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Objective. To assess the diagnostic performance of clinically common single markers and combinations to distinguish non-
metastatic breast cancer and benign breast tumor. A predictive model with a better diagnostic ability for nonmetastatic breast
cancer was established by using the diagnostic process. Methods. A total of 222 patients with nonmetastatic breast cancer and 265
patients with benign breast disease were enrolled in this study. CEA, Ca 15-3, Ca 125, Ca 72-4, CYFRA 21-1, FERR, AFP, and NSE
were measured by an electrochemiluminescent immunoenzymometric assay on the Elecsys system. There are four key steps for
our diagnostic workflow, that is, feature selection, algorithm selection, parameter optimization, and outer test data was used to
validate the optimal algorithm and markers. Results. CEA, Ca 15-3, CYFRA 21-1, AFP, and FERR were selected using the ¢-test in
our inner development set. The optimal algorithm among logical regression, decision tree, support vector machine, random forest,
and gradient boost machine was selected by 10-fold cross-validation, and we found that random forest and logistic regression are
the better classification. The outer test data was used to validate the best markers and classification. The random forest with CEA,
Ca 15-3, CYFRA 21-1, AFP, and FERR showed the optimal combination for distinguishing breast cancer and benign breast
disease. The AUC value was 0.888, the cut-off point was 0.484, and sensitivity and specificity were 78.9% and 90.1%. Conclusions.
No single marker of these eight markers was good at identifying nonmetastatic breast cancer from benign tumors. But a diagnostic
analysis workflow was established to develop a predictive model with better diagnostic capability for nonmetastatic breast cancer.
This workflow is also applicable to the optimization of other disease markers and diagnostic models. The predictive model showed
good diagnostic performance, and it could be gradually incorporated as a support method for the diagnosis of nonmetastatic

breast cancer.
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1. Introduction

Breast cancer is by far the most frequently diagnosed cancer
among women with an incidence of 11.6% and overall
cancer mortality of 6.6% worldwide [1]. There were an es-
timated 2.0 million new cases (24.2% of all cancers in
women) and 0.6 million cancer deaths (15.0% of all cancer
deaths in women) in 2018 [1]. Early diagnosis plays an
important role in optimizing treatments and reducing the
mortality of breast cancer patients [2]. Screening of early
breast cancer forms part of the state programme of routine
annual or biannual ultrasonography or mammograms for
women within a certain age range [3], in China, between 40
and 70 years old. At present, mammography is the most
common screening method for the detection of breast
cancer. However, the results are not particularly satisfactory
because of the high false-positive and false-negative rates [4].
Ultrasonography is also used for the early diagnosis of breast
cancer in China. Unfortunately, approx. 20% of breast
cancer patients cannot be diagnosed [5]. Therefore, a
complementary instrument is required to get better results
for the early diagnosis of breast cancer.

The common tumor markers in clinical use are domi-
nant for various tumors, such as carcinoembryonic antigen
(CEA) for colorectal cancer, alpha-fetoprotein (AFP) for
hepatocellular carcinoma, Ca 12-5 for ovarian cancer, and so
forth [6]. But they cannot be used as effective indicators for
the diagnosis of breast cancer. There is no clinical guide, or
even consensus among experts, with regard to the use of
biomarkers for the early diagnosis of breast cancer. CEA and
Ca 15-3 are recommended only for therapeutic monitoring
of breast cancer and early detection of recurrent disease but
not for breast cancer detection because of their low sensi-
tivity [7-9]. However, many cancers may not be detected by
their dominant markers but by the elevation of tumor
markers not recommended for monitoring their tumor
activity [10]. And screening with multiple tumor markers
also allows cancers to be detected in the absence of their
dominant markers [10].

Multivariate statistics combined with machine learning
as a means of clinical data analysis have been reported in
many pieces of literature, especially in the field of breast
imaging [11]. However, for the study of molecular markers
distinguishing benign and malignant breast diseases, there is
only the selection of potential universal markers that have
been made and no report on the optimization of indicators
and classifiers. In this study, we compared the levels of
marker panel (CEA, Ca 15-3, Ca 125, Ca 72-4, cytokeratin
fragment 19 (CYFRA 21-1), ferritin (FERR), AFP, and
neuron-specific enolase (NSE)) in breast cancer with that in
benign controls, respectively, and tried to find an effective
marker combination and a better diagnostic capability for
nonmetastatic breast cancer.

2. Materials and Methods

2.1. Patients. The development set included 111 breast
cancer and 132 benign samples, which were obtained from
the First Hospital of Tsinghua University. The study was
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performed according to the standards of the Institutional
Ethical Committee and the Helsinki Declaration and was
approved by the clinical ethics committee of the Tsinghua
University. The patients with breast cancer were selected
according to the following criteria: (1) all patients with breast
cancer were diagnosed by pathology; (2) all patients were
female; (3) all patients had no distant metastases; (4) no
patients received prior neoadjuvant oncological treatment;
and (5) no patients were previously diagnosed with any
other tumor. The patients with benign breast diseases were
selected according to the following criteria: (1) all patients
with benign breast diseases were diagnosed by pathology; (2)
all patients were female; (3) no patients were previously
diagnosed with any other tumor.

According to these criteria, we collected a validation set,
including 111 breast cancer and 133 benign samples from
the First Hospital of Tsinghua University, as the outer test
group. All of these cancer and benign samples were ap-
proximately age-matched and were included according to
the above criteria. All patients underwent surgical resection
of the tumors. The clinicopathological characteristics and
tumor stage were assessed based on the histopathological
results.

2.2. Marker Analysis. Tumor marker measurements were
performed strictly according to the manufacturer’s in-
structions and quality control was ensured. Before surgery
and after overnight fasting, 10ml of venous blood was
collected into a vessel tube containing heparin as an anti-
coagulant from each subject and was subsequently centri-
fuged (1500 x g for 15 min) to collect clear serum. The sera
were then transferred into sterile vials and immediately
stored at —80°C until further analysis. Subsequently, CEA, Ca
15-3, Ca 125, Ca 72-4, CYFRA 21-1, FERR, AFP, and NSE
were assessed by an electrochemiluminescent immu-
noenzymometric assay (Roche Diagnostics, Germany) on
the Elecsys system.

2.3. Marker and Model Optimization. We aimed to build a
binary classifier that can distinguish between the non-
metastatic breast cancer and benign breast tumors accu-
rately. The workflow is described in Figure 1.

There are four key steps for our diagnostic workflow, that
is, feature selection, algorithm selection, parameter opti-
mization, and an outer validation for the optimal algorithm
and markers. All the analysis was performed using rpart,
random forest, 1071, gbm packages of R software (http://
WWW.r-project.org).

In the main modeling and mining methods, the “glm”
function in the “stat” package is used for logistic regression,
the family parameter is set as “logit”, and the default pa-
rameters are used for the rest. The decision tree uses the
“rpart” function in the “rpart” package, sets the method
parameter as “class”, and uses the default parameters for the
rest. Random forest uses the “randomForest” function in the
randomForest package and sets the “mtry” parameter as “2”,
the “ntree” parameter as “500”, the proximity parameter as
“T”, and the importance parameter as “T”. The SVM model
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FIGURE 1: A workflow to develop a better diagnostic capability for nonmetastatic breast cancer. BC means breast cancer patients; BB means

benign breast disease patients.

uses the “svm” function in the “e1071” package, and the
default parameters in the function are used for the
parameters.

Student’s t-test was carried out using internal training
data to obtain the different indicators as potential markers
between breast cancer and benign breast diseases.

The 10-fold cross-validation was carried to ensure the
repeatability of the results by setting random seeds. By
evaluating the performance of the training model, the op-
timal algorithm is selected in logistic regression, decision
tree, support vector machine, random forest, and gradient
boost machine. The sensitivity, specificity, accuracy, and area
under the curve (AUC value) were determined. All the
values are calculated as the mean value based on the inner
training data was randomly divided into 10 subsets with
equal sizes, and a single subset is retained as the validation
data for evaluating the model, and the remaining 9 subsets
are used for training.

Finally, the outer test data is used as external validation
to verify the optimization algorithm and tags.

2.4. Statistical Analysis. Results are expressed as the
mean +SD for continuous variables and as the number
(percent) for categorical variables. All statistical analyses
were conducted using R software version 2.9.1. All statistical
analyses were carried out using R software version 2.9.1. The
differences of tumor markers between breast cancer and
benign breast diseases were compared. When the data
obeyed normal distribution, t-test was used; otherwise,
Wilcoxon rank-sum test was used.

3. Results

3.1. Patient Characteristics. A total of 222 patients with
nonmetastatic breast cancer and 265 patients with benign
breast disease were enrolled in our study. All subjects were
female from Han Chinese. The basic clinical and biological

characteristics of the nonmetastatic breast cancer patients in
the development set and validation set enrolled in this study
are summarized in Table 1. The mean age of patients with
benign breast disease was 42.6 +12.6 years in the develop-
ment set and 42.7 + 12.4 years in the validation set. There is
no difference in clinicopathological characteristics between
the two groups.

3.2. Blood Biomarkers Analysis. The levels of serum CEA, Ca
15-3, Ca 125, Ca 72-4, CYFRA 21-1, FERR, AFP, and NSE in
all patients were analyzed. Univariate statistical analysis
using the R project was performed to validate the statistical
significance (P <0.05) of the tumor biomarker differences
between breast cancer patients and benign breast disease
patients. Five tumor biomarkers were selected with P < 0.05
(Table 2). These five differentiating tumor biomarkers, in-
cluding CEA, Ca 15-3, CYFRA 21-1, AFP, and FERR showed
increased levels in breast cancer patients compared with
benign breast disease patients (Figure 2).

3.3. Relationships between Serum Biomarkers and Clinical
Characteristics of Breast Cancer Patients. The levels of these
eight tumor biomarkers in 222 breast cancer patients of the
development and validation set with different clinicopath-
ological characteristics were analyzed to investigate the
relationship between these eight tumor biomarkers and the
clinical characteristics of the patients. We performed a
matrix correlation analysis of tumor biomarkers and clin-
icopathological characteristics of patients with breast cancer,
which can be seen from the graph (Figure 3(a)). The changes
in the levels of these eight biomarkers were not correlated
with histology and molecular subtypes. However, the sig-
nificant difference between CEA and Ca 15-3 levels was
higher in Tis-T1 than in T2-3 (P <0.05) (Figure 3(b)). And
for the clinical staging of breast cancer, Ca 15-3 levels were
also higher in stage III than that in stage I and stages 0-II,



TaBLe 1: Comparison of clinicopathological characteristics in
patients with nonmetastatic breast cancer in development set and
validation set.

Number of patients (%)

Characteristic o P value
Development set Validation set

Age (years)

Mean + SD 57.5+12.9 57.1+14.6 0.829

Range 29-86 22-91

Tumor location 0.591

Left 55 (49.5%) 51 (49.5%)

Right 56 (50.5%) 60 (50.5%)

Histology 0.868

In situ 5 (4.5%) 6 (5.4%)

Ductal 77 (69.4%) 82 (73.9%)

Lobular 4 (3.6%) 2 (1.8%)

Others 25 (22.5%) 21 (18.9%)

T-stage 0.391

Tis 5 (4.5%) 6 (5.4%)

Tl 39 (35.1%) 53 (47.8%)

T2 62 (55.9%) 48 (43.2%)

T3 5 (4.5%) 4 (3.6%)

N-stage 0.824

NO 74 (66.7%) 66 (59.5%)

N1 25 (22.5%) 28 (25.2%)

N2 6 (5.4%) 9 (8.1%)

N3 6 (5.4%) 8 (7.2%)

WHO grade 0.664

I 13 (11.7%) 17 (15.3%)

i 50 (45.1%) 51 (46.0%)

111 48 (43.2%) 43 (38.7%)

Clinical stages 0.584

0 5 (4.5%) 6 (5.4%)

I 28(25.2%) 33(29.7%)

I 65 (58.6%) 53 (47.8%)

111 13 (11.7%) 19 (17.1%)

ER expression 0.613

Positive 87 (78.4%) 81 (73.0%)

Negative 20 (18.0%) 24 (21.6%)

N/A 4 (3.6%) 6 (5.4%)

PR expression 0.763

Positive 72 (64.9%) 73 (65.8%)

Negative 35 (31.5%) 32 (28.8%)

N/A 4 (3.6%) 6 (5.4%)

HER-2 expression 0.638

Positive 29 (26.1%) 33 (29.7%)

Negative 78 (70.3%) 72 (64.9%)

N/A 4 (3.6%) 6 (5.4%)

Ki-67 expression 0.291

<14% 28 (25.2%) 37 (33.3%)

>14% 79 (71.2%) 68 (61.3%)

N/A 4 (3.6%) 6 (5.4%)

Molecular subtypes 0.203

Luminal A 20 (18.0%) 30 (27.0%)

Luminal B 68 (61.3%) 52 (46.9%)

HER-2 (+) 8 (7.2%) 14 (12.6%)

Basal-like 11 (9.9%) 9 (8.1%)

N/A 4 (3.6%) 6 (5.4%)

ER: estrogen receptor; PR: progesterone receptor; HER-2: human epidermal
growth factor receptor 2; N/A: not available.
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respectively (P <0.05) (Figure 3(c)). For the molecular
marker, CYFRA 21-1 had higher levels in patients with the
expression of Ki-67 at >14% (P <0.05) (Figure 3(d)). Fur-
thermore, NSE was also downregulated in grade III patients
compared with grade II patients (P <0.05); and FERR was
downregulated in grade II patients compared with grade I
patients (P <0.05) (Figure 3(e)). Considering the staging of
lymph nodes, the result showed that Ca 15-3 was upregu-
lated in N2 patients compared with NO and N1 patients,
respectively (P <0.05) (Figure 3(f)). But, NSE was down-
regulated in N3 patients compared with NO, N1, and N2
patients, respectively (P < 0.05).

3.4. Differential Diagnostic Value of Biomarkers. The capacity
of these five tumor markers to differentiate breast cancer
patients from patients with benign breast disease was
assessed with ROC analysis. CEA (AUC 0.716) and CYFRA
21-1 (AUC 0.761) showed good diagnostic performance.
Sensitivity and specificity are 64.0% and 66.9% for CEA, and
64.0% and 80.5% for CYFRA 21-1 (Figure 4; Table 3).

3.5. Establishment and Validation of a Predictive Model.
Multivariate statistical analysis was used for further research.
We chose logistic regression, decision tree, random forest,
support vector machine, and gradient boost machine as
alternative algorithms. Through the 10-fold cross-validation,
the metrics of each model were calculated, respectively,
including accuracy, sensitivity, specificity, and AUC.
According to the statistical analyses of the results of 10
verifications, we found that logistic regression had a similar
classification effect with random forest, which was specifi-
cally shown as high AUC value and accuracy (Table 4).

Later, we used outer validation data to perform the out-
of-project test. Through ROC comparison, we found that
random forest showed the best diagnostic performance with
AUC of 0.888, sensitivity of 78.9%, and specificity of 90.1%
(Figure 5(a)), compared to the AUC of 0.777 in the logical
regression model (Figure 5(b)). Also, variables importance
in the model of the random forest was analyzed to evaluate
the importance of variables from two perspectives: Mean
Decrease Accuracy and Mean Decrease Gini. The results
showed that CYFRA 21-1, CEA, and Ca 15-3 were the three
most important variables in the model (Figure 6).

4. Discussion

In the present analysis, we investigated a panel of different
markers to define which marker or which combination can
be used in detecting nonmetastatic breast cancer from breast
lumps and to develop a workflow with better diagnostic
capability for nonmetastatic breast cancer.

A total of eight clinically used markers, including CEA,
Ca 15-3, Ca 125, Ca 72-4, CYFRA 21-1, FERR, AFP, and
NSE, were detected in all patients. Among them, five
markers such as CEA, Ca 15-3, CYFRA 21-1, FERR, and AFP
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TaBLE 2: Comparison of plasma biomarkers levels in breast cancer patients and benign breast disease patients.

Mean + SD
Markers . . P value Fold change
Breast cancer Benign breast disease
CEA (ng/mL) 2.58 +5.24 1.47 +0.87 0.002 1.76
Ca 15-3 (U/mL) 12.84+6.9 9.2+3.98 0.000 1.4
CYFRA 21-1 (ng/mL) 2.59+1.46 1.66+0.71 0.000 1.55
AFP (IU/mL) 2.86+1.64 2.41+1.18 0.030 1.19
FERR (ng/mL) 102.81 +75.45 63.2 +51.52 0.000 1.63
Ca 12-5 (U/mL) 14.39+10.97 15.17 + 8.66 0.192 0.95
Ca 72-4 (U/mL) 3.8+4.07 3.15+3.39 0.237 1.21
NSE (ng/mL) 12.21 £2.95 12.05+2.82 0.667 1.01
P values are calculated from the Wilcoxon rank-sum test.
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FIGURE 2: The expression levels of five differentiating tumor biomarkers between breast cancer patients and benign breast disease patients.
The start means a significant difference between breast cancer patients compared to benign breast disease patients.

were found to have important differences between breast
cancer and benign tumors.

Fold change value was calculated by the average value of
breast cancer divided by the average value of benign breast
disease. Fold change with a value larger than 1 indicates a
higher level of the biomarker in plasma of breast cancer,
while a fold change value lower than 1 indicates a lower level,
compared to benign breast disease.

In the present analysis, Ca 15-3, FERR, and AFP showed
increased levels in breast cancer patients compared with the
benign breast disease controls. Ca 15-3, a variant of
mammary epithelial surface glycoprotein and an antigen
related to breast cancer, are used for therapeutic monitoring
of breast cancer and early detection of recurrent disease
[6-8]. Choi et al. [12] found that the levels of Ca 15-3 were
higher in breast cancer patients than in benign breast disease
by an antibody-lectin Sandwich assay that appeared to ef-
ficiently discriminate nonmetastatic breast cancer from

benign breast disease. In our study, the Ca 15-3 level was also
upregulated in breast cancer patients. However, Ca 15-3
showed a poor diagnostic ability, which might be caused by
different detection methods. Also, the serum level of Ca 15-3
was associated with host tumor burden such as larger tumor
size, more lymph node metastases, and advanced stage.
Therefore, preoperative high serum levels of Ca 15-3 may
indicate a poor outcome.

Ferritin is currently used to monitor the presence of
malignant disease; it is regarded as a predictor of positive
lymph nodes involved in patients with breast cancer [13, 14].
Orlandi et al. [14] found that breast cancer patients had
significantly higher ferritin levels compared with the benign
breast disease controls, which is consistent with our re-
search. Several studies indicate that plasmatic ferritin is
produced and secreted by macrophages, hepatocytes, and
cancer cells [15], which may be the reason for the high levels
of ferritin in breast cancer.
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FIGURE 3: (a): Red represents negative correlation, and blue represents a positive correlation. The color depth represents the degree of
correlation: a deeper color indicates a higher correlation. (b) Levels of CEA and Ca 15-3 in Tis-T1 versus T2-3 (P < 0.05). (c) Level of Ca 15-3
in different clinical stages (P < 0.05). (d) Level of CYFRA 21-1 in patients with the Ki-67 214% versus Ki-67 < 14% (P < 0.05). (e) Levels of
NSE and FERR in different tumor grades. (f) Levels of Ca 15-3 and NSE in different N-stage (P <0.05).

AFP, used as a liver cancer biomarker for over 30 years,
may also be elevated to varying degrees in patients with
gastric cancer, pancreatic cancer, or lung cancer [16-19]. He
et al. [20] found that the median value of AFP in 17 kinds of
diseases was higher than that in healthy controls, including
breast cancer. Little literature has studied the difference in
AFP levels between benign and malignant breast cancer. Our
results showed that AFP was elevated in breast cancer pa-
tients compared with the benign breast disease controls. The
above summary indicated that both the source and the
regulation of serum AFP levels were much more compli-
cated than previously thought.

CEA and CYFRA 21-1 also showed increased levels in
breast cancer patients compared with the benign breast
disease controls. Concerning the differentiation between the
two groups, CEA (AUC 0.716) and CYFRA 21-1 (AUC
0.761) showed good diagnostic performance. Also, CEA and
CYFRA 21-1 were directly associated with larger tumor size
and high Ki-67 index, respectively, in our study. Since tumor
size and Ki-67 level were positively correlated with host
tumor burden and malignant degree of breast cancer, re-
spectively [21, 22], preoperative elevated levels of serum
CEA and CYFRA 21-1 could be related to a poor outcome.
CEA, a widely used tumor marker for examination and

prediction in many cancers [23] and CYFRA 21-1, an ex-
cellent tumor marker in lung cancer [24, 25], were found
upregulated in breast cancer patients in several studies
[26-30]. They are consistent with our findings. However,
when we performed cross-validation within the test group,
we found that the AUC values of CEA and CYFRA 21-1 were
not stable. In conclusion, this means that no single marker of
these five markers is well-diagnosed for breast cancer.
One relevant finding of the present work has been the
design of a final predictive model. Some reports used the
combination of molecular markers to identify breast cancer
[26, 30, 31]. Bayo et al. developed a predictive model using
NSE, Ca 15-3, NGAL, EGFR, and 8-OHdG for early breast
cancer diagnosis with AUC of 0.918 [26]. Liu et al. used a
panel of PD-1, IL-10, IL-2Ra, and Ca 15-3 for early-stage
breast cancer diagnosis; this panel also had the AUC of 0.811
[31]. They had used newly discovered molecular markers in
combination with classic tumor markers to improve the di-
agnosis rate of breast cancer. However, the diagnostic value
had not been verified, and the new molecular markers have a
longer turnaround time and many uncertainties from dis-
covery to clinical application. In our study, the markers we
selected were all tumor markers commonly used in clinical
practice, and the model we established still had a stable and
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FiGUure 4: ROC analyses of CEA (a) and CYFRA 21-1 (b) to distinguish breast cancer patients from benign breast disease patients.
TaBLE 3: Diagnostic performance of serum biomarkers in discriminating breast cancer from benign breast diseases.
Markers Cut-oft point AUC Sensitivity Specificity
CEA 0.443 0.716 0.64 0.669
Ca 15-3 0.5 0.648 0.387 0.85
CYFRA 21-1 0.471 0.761 0.64 0.805
AFP 0.433 0.577 0.604 0.549
FERR 0.647 0.592 0.27 0.902
TaBLE 4: Calculation of accuracy, sensitivity, specificity, and AUC after 10-fold cross-validation for different classifiers.
Accuracy (%) Sensitivity Specificity AUC
Logistic regression 71.316 0.713 0.632 0.789
Decision tree 65.466 0.683 0.619 0.703
Support vector machine 70.9 0.697 0.597 0.684
Random forest 71.699 0.721 0.666 0.772
Gradient boosting machine 68.4 0.68 0.614 0.679

good diagnostic effect after validation. Since these markers
have been widely used in various medical institutions, this
diagnostic tool would be easily promoted and applied.

Some literature [8, 32] reported that simultaneous use of
CEA and Ca 15-3 allowed the early diagnosis of metastasis in
up to 60-80% of patients with breast cancer. Moreover, CEA
and Ca 15-3 have been shown to detect 40-60% of breast
cancer recurrences before clinical or radiological evidence of
disease. Our study only contains data on early breast cancer,
and some patients with advanced breast cancer should be
added in the future. In addition, CEA and Ca 15-3 have been
able to predict the recurrence of breast cancer [33]. I believe
that the combined application of these five markers can
better predict the recurrence of breast cancer, which will also
be the direction of our future work.

At the beginning of the modeling, it was found that the
AUC mean of the logistic regression model was similar to the

random model in the internal 10-fold cross-validation. The
result indicated that the linear generalized regression
method might have a similar ability of internal stability
control as the nonparametric probabilistic method. How-
ever, in the external verification, the random forest algo-
rithm performs better and stronger external generalization
ability, which is more in line with clinical application. The
relationship between outcome variables and multiple indi-
cators often cannot be parameterized by simple linear
means. The same is true for the markers of breast cancer in
our study, while the projection of variables to the high-
dimensional space in the modeling is not completely linear.
Therefore, the nonparametric method can be better fitted for
the relationship between outcome variables and multiple
indicators, and the importance of variables in the random
forest model was also more reliable (Figure 5). In our future
studies, a larger population to obtain more general data
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FIGURE 6: The importance of variables in the random forest model.

results is required to prove that the workflow is widely
applicable and robust in the different cohorts.

Our research had the following limitations. First, our
study population only consisted of Chinese women patients
with breast cancer. In future studies, the scope could be
broadened to include other ethnicities. Second, although the
sample size was relatively large, the study population was
selected from one hospital, and more validation would be
carried out in other research institutions.

5. Conclusions

In summary, CEA, Ca 15-3, CYFRA 21-1, FERR, and AFP
were found to be elevated in nonmetastatic breast cancer
patients compared with the benign breast disease controls in
our study. However, no single marker of these five markers is
good at identifying breast cancer from benign tumors. A
diagnostic analysis workflow was established to develop a
better diagnostic capability for nonmetastatic breast cancer.
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This workflow is also applicable to the optimization of other
disease markers and diagnostic models. The predictive
model showed good diagnostic performance with AUC of
0.888, sensitivity of 78.9%, and specificity of 90.1%, and it
could be gradually incorporated as a support method for the
diagnosis of nonmetastatic breast cancer.

Data Availability

The datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Authors’ Contributions

Nan Jiang, Tian Tian, and Xianyang Chen contributed
equally to the work.

Acknowledgments

The authors thank Dr. Rui Jia and Dr. Teng Xue for their
help in statistical analysis.

References

[1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre,
and A. Jemal, “Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers
in 185 countries,” CA: A Cancer Journal for Clinicians, vol. 68,
no. 6, pp. 394-424, 2018.

[2] R. Etzioni, N. Urban, S. Ramsey et al., “The case for early
detection,” Nature Reviews Cancer, vol. 3, no. 4, pp. 243-252,
2003.

[3] A. L. Siu and US Preventive Services Task Force, “Screening
for breast cancer: U.S. Preventive services task force rec-
ommendation statement,” Annals of Internal Medicine,
vol. 164, no. 4, pp. 279-296, 2016.

[4] E. Warner, “Breast-cancer screening,” New England Journal of
Medicine, vol. 365, no. 11, pp. 1025-1032, 2011.

[5] V.P.Jackson, H. E. Reynolds, and D. R. Hawes, “Sonography
of the breast,” Seminars in Ultrasound, CT and MRI, vol. 17,
no. 5, pp. 460-475, 1996.

[6] D. Urbanand R. Catane, “Serum tumor markers in oncology,”
The Israel Medical Association Journal:IMA], vol. 11, no. 2,
pp. 103-104, 2009.

[7] L. Harris, H. Fritsche, R. Mennel et al., “American Society of
Clinical Oncology 2007 update of recommendations for the
use of tumor markers in breast cancer,” Journal of Clinical
Oncology, vol. 25, no. 33, pp. 5287-5312, 2007.

[8] R. Molina, V. Barak, A. van Dalen et al., “Tumor markers in
breast cancer—European group on tumor markers recom-
mendations,” Tumor Biology, vol. 26, no. 6, pp. 281-293, 2005.

[9] M. Uehara, T. Kinoshita, T. Hojo, S. Akashi-Tanaka,
E. Iwamoto, and T. Fukutomi, “Long-term prognostic study
of carcinoembryonic antigen (CEA) and carbohydrate antigen
15-3 (CA 15-3) in breast cancer,” International Journal of
Clinical Oncology, vol. 13, no. 5, pp. 447-451, 2008.

[10] K.-C. Tsao, T.-L. Wu, P.-Y. Chang, ].-H. Hong, and J. T. Wu,
“Detection of carcinomas in an asymptomatic Chinese
population: advantage of screening with multiple tumor
markers,” Journal of Clinical Laboratory Analysis, vol. 20,
no. 2, pp. 42-46, 2006.

[11] H. Dhahri, E. Al Maghayreh, A. Mahmood et al., “Automated
breast cancer diagnosis based on machine learning algo-
rithms,” Journal of Healthcare Engineering, vol. 2019, Article
1D 4253641, 11 pages, 2019.

[12] J. W. Choi, B. I. Moon, J. W. Lee et al., “Use of CA153 for
screening breast cancer: an antibodylectin sandwich assay for
detecting glycosylation of CA153 in sera,” Oncology Reports,
vol. 40, no. 1, pp. 145-154, 2018.

[13] M. A. Knovich, J. A. Storey, L. G. Coftman, S. V. Torti, and
F. M. Torti, “Ferritin for the clinician,” Blood Reviews, vol. 23,
no. 3, pp. 95-104, 2009.

[14] R. Orlandi, M. De Bortoli, C. M. Ciniselli et al., “Hepcidin and
ferritin blood level as noninvasive tools for predicting breast
cancer,” Annals of Oncology, vol. 25, no. 2, pp. 352-357, 2014.

[15] L. A. Cohen, L. Gutierrez, A. Weiss et al., “Serum ferritin is
derived primarily from macrophages through a nonclassical
secretory pathway,” Blood, vol. 116, no. 9, pp. 1574-1584,
2010.

[16] E. Alpert, V. W. Pinn, and K. J. Isselbacher, “Alpha-feto-
protein in a patient with gastric carcinoma metastatic to the
liver,” New England Journal of Medicine, vol. 285, no. 19,
pp. 1058-1059, 1971.

[17] H. Asamura, H. Nakayama, H. Kondo et al., “AFP-producing
squamous cell carcinoma of the lung in an adolescent,”
Japanese Journal of Clinical Oncology, vol. 26, no. 2,
pp. 103-106, 1996.

[18] A.Hiraoka, H. Nakahara, H. Kawasaki et al., “Huge pancreatic
acinar cell carcinoma with high levels of AFP and fucosylated
AFP (AFP-L3),” Internal Medicine, vol. 51, no. 11,
pp. 1341-1349, 2012.

[19] Y.-K. Wang, L. Shen, X. Jiao, and X.-T. Zhang, “Predictive and
prognostic value of serum AFP level and its dynamic changes
in advanced gastric cancer patients with elevated serum AFP,”
World Journal of Gastroenterology, vol. 24, no. 2, pp. 266-273,
2018.

[20] Y. He, H. Lu, and L. Zhang, “Serum AFP levels in patients
suffering from 47 different types of cancers and noncancer
diseases,” Progress in Molecular Biology and Translational
Science, vol. 162, pp. 199-212, 2019.

[21] M. Abubakar, N. Orr, F. Daley et al.,, “Prognostic value of
automated KI67 scoring in breast cancer: a centralised
evaluation of 8088 patients from 10 study groups,” Breast
Cancer Research, vol. 18, no. 1, p. 104, 2016.

[22] B.-W. Park, J.-W. Oh, J.-H. Kim et al., “Preoperative CA 15-3
and CEA serum levels as predictor for breast cancer out-
comes,” Annals of Oncology, vol. 19, no. 4, pp. 675-681, 2008.

[23] S. Daniel, G. Nagel, J. P. Johnson et al., “Determination of the
specificities of monoclonal antibodies recognizing members
of the CEA family using a panel of transfectants,” Interna-
tional Journal of Cancer, vol. 55, no. 2, pp. 303-310, 1993.

[24] R. Molina, X. Filella, J. M. Augé et al., “Tumor markers (CEA,
CA 125, CYFRA 21-1, SCC and NSE) in patients with non-
small cell lung cancer as an aid in histological diagnosis and
prognosis,” Tumor Biology, vol. 24, no. 4, pp. 209-218, 2003.

[25] P. Stieber, A. Zimmermann, J. Reinmiedl et al., “CYFRA 21-1
in the early diagnosis of recurrent disease in non small cell
lung carcinomas (NSCLC),” Anticancer Research, vol. 19,
no. 4A, pp. 2665-2668, 1999.



10

[26] J.Bayo, M. A. Castafio, F. Rivera, and F. Navarro, “Analysis of
blood markers for early breast cancer diagnosis,” Clinical and
Translational Oncology, vol. 20, no. 4, pp. 467-475, 2018.

[27] L. Giovanella, L. Ceriani, G. Giardina, D. Bardelli, F. Tanzi,

and S Garancini, “Serum cytokeratin fragment 21.1 (CYFRA

21.1) as tumour marker for breast cancer: comparison with

carbohydrate antigen 15.3 (CA 15.3) and carcinoembryonic

antigen (CEA),” Clinical Chemistry and Laboratory Medicine,

vol. 40, no. 3, pp- 298-303, 2002.

B. Nakata, Y. Ogawa, T. Ishikawa et al., “Serum CYFRA 21-1 is

one of the most reliable tumor markers for breast carcinoma,”

Cancer, vol. 89, no. 6, pp. 1285-1290, 2000.

C. A. Rodriguez, J. J. Cruz, T. Martin et al., “Serum CYFRA

21-1 is one of the most reliable tumor markers for breast

carcinoma,” Cancer, vol. 95, no. 3, pp. 670-671, 2002, author

reply 671.

M. Zaleski, M. Kobilay, L. Schroeder et al., “Improved sen-

sitivity for detection of breast cancer by combination of miR-

34a and tumor markers CA 15-3 or CEA,” Oncotarget, vol. 9,

no. 32, pp. 22523-22536, 2018.

[31] C.Liu, B. Sun, B. Xu et al., “A panel containing PD-1, IL-2Ra«,
IL-10, and CA15-3 as a biomarker to discriminate breast
cancer from benign breast disease,” Cancer Management and
Research, vol. 10, pp. 1749-1761, 2018.

[32] A. Nicolini, C. Colombini, L. Luciani, A. Carpi, and

L. Giuliani, “Evaluation of serum CA15-3 determination with

CEA and TPA in the post-operative follow-up of breast cancer

patients,” British Journal of Cancer, vol. 64, no. 1, pp. 154-158,

1991.

K. V. Albuquerque, M. R. Price, R. A. Badley et al., “Pre-

treatment serum levels of tumour markers in metastatic breast

cancer: a prospective assessment of their role in predicting
response to therapy and survival,” European Journal of Sur-

gical Oncology (EJSO), vol. 21, no. 5, pp. 504-509, 1995.

[28

[29

(30

[33

Journal of Oncology



