–344).

For example, iron has immunosuppressive effects on T cell
responses. According to early studies, the immune system and
its circulating components are involved in the recognition and
binding of metals as protection against metal toxicity, and the use
of metals, such as iron, by bacteria or transformed cells (345). In
line, in patients with thalassemia, iron influences the expansion
of different T cell subsets (346). Furthermore, in patients with
HFE-associated HH, a decrease in T cell numbers and activation
defects can be observed, which may be causally linked to the
toxic effects of free iron and oxidative stress (347). Additionally,
abnormalities in the relative proportions of CD4+ and CD8+

subpopulations are described (348, 349). A similar impairment
is observed in individuals receiving blood transfusions in the
setting of TRIM and following intravenous iron infusions for the
treatment of ID anemia or AOC as discussed above (350–353).

In general, there are different types of cancer in which iron
has been implicated (354). However, very few reports address
the influence of iron on cells of the adaptive immune system.
The majority of studies deal with patients suffering from breast
cancer. In these patients, a link between dysregulation of iron
metabolism and progression of cancer exists (355). Experimental
data indicate that a chronic failure in iron-dependent redox
balance leads to the loss of tumor suppressors, oncogene
expression and triggering of pro-oncogenic signaling, such as
WNT and NF-κB pathways (259, 356–359). Several studies also
point out that elevated iron stores are associated with increased
risk for cancer development (360–362). However, many of these
studies use serum FT as an indicator of iron loading which may
bemisleading because even in subclinical inflammation, FT levels
may be increased by the action of cytokines, thus not accurately
reflecting iron stores. Therefore, the association of high FT levels
with the risk of cancer may in part reflect an inflammatory
state as an expression of incipient cancer rather than a causative
role of iron loading. Increased serum FT has been found to be
associated with breast cancer risk, and FT levels in cancer-tissue
are significantly increased in cancer specimens and correlate
with higher degrees of tumor cell proliferation (363, 364).
Functionally, FT secreted by TAMs is proposed to act as tumor
growth factor and immunosuppressant (333, 365). However, the
opposite functions of this protein on anti-tumor immunity are
reported as well. The subcellular localization of FTH is important
in triple negative breast cancer (366). This may be attributable
to the fact that cytoplasmic FTH in tumor tissues regulates
the MHC-I part of the antigen processing and presentation
pathway and subsequently attracts CD8+ T cells to target tumor
cells, whereas nuclear FTH supports the survival of cancer cells.
Consequently, animal studies indicate that low iron nutrition and
application of iron chelators moderate tumor growth and inhibit
metastasis (367). Of note, FT can act as a pro-inflammatory
mediator independent of iron availability, thereby affecting
protein kinase C- and NF-κB-mediated signaling processes (368).

It is well-known that the proliferation of T cells requires
iron, and intracellular iron stored in FT is thought to sustain
proliferation of immune cells (369–371). In addition, a mutation
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in the gene encoding TFR1, TFRC, results in impaired T as well
as B cell function (372). In line, ID reduces T cell numbers
and impairs the activity of NK cells (373). Furthermore, iron
chelation inhibits the production of IFN-γ, IL-2, and GM-
CSF (for granulocyte-macrophage colony-stimulating factor) by
T cells (374). On the other hand, patients suffering from IO
secondary to ß-thalassemia have decreased CD4+ and increased
CD8+ T cell numbers, while patients with HFE-associated HH
show a trend to lower CD8+ T cells dependent on their HLA
haplotype (347, 375–377). Along with this, genetic deletion of
FTH reduces the number of mature B cells and peripheral T cells
in all lymphoid organs as a result of increased LIP and enhanced
ROS formation (378). Therefore, a balanced iron metabolism
is central for proper T cell function, but to which extent
dysbalances affect the clinical course of cancer awaits further
investigation.

PUTATIVE ROLES OF IRON IN CANCER
BIOLOGY BEYOND CANCER AND
IMMUNE CELLS

Iron may influence cancer biology independent of its effects
on cancer and immune cells, for example by altering the
microbiome or the function of stromal cells in the TME. The
role of the microbiome in cancer development is increasingly
appreciated (379). This is especially true of the pathogenesis of
colon cancer, which is thought to be strongly affected by the
intraluminal microflora of the gastrointestinal tract (380). Of
note, the composition and the iron content of the diet influences
the diversity of the gastrointestinal microbiome, which may have
secondary effects on IECs and the mucosal immune system.
(381–385). These alterations may impair GI barrier function,
undermine colonization resistance and increase the risk of colon
cancer, but probiotic supplementation may prevent these adverse
effects (386). In addition, heme has pro-oxidative properties
and acts as DAMP which is recognized by TLR4 (for toll-like
receptor-4) and cryopyrin (387, 388). As a consequence, pro-
inflammatory signaling is initiated in IECs and ECs, whereas
myeloid cell functions tend to be impaired by heme excess (389–
392).

Of interest, the microbiome also increases the potential of
heme to cause lipid peroxidation, whereas depletion of bacterial
commensals with broad-spectrum antibiotics reverses this effect
(393). In addition, antibiotic treatment suppresses bacteria that
impair the intestinal mucus barrier thereby preventing heme’s
proliferation-inducing effect on IECs (394). Moroever, heme
causes mutations in genes promoting colon cancer, such as APC
(for adenomatous polyposis coli) and KRAS (395). These data
suggest that an interaction between diet, the microbiome and
the intestinal epithelium determines the susceptibility to colon
cancer, indeed.

Various species of enterobacteriaceae produce siderophores
in the GI lumen. Siderophores scavenge iron, which results in
iron depletion of IECs and subsequent HIF1α activation (396).
Apparently, activation of HIF1α promotes GI inflammation
and alters WNT signaling but does not directly contribute

to the pathogenesis of colon cancer (397–399). In contrast,
HIF2α activation in IECs stimulates their proliferation rate and
promotes neutrophil recruitment to the TME, thereby facilitating
the occurrence of colon carcinoma (400, 401). This is also
relevant for systemic iron homeostasis because HIF2α controls
DMT1 and DcytB expression and induces FPN1 expression in
response to ID (402–404). In addition, activation of HIFs results
in VEGF production, which acts on ECs and is a prerequisite
for tumor angiogenesis. Thus, the HIF-VEGF axis is another
potential pathway linking intestinal dysbiosis to pro-oncogenic
behavior in neoplastic and stromal cells.

In addition, LCN2 affects the balance between bacteria that
do or do not utilize LCN2-susceptible siderophores, such as
catecholate-type ones (405). In the absence of LCN2, Alistipes
species outcompete other commensals because of their ability
to secrete enterobactin, resulting in dysbiosis that promotes
colorectal carcinogenesis (406).

In conclusion, dietary iron affects IECs, mucosal immune
cells and the microbiome and modulates their interaction, thus
promoting colorectal carcinogenesis.

DISCUSSION

Our tools to manipulate systemic iron homeostasis have
been evolving over the last couple of years. Medications for
the treatment of ACD have direct or indirect effects on
iron homeostasis and include AHS, calcium channel blockers,
cytokine antagonists, PHD inhibitors, kinase inhibitors, ESAs
and multiple iron preparations (302, 407–411). However, not all
of these compounds are well-studied in cancer patients yet. Also,
the local effects that these medications may have in the TME
and therefore, in the medium-term, on the underlying malignant
disease are largely unknown. We thus need to gain further
insight into the effects of such treatments on the composition
of the TME, the immune control of cancer, the metabolic re-
programming of immune and cancer cells, their impact on
cellular stress and proliferative/apoptotic/ferroptotic responses,
along with off-target effects of such treatments linked to e.g.,
tumor vascularization and development of distant metastasis.We
are also in a need to gather further knowledge on the effect of
AOC correction by any treatment on the subsequent course of
the malignant disease along with a personalized view depending
on the tumor entities and specific factors of the individual patient.

It is only in recent years that we have begun to unscramble the
complex, reciprocal and countless interconnections between iron
metabolism and cancer as reviewed herein. Observationsmade in
in vitro systems, co-culture models, organoids, and small animal
models need to be carefully translated to the human setting.
Novel technology, such as laser dissection microscopy, multi-
laser flow cytometry and single-cell RNA sequencing on human
cancer tissue may help in this translation process. Eventually, we
face the challenge to close existing knowledge gaps and connect
the dots to see the complete picture of the many roles of iron
in cancer occurrence, progression and treatment for the sake of
improved care for hemato-oncologic patients.
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