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Abstract

Subjective well-being (SWB) reflects the cognitive and emotional evaluations of an individual’s life and plays an important
role in individual’s success in health, work and social relationships. Although previous studies have revealed the
spontaneous brain activity underlying SWB, little is known about the relationship between brain network interactions and
SWB. The present study investigated the static and dynamic functional connectivity among large-scale brain networks
during resting state functional magnetic resonance imaging (fMRI) in relation to SWB in two large independent datasets.
The results showed that SWB is negatively correlated with static functional connectivity between the salience network (SN)
and the anterior default mode network (DMN). Dynamic functional network connectivity (dFNC) analysis found that SWB is
negatively correlated with the fraction of time that participants spent in a brain state characterized by weak cross-network
connectivity (between the DMN, SN and frontal–parietal network [FPN]) and strong within-network connectivity (within the
DMN and within the FPN). This connectivity profile may account for the good mental adaptability and flexible information
communication of people with high levels of SWB. The dFNC results were well replicated with different analysis parameters
and further validated in an independent sample. Taken together, these findings reveal that the dynamic interaction between
networks involved in self-reflection, emotional regulation and cognitive control underlies SWB.

Key words: subjective well-being; dynamic functional connectivity; default mode network; frontal–parietal network;
salience network

Introduction
For many years, positive psychology has received attention
from many researchers (Seligman and Csikszentmihalyi, 2000;
Lyubomirsky, 2001; Diener, 2013). A central concept of positive

psychology is well-being or happiness. Well-being is composed
of hedonic well-being that refers to pleasure attainment and
pain avoidance (And and Deci, 2001), and eudaimonic well-
being that refers to the realization of one’s true potential (Ryff
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and Keyes, 1995) and the experience of purpose or meaning
in life (Ryff, 1989). For many people, living a happy life is
a lifelong pursuit, and it produces success in health, work
and social relationships (Lyubomirsky et al., 2005; Diener and
Biswas-Diener, 2011). However, people differ in their experiences
of well-being. The construction theory of well-being states
that individuals with high and low levels of happiness have
systematic differences in multiple cognitive processes, including
self-reflection and emotion regulation (Lyubomirsky, 2001). For
example, relative to happy people, unhappy people are more
sensitive to negative feedback and show self-focused cognition
(rumination) (Lyubomirsky et al., 2011), which is associated
with symptoms of depression (Nolen-Hoeksema et al., 2008).
In contrast, compared to individuals with low levels of well-
being, individuals with high levels of well-being are more likely
to maintain and enhance positive emotions and thoughts in
working memory (Pe et al., 2013) and have stronger abilities
of emotional expression and resilience (Gan-Qi and Huang,
2012). In addition, personality traits (e.g. extraversion and self-
esteem), life circumstances and culture also influence the levels
of well-being (Diener et al., 2003). Consequently, it is interesting
and essential to investigate the individual differences in
happiness.

It is worth noting that happiness is a broad construct that
encompasses positive affect, negative affect and high levels of
life satisfaction (Diener et al., 1999; Diener et al., 2015). And it
has different meanings in different contexts. For instance, in
philosophy, it translates from the Greek concept of eudaimonic
and refers to the good life while it refers to a mental or emotional
state of well-being in psychology (Taylor, 2016). Evenly, it is con-
ceptualized as a trait rather than a transient emotional state in
some studies (Lyubomirsky et al., 2005; Luo et al., 2015a). However,
in this study, we are mainly concerned about subjective well-
being (SWB) which primarily focuses on the hedonic instead of
eudaemonic aspect of well-being and reflects positive emotional
function (And and Deci, 2001; Diener et al., 2003).

In recent years, neuroimaging studies have advanced our
understanding of the neural sources of the individual differences
in SWB (Urry et al., 2004; Van Reekum et al., 2007; Kong et al.,
2014, 2015a; Luo et al., 2014; Luo et al., 2015b). The default mode
network (DMN) plays an important role in the experience of
well-being. Hyperconnectivity within the DMN has been linked
to the trait of unhappy people who are more sensitive to negative
life events and more prone to rumination (Kringelbach and
Berridge, 2009; Lyubomirsky et al., 2011; Stawarczyk et al., 2012).
A resting-state functional magnetic resonance imaging (rs-fMRI)
study supported this point (Luo et al., 2015a): stronger functional
connectivity within regions of the DMN (bilateral medial pre-
frontal cortex, bilateral posterior cingulate cortex and left
inferior parietal cortex) was associated with lower levels of hap-
piness and higher rumination scores. Structural imaging studies
also revealed that DMN is closely related to SWB. A structural
magnetic resonance imaging (MRI) study has shown that life
satisfaction is associated with regional grey matter volume in
the core regions of the DMN, such as the right parahippocampal
gyrus, left precuneus and left ventromedial pre-frontal cortex
(vmPFC; Kong et al., 2014). In addition, another study also
showed that functional connectivity between the vmPFC [within
anterior DMN (aDMN)] and the precuneus [within posterior DMN
(pDMN)] is positively associated with hedonic and eudaimonic
balance index which captures the relative dominance of hedonic
and eudaimonic well-being, revealing the role of the DMN in
one’s inclination towards hedonic or eudaimonic well-being
(Luo et al., 2017).

In addition, emerging studies have also suggested that the
executive control network (e.g. FPN), which is mainly involved
in emotion regulation and cognitive control ability is associated
with an individual’s SWB (Hooker and Knight, 2006a; Gan-Qi
and HUANG, 2012; Pe et al., 2013). For example, rs-fMRI studies
have found that the amplitude of low-frequency fluctuations
in the left dorsolateral pre-frontal cortex (DLPFC) and bilateral
orbitofrontal cortex (OFC) is positively correlated with happi-
ness (LUO et al., 2015b). The engagement of DLPFC and OFC
is associated with cognitive control and emotional regulation
through the inhibition of inappropriate emotions and behaviors
(Hooker and Knight, 2006b). Task-based functional MRI studies
have also shown that a higher happiness score is associated with
stronger activity of the ventral anterior cingulate cortex (ACC) for
negative information and sustained activation in the DLPFC and
striatum in response to positive events (Van Reekum et al., 2007;
Cunningham and Kirkland, 2013; Heller et al., 2013).

Furthermore, the salience network (SN), which plays an
important role in switching the executive network and the
default network (Goulden et al., 2014), is also involved in well-
being. For instance, fractional amplitude of low-frequency
fluctuations (fALFF) in the core regions of SN, such as the right
ACC and right insula, is positively correlated with social well-
being (Kong et al., 2016). The ACC, which is associated with
emotion regulation and perception of social pain (Etkin et al.,
2011; Cacioppo et al., 2013), may contribute to the regulation of
affective response to stressors in life, thereby improving social
well-being. The involvement of the insula, which is associated
with interoception and understanding others’ feelings (Singer
et al., 2009; Cox et al., 2011), might help improve emotional
awareness, thereby resulting in a high level of social well-being.
A structural MRI study also found that eudaimonic well-being is
associated with regional grey matter volume of the insula, which
is implicated in integrating interoceptive state and managing
emotional milieu (Craig and Craig, 2009; Lewis et al., 2013).
Additionally, many patients with mental disorders, who exhibit
a low level of happiness (Cloninger, 2006), show dysfunction in
SN (Menon, 2011). For instance, an increased interaction between
the DMN and the SN has been reported in post-traumatic stress
disorder (Sripada et al., 2012). In short, these findings suggest that
multiple regions associated with emotion (e.g. SN), cognition
(e.g. FPN) and self-referential processing (e.g. DMN) may be
involved in SWB.

Although the above neuroimaging studies have partly
revealed the neural sources of the individual differences in
SWB, little work has been done to examine how the interaction
of multiple large-scale brain networks (such as the DMN, FPN
and SN) during rs-fMRI influences the level of individuals’ SWB.
In addition, the brain itself is highly dynamic (Calhoun et al.,
2014). Recently, an increasing number of studies have used
the dynamic functional network connectivity (dFNC) approach
(Sakoğlu et al., 2010) to characterize the time-varying properties
of functional connectivity (Calhoun et al., 2013, 2014; Leonardi
et al., 2013; Keilholz, 2014). Compared with the conventional
static functional connectivity approach, the dFNC approach is
able to portray the dynamic nature of functional connectivity (FC)
on a shorter time scale. A growing number of studies have
applied this approach, providing the possibility for the appli-
cation of dFNC in assessing important psychological variables
(Rashid et al., 2016; Shine et al., 2016). Additionally, connectivity
state metrics, which were derived from the dFNC approach,
also appear to be useful for predicting and characteriz-
ing disease (Damaraju et al., 2014; Tagliazucchi and Laufs,
2014). Therefore, we sought to explore both the static and
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dynamical brain functional connectivity underlying SWB during
rs-fMRI.

In the present study, we aimed to investigate how the static
and dynamic functional connectivity among large-scale brain
networks during rs-fMRI are associated with the individual dif-
ferences in SWB. In light of previous studies (Kong et al., 2015a,
2015b 2016; Luo et al., 2014; Luo, 2015b), we hypothesized that
SWB would be correlated with the static and dynamic func-
tional connectivity among DMN, FPN and SN. Additionally, we
hypothesized that SWB would be related to a certain brain
state and its connectivity state metrics derived from the dFNC
approach. To test these hypotheses, we first assessed the SWB
of healthy individuals in dataset 1 using the index of well-
being (Campbell, 1976). Next, group independent component
analysis (GICA) was performed to decompose the whole brain
into large-scale functional networks. Then, both the static and
dynamic functional connectivity were computed for correlation
with the SWB score. Reproducibility is a very important problem
in scientific research (Blackford, 2017). Concerns regarding the
lower statistical power and lack of replication in psychology and
neuroscience research field have been raised recently (Ioannidis,
2005; Button et al., 2013; Poldrack et al., 2017). Therefore, it is nec-
essary to validate our results in an independent sample to con-
firm the reliability and repeatability of our study. We tested and
validated the main findings in dataset 1 by using an open access
dataset [Southwest University Longitudinal Imaging Multimodal
(SLIM) Dataset (International Neuroimaging Data-Sharing Initia-
tive (INDI), http://fcon_1000.projects.nitrc.org/)] (Liu et al., 2017b)
that also contains rs-fMRI data and SWB measurement in a for-
mat identical to that of the behavioral assessment in dataset 1.

Methods
Participants

Dataset 1. A total of 378 college students, all healthy and right-
handed, with no history of neurological or psychiatric disorders,
were recruited from Southwest University to participate in
the present study. A total of 47 participants were excluded
due to excessive head movement (> 2 mm translation in
any axis and > 2 angular rotation in any axis). This resulted
in a final sample of 331 participants (84 male), aged 18–25
(mean = 20.20 ± 1.34). The study was approved by the Southwest
University Brain Imaging Center Institutional Review Board.

Dataset 2. A total of 230 subjects were acquired from time point
3 data of the SLIM Dataset (INDI, http://fcon_1000.projects.nitrc.
org/) (Liu et al., 2017b). All participants were right-handed, had
no history of neurological or psychiatric disorders and provided
written informed consent. A total of 18 students were excluded
(> 2 mm translation in any axis and > 2 angular rotation in any
axis), leaving a final sample of 212 subjects (97 male, aged 19–27,
mean = 22.36 ± 1.49).

Behavioral assessment. SWB was assessed using the Index of
Well-being (Campbell, 1976), which contains two parts: index
of general affect (8 items, e.g. ‘What is the affective state you
are experiencing now?’) and life satisfactory questionnaire
(1 item: ‘How satisfied are you with your life?’). Participants
were required to indicate the extent of their agreement on a
7-point scale, ranging from strongly disagree to strongly agree.
The overall SWB index is the weighted sum of the two scores.
Higher scores indicate higher levels of SWB. The internal
consistency coefficient of the index of general is 0.89, and its
test–retest coefficient is 0.43. The validity coefficient between

the index of general affect and life satisfaction questionnaire
is 0.55 (Wang et al., 1999). This scale has been widely used in
China (Xinhua, 2004; Yue et al., 2006; Geng et al., 2009). In the
present study, this scale showed adequate reliability (Cronbach’s
alpha = 0.90). The behavioral assessment was the same both in
the two datasets.

Image acquisition and pre-processing. The rs-fMRI scan was
performed on a 3T Trio scanner (Siemens Medical Systems,
Erlangen, Germany) at the Brain Imaging Center, Southwest
University. The scanning consisted of 242 contiguous volumes,
which were obtained using a gradient echo-planar imaging
sequence: repetition time = 2000 ms; echo time = 30 ms;
slices = 32; thickness = 3 mm; resolution matrix = 64 × 64;
flip angle = 90◦; field of view = 220 × 220 mm2; voxel
size = 1 × 1 × 1 mm; slice gap = 1 mm; and voxel size = 3.4 ×
3.4 × 4 mm3. Participants were instructed to close their eyes,
not think about anything in particular and remain awake. The
rs-fMRI images were pre-processed using the Data Processing
Assistant for rs-fMRI (DPARSF, http://resting-fmri.sourceforge.net/)
(Yan and Zang, 2010) based on Statistical Parametric Mapping
8 (SPM8) (Wellcome Department of Imaging Neuroscience,
London, United Kingdom; www.fil.ion.ucl.ac.uk/spm). After
discarding the first 10 volumes to allow the signal to equilibrate,
the rest of the rs-fMRI images were corrected for slice time
difference and head motion. Then, the images were spatially
normalized to the standard MNI template with a resample voxel
size of 3 × 3 × 3 mm and spatial smoothing with an 8 mm
full-width at half maximum Gaussian kernel. The scanning
parameters and pre-processing procedures were the same for
both datasets.

Group independent component analysis. Spatial ICA was per-
formed to decompose all pre-processed data into functional
components using the group ICA of fMRI toolbox (GIFT) toolbox
(http://mialab.mrn.org/software/gift/) (Calhoun et al., 2001). GICA
identifies independent components (ICs) through three steps:
dimensionality reduction, ICs estimation and back reconstruc-
tion. Each of the ICs has an associated time course (TC) and a
spatial map (SM). First, a two-step principal components analysis
was conducted to reduce the data into 20 components, because
lower model order (e.g. 20 ICs) yielded refined components
that better correspond to known anatomical and functional
segmentations (Smith et al., 2009; Abou-Elseoud et al., 2010).
Subsequently, the Infomax algorithm (Bell and Sejnowski, 1995)
was utilized in ICs estimation, which was repeated 20 times
in ICASSO, to generate a stable set of 20 components. Next,
a GICA method was reconstructed for the subject-specific
components. After reconstruction, the SMs and TCs of ICs for
all participants were obtained. The subject-specific SMs and TCs
were then converted to z-scores. Here, all ICs were evaluated
based on the group IC maps according to the following criteria
(Kim et al., 2009; Zuo et al., 2010; Xu et al., 2013): the functional
components exhibited peak cluster location in grey matter
and low spatial overlap with white matter structures, vascular,
ventricles, motion and susceptibility artifacts. According to the
above studies (Kong et al., 2014; Luo et al., 2015a; Kong et al., 2016;
Brunetti et al., 2017), five ICs [aDMN, pDMN, SN, left FPN (lFPN)
and right FPN (rFPN)] were identified for further analysis. The
ICs were selected based on the largest spatial overlap with the
network spatial template from previous studies (Smith et al.,
2009; Allen et al., 2011) using the spatial sorting function of the
GIFT. In addition, prior to computing functional connectivity, the
TCs of the five ICs were post-processed to remove remaining
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noise sources, including detrending, despiking and low-pass
filtering with a high-frequency cutoff of 0.15 Hz (Allen et al.,
2014). Moreover, variances associated with the motion for each
subject were also regressed from the TCs using realignment
parameters (rp*.txt file). The mean framewise displacement (FD)
(Power et al., 2012) was also regressed out in the group statistical
analysis. Finally, for all functional network connectivity (FNC)
analyses, correlations were transformed to z-scores using
Fisher’s transformation.

Static FNC analysis. The static FNC was defined by the Pearson
correlation between the whole TCs (across 232 time points) of IC
pairs (Jafri et al., 2008). The pairwise correlation was performed
between the five ICs for all subjects. The association between
FNC and SWB score was estimated as the Pearson correlation.
Additionally, to control for possible confounding variables, mul-
tiple regression was conducted to investigate the correlation
between FNC and behavioral score, regressing out age, gender
and mean FD. Multiple comparisons were performed using the
false discovery rate (FDR).

dFNC analysis. dFNC was conducted in the GIFT toolbox. A slid-
ing window approach was applied to segment the resting-state
time series. Based on previous studies that have shown that
cognitive states could be correctly identified on 30–60 s of data
(Shirer et al., 2012), a window of 60 s width (30 TR), sliding in
steps of 1 TR was applied to divide the TC of each IC into 202
windows. Next, the k-means algorithm was applied to cluster
concatenated dFNC matrices across all subjects to assess the
frequency and structure of reoccurring FNC connectivity pat-
terns. The number of clusters was set as 4 using the elbow
criterion, calculated as the ratio of within-cluster distances to
between-cluster distances. We also validated our main results
using different sliding window lengths and different numbers of
clusters (see ‘Validation analysis’). Then, three temporal metrics
of connectivity state expression derived from each subject’s
state vector (Allen et al., 2014) were calculated: (i) fraction of time
spent in each state, measured as the proportions of all windows
in each state; (ii) mean dwell time in each state, measured
as the average number of consecutive windows in the same
state; (iii) number of transitions, measured as the number of
state transitions. To test the association between the behavioral
score and connectivity state expression, we correlated the SWB
score with three metrics, separately, regressing out age, gender
and mean FD. Because the distribution of the three temporal
metrics was non-normality, Spearman’s (rank) correlation was
used here. Multiple comparisons were performed using the FDR.

Validation analysis. To test the reliability of our work, we
examined whether our main results were affected by the
different parameters, including the sliding window length and
the number of clusters. (i) Window length. To date, there is still
no consensus about the optimal window length of the sliding
window approach. Some studies have reported that cognitive
states can be correctly identified when the window length is set
to 30–60 s (Shirer et al., 2012), others showed that the changes in
functional connectivity are not sensitive to the window length
in the range of 20–40 s (Li et al., 2014) and still others found that
a window length of 44 s is a good trade-off between the quality
of connectivity estimation and the ability to resolve dynamics
(Allen et al., 2014). Therefore, in addition to the window length
of 60 s in the main analysis, we also reran the dFNC analysis
with another two window lengths (20 s and 44 s). The number
of clusters here was set as 4 to compare with the main analysis.

(ii) Number of clusters. Although the number of clusters was
4 in our main analysis, we also set the number of clusters as
5 and 6 in accordance with previous studies (Allen et al., 2014;
Abrol et al., 2016; Liu et al., 2017a; Marusak et al., 2017) in order
to evaluate the potential influence of the number of clusters.
The sliding window length here was set as 60 s to make it
comparable to the main analysis. Moreover, we further validated
the main results in dataset 1 in an independent sample (dataset
2) to test the repeatability of our work. In dataset 2, the behavioral
assessment of SWB, functional magnetic resonance imaging
(fMRI) image acquisition and pre-processing and GICA, as well
as dFNC analytical procedure, including all setup parameters
(window length = 60 s, number of clusters = 4), were consistent
with the main analysis in dataset 1 mentioned above. Finally, we
examined the similarity of the SWB-related state between the
main results and the results from different analysis parameters
in dataset 1 using the Pearson correlation. In the same vein, the
similarity of the SWB-related state between the main results
in dataset 1 and the results in dataset 2 was also calculated.
Multiple comparisons were performed using the FDR.

Results
Table 1 shows the mean and s.d. for age, gender and SWB score
of all subjects that were included in the final analysis of two
datasets.

Static FNC-behaviour correlation analysis

A correlation analysis was conducted to examine the association
between the SWB score and the static FNC. The results showed
that the SWB score was negatively correlated with functional
connectivity between the SN and aDMN (r = −0.16, P < 0.05,
FDR corrected) (Figure 1). After controlling for age, gender and
mean FD, the negative correlation between the SWB score and
functional connectivity between the SN and aDMN was still
significant.

dFNC analysis

As mentioned above, we adopted a k-means approach to clus-
tering the dFNC from all subjects into four connectivity states.
Figure 2A shows the cluster centroid and the percentage of
occurrences of each matrix (arranged in the order of emergence).
The matrix reflects the functional connectivity between five
networks. Analysis of the correlation between the SWB score
and three temporal metrics derived from each subject’s state
vector revealed that state 4, which was characterized by weak
functional connectivity among all five networks and strong func-
tional connectivity between the aDMN and pDMN, as well as
strong functional connectivity between the lFPN and rFPN, was
related to the SWB score (Figure 2B). Specifically, the fraction of
time spent in state 4 was negatively correlated with the SWB
score (r = −0.16, P < 0.05, FDR corrected). The mean dwell time
in state 4 was negatively correlated with SWB score (r = −0.21,

Table 1. Descriptive statistics of behavioral measures in two datasets

Mean ± s.d. Dataset 1 Dataset 2

Age 20.18 ± 1.39 22.36 ± 1.49
Gender (M/F) 84/247 97/115
SWB 42.61 ± 8.71 44.89 ± 10.38

Note: s.d. = standard deviation, M/F = male/female, SWB = subjective well-being



L.Shi et al. 855

Fig. 1 . Left: The SM of the aDMN and SN derived from group spatial independent component analysis of dataset 1. Right: Scatter plot depicting the negative correlation

between the SWB score and functional connectivity between SN and aDMN from dataset 1. The significance level for corrections was set at P < 0.05. Multiple comparisons

were performed using the FDR. SN and aDMN.

Fig. 2 . The four cluster medians of all subjects in dataset 1 are shown in (A) along with the total number, percentage of occurrences and ICA components representing

the five networks. The color bar represents the z value of FNC. (B) Scatter plots depicting the correlations between the SWB score and three temporal metrics derived

from each subject’s state vector in dataset 1. Left: negative correlation between the SWB score and the fraction of time spent in state 4. Middle: negative correlation

between the SWB score and the mean dwell time in state 4. Right: positive correlation between the SWB score and the number of transitions. The significance level for

correction was set at P < 0.05. Multiple comparisons were performed using the FDR. aDMN, pDMN, SN, lFPN and rFPN.

P < 0.05, FDR corrected). Additionally, the total number of tran-
sitions across states was positively related to the SWB score
(r = 0.14, P < 0.05, FDR corrected). After controlling for age, gender
and mean FD, these results were still significant.

Validation analysis
First, similar results were obtained using different sliding win-
dow lengths or different numbers of clusters in dataset 1. The
specifics are described below. (i) Window length. We found that
the SWB score was negatively correlated with the fraction of time
spent in state 1 (r = −0.15, P < 0.05, FDR corrected) when the
window length was set as 20 s (Figure 3A). When the window
length was set as 44 s, we also found that the SWB score was
negatively correlated with the fraction of time spent in state 3
(r = −0.16, P < 0.05, FDR corrected) and was negatively correlated

with the mean dwell time in state 3 (r = −0.18, P < 0.05, FDR
corrected) (Figure 3B). (ii) Number of clusters. We found that
the SWB score was negatively correlated with the fraction of
time spent in state 3 (r = −0.19, P < 0.05, FDR corrected) and
was negatively correlated with the mean dwell time in state 3
(r = −0.18, P < 0.05, FDR corrected) when the number of clusters
was set as 5 (Figure 3C). When the number of clusters was set as
6, we also found that SWB score was negatively correlated with
the fraction of time spent in state 4 (r = −0.20, P < 0.05, FDR
corrected) and was negatively correlated with the mean dwell
time in state 4 (r = −0.15, P < 0.05, FDR corrected) (Figure 3D).
Second, the main findings in dataset 1 were well replicated
in dataset 2. Consistent with the static FC result in dataset 1,
there was a significant negative correlation between SWB score
and the static SN-aDMN connectivity in dataset 2 (r = −0.15,
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Fig. 3 . Association between temporal metrics derived from subjects’ state vector and behavior score using different analysis parameters in dataset 1. (A) Heat map

depicting the negatively correlated brain state when the window length was set as 20 s (i.e. state 1) with ICA components representing the five networks. Scatter plot

depicting the negative association between the SWB score and the fraction of time spent in state 1 when the window length was set as 20 s. (B) Heat map depicting

the negatively correlated brain state when the number of clusters was set as 5 (i.e. state 3) with ICA components representing the five networks. Scatter plot depicting

the negative association between the SWB score and two temporal metrics (the fraction of time spent in state 3 and the mean dwell time in state 3) when the number

of clusters was set as 5. (C) Heat map depicting the negatively correlated brain state when the number of clusters was set as 6 (i.e. state 4) with ICA components

representing the five networks. Scatter plot depicting the negative association between the SWB score and two temporal metrics (the fraction of time spent in state

4 and the mean dwell time of state 4) when the number of clusters was set as 6. (D) Heat map depicting the negative correlation between the brain state when the

window length was set as 44 s (i.e. state 3) and the ICA components representing the five networks. Scatter plot depicting the negative association between the SWB

score and two temporal metrics (the fraction of time spent in state 3 and the mean dwell time in state 3) and positive correlation between the SWB score and the

number of transitions when the window length was set as 44 s. The color bar represents the z value of FNC. The significance level for correction was set at P < 0.05.

Multiple comparisons were performed using the FDR. aDMN, pDMN, SN, lFPN and rFPN.
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Fig. 4 . The four cluster medians of all subjects in dataset 2 are shown in (A) along with the total number, percentage of occurrences and ICA components representing

the five networks. The color bar represents the z value of FNC. (B) Scatter plots depicting the negative association between the SWB score and the fraction of time spent

in state 2 of dataset 2. The significance level for correction was set at P < 0.05. Multiple comparisons were performed using the FDR. aDMN, pDMN, SN, lFPN and rFPN.

Table 2 . Similarity analysis of patterns all significant SWB-related
states

State 4 (W = 60 s; C = 4; dataset 1) r p

State 1 (W = 20 s; C = 4; dataset 1) 0.8924 5.1473e-04a

State 3 (W = 44 s; C = 4; dataset 1) 0.9896 5.0234e-08a

State 3 (W = 60 s; C = 5; dataset 1) 0.9230 1.4039e-04a

State 4 (W = 60 s; C = 6; dataset 1) 0.7539 0.0118a

State 2 (W = 60 s; C = 4; dataset 2) 0.7181 0.0193a

Note: W = sliding window length, C = number of clusters. aThe correction was
significant after FDR correction.

P = 0.03). Besides, there was also a negative correlation between
the SWB score and the fraction of time spent in state 2 in
dataset 2 (r = −0.18, P < 0.05, FDR corrected, Figure 4). Third, the
similarity analysis between patterns of all SWB-related states
showed that the connectivity pattern of all SWB-related states,
whether in dataset 1 or in dataset 2, is positively correlated with
state 4 in the main results (all r > 0.7, P < 0.05, FDR corrected)
(Table 2).

The results in datasets 1 and 2 showed high similarity. The
result that the fraction of time spent in a specific state was
positively correlated with SWB score is significant and con-
sistently reliable. Moreover, the connectivity patterns of SWB-
related states showed high similarity between the two datasets.
However, there were also some comparisons in which the two
datasets differed. In dataset 1, we found a negative correlation
between the SWB score and the mean dwell time in a specific
state, as well as a positive correlation between the SWB score
and the total number of transitions across states, while these
correlations were not significant in dataset 2.

Discussions
The present study used both the ICA and dFNC approaches to
investigate the relationship between SWB and large-scale brain

FNC during rs-fMRI (both static and dynamic) in two large inde-
pendent datasets. Static FNC results showed that the strength of
functional connectivity between SN and aDMN was negatively
correlated with SWB. dFNC results showed that SWB was nega-
tively correlated with the fraction of time spent in state 4 and the
mean dwell time in state 4. The characteristics of state 4 were
weak cross-network connectivity (between DMN, SN and FPN)
and strong within-network connectivity (within DMN and within
FPN). In addition, SWB was positively correlated with the total
number of transitions across states. More importantly, the main
findings were well replicated with different analysis parameters
and further validated in an independent sample. Taken together,
our results revealed that dynamic interactions between net-
works involved in self-focused processing, emotional regulation
and cognitive control underlies SWB.

The results of static FNC analysis showed that SWB is nega-
tively correlated with functional connectivity between SN and
aDMN and may provide neurological evidence for the cognitive
basis of SWB. SWB is composed of two components: an affec-
tive component, which refers to affect balance and happy or
unhappy emotional states, and a cognitive component, which
refers to cognitive control and evaluation of life (Diener et al.,
1985; Pavot and Diener, 1993; Diener et al., 2003). Regarding
affective components, happy people are associated with positive
emotional expression and resilience (Gan-Qi and Huang, 2012;
Pe et al., 2013). Unhappy people are sensitive to negative emo-
tional events and dwell excessively on self-conscious thoughts
(Kringelbach and Berridge, 2009; Lyubomirsky et al., 2011). The SN
is active when people perceive salience and emotional stimuli
(social pain or pleasure) (Cox et al., 2011; Cacioppo et al., 2013).
For instance, social rejection would lead to increased activity in

the regions within the SN, such as the dorsal ACC and insula
(Eisenberger et al., 2003). A task-fMRI study has also shown that
a higher happiness score is associated with increased activity
of the ventral ACC for negative information (Van Reekum et al.,
2007). The intrinsic activity of the DMN is associated with the
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inclination to rumination (Nolen-Hoeksema et al., 2008), which is
associated with the depressive disorder (Sheline et al., 2010). For
instance, there was a positive correlation between rumination
score and functional connectivity within the DMN (Luo et al.,
2015a). In terms of the cognitive component, a recent study
found that psychological resilience, an ability allowing individ-
uals to positively adapt and respond to stress and adversity
(Luthar et al., 2000), was negatively correlated with cross-network
connectivity between the DMN and the SN (Brunetti et al., 2017).
The resilience score is positively correlated with levels of life
satisfaction (Hu et al., 2015). Functional connectivity between
the SN and the aDMN plays an important role in SWB. Patients
with mental disorders who exhibit a low level of happiness
(Cloninger, 2006) show disrupted equilibrium between the DMN
and the SN (Sripada et al., 2012). For instance, an increased
interaction between the DMN and the SN has been reported in
post-traumatic stress disorder (Yin et al., 2011) and increased
connectivity between the insula and the DMN was associated
with higher self-report anxiety (Dennis et al., 2011). These may
suggest that enhanced DMN-SN connectivity, which is involved
in sustained hypervigilance and hyperarousal, is harmful to
well-being. In brief, our finding of a negative correlation may
account for the fact that people with low levels of SWB are
sensitive to negative emotional events, while people with high
levels of SWB are associated with good mental adaptability and
resilience.

Our study also extends the result of static FNC to a more
subtle time scale by adopting the dFNC approach. The dFNC
results showed that SWB was negatively correlated with the
fraction of time spent in state 4 and the mean dwell time in
state 4. That is to say, people who spent more time in state 4
and are inclined to dwell on state 4 would exhibit a lower level
of SWB. State 4 is characterized by weak functional connectivity
between networks (DMN, FPN and SN) and strong functional
connectivity within the DMN (connectivity between the aDMN
and pDMN), as well as strong functional connectivity within
the FPN (connectivity between the lFPN and rFPN). Overall, weak
functional connectivity between networks and strong functional
connectivity within networks refer to functional segregation
and integration (Rubinov and Sporns, 2010), which is associated
with flexible information transfer (Achard and Bullmore, 2007).
Weaker functional connectivity between networks indicates
less-efficient information transfer between networks (Tian et
al., 2018). Previous studies suggested that functional segregation
and integration involve the maturity of the brain, and disruption
of the development of segregation and integration may be
associated with mental disorders (Fair et al., 2007; Stevens et al.,
2009; Dosenbach et al., 2010), such as autism spectrum disorder
(ASD) and depression, that exhibit low levels of happiness
(Wells et al., 1989; Goodman et al., 2000; Cloninger, 2006). For
instance, a meta-analysis found that depressed patients exhibit
hypoconnectivity between brain networks involved in cognitive
control and salience or emotional processing (Kaiser et al., 2015).
Similarly, global weak functional connectivity among networks
involved in social perception and communication was also found
in youth with ASD (Rudie et al., 2011; Yerys et al., 2017). Therefore,
these studies indicated that higher levels of SWB may be related
to more-efficient information transfer between networks. The
SWB result was positively correlated with the total number
of transitions across states, which also supports this point.
Rapid transitions between different states may be indicative
of cognitive flexibility (Scott, 1962), which refers to the mental
ability to switch one’s thinking to accommodate various changes
(Leber et al., 2008). Cognitive flexibility was positively correlated

with the level of mindfulness, which was linked to improve-
ments in well-being (Moore and Malinowski, 2009). In short,
these findings suggest that high levels of SWB are associated
with flexible interactions between multiple brain networks
involved in cognitive control and emotional processing.

In addition, strong within-network connectivity (within the
DMN and within the FPN) in state 4 might be associated with the
self-reflection and cognitive control processes that underlie SWB
(Andrews-Hanna et al., 2013; Heller et al., 2013). The activity of
the DMN is associated with unconstrained self-referential cogni-
tion (Buckner et al. 2008; Raichle et al., 2001). A previous study has
shown that increased functional connectivity within the DMN
is associated with lower levels of happiness and is positively
correlated with the inclination to ruminate (Luo et al., 2015a). It
reveals that unhappy people may be lost in negative emotion and
spend more time on negative life events (Nolen-Hoeksema et al.,
2008). Then, the FPN, which is associated with working memory,
task-set switching, inhibition and flexibility (Vincent et al., 2008;
Niendam et al., 2012), also plays a great role in the experience of
SWB (Abdel-Khalek, 2010; Kong et al., 2015a, 2016). For example, a
voxel-based morphometry study found that regional grey matter
volume in multiple pre-frontal regions, such as the superior
frontal gyrus (SFG) and mid-cingulate cortex, was negatively
associated with quality of life (Takeuchi et al., 2014). In the same
vein, an rs-fMRI study has also shown, based on fALFF in the SFG
and OFC, that increased activity in these regions was associated
with disruption of inhibitory ability in patients with cognitive-
affective brain disorder (Zhou et al., 2014), negatively correlated
with cognitive well-being (Kong et al., 2015a). In summary, our
findings provide a neural basis for the self-reflection processing
and cognitive evaluation process that underlies SWB.

Finally, the main results in dataset 1 were well replicated
when using various analytical parameters, including the sliding
window length and the number of clusters, and were further
validated in an independent sample (dataset 2) to confirm the
reliability and repeatability of our work. The results within
dataset 1 and within dataset 2 all showed high similarity. In
addition, it seems that the results of dataset 2 were not com-
pletely consistent with the main results of dataset 1. There are
two potential reasons for this. First, there were some differences
in the subjects between the two samples. Both the mean age
and the SWB score of the subjects in dataset 1 are lower than
those in dataset 2 (tage = −17.56, Page < 0.001; tSWB = −2.76,
PSWB < 0.01). Second, the method we used in the present
study may limit the direct comparison of the two samples. ICA
is a data-driven method and requires no a priori hypothesis
(Zuo et al., 2010). The ICs obtained from the ICA are based on the
data for each sample. Though the SM showed high overlap, there
were still small differences in the SMs of the components derived
from ICA using different samples. Furthermore, the clustering
method made it difficult to obtain the same states using different
samples. To compare the results of the different samples, we
used the same setup parameters in the GICA and dFNC analyses
and further conducted a correlation analysis to examine the
similarity between the patterns of SWB-related states across
the two samples. We have found that the fraction of time spent
in a specific state was negatively correlated with SWB score,
and this was consistent across samples. Furthermore, the con-
nectivity patterns of SWB-related states across samples showed
high similarity. Taken together, these findings consistently
suggested that dynamic interactions between the DMN, SN and
FPN, which are involved in self-focused processing, emotional
regulation and cognitive control, play an important role
in SWB.
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The correlation coefficient is small in our study (r = 0.1
to 0.2 range). Previous research has found that correlations
can be unstable in small samples but converge to be stable
with increasing sample size (Schönbrodt and Perugini, 2013).
The present study explored the relationship between SWB
score and functional connectivity between networks in two
big samples. Although the correlation coefficient is small, it
is consistent with previous studies which aimed to explore the
relationship between the intrinsic brain activity and well-being
using similar methods in a big sample (Feng et al., 2016; Kong
et al., 2015b, 2016; Luo et al., 2015b). For example, the study of
Kong et al. (2015b), which aimed to explore the neurobiological
pathway linking personality and eudaimonic well-being in a big
sample (N = 286), found that neuroticism is correlated with the
fALFF in the posterior superior temporal gyrus (pSTG) (r = −0.15,
P = 0.048; FDR corrected) and thalamus (r = −0.20, P = 0.005;
FDR corrected) and the thalamic-insular connectivity (r = 0.17,
P = 0.021; FDR corrected). These correlation coefficients also
ranged from 0.1 to 0.2. In addition, the relationship between
behavior and brain seems to be complicated and may be
influenced by other factors, such as other behavioral and genetic
variables. The present study only explored the relationship
between SWB score and functional connectivity between
networks while the relationship may be mediated by other
variables, such as personality and emotional intelligence (Kong
et al., 2015a). So further studies could add multidimensional data
to get a higher variance of SWB.

Finally, as noted earlier, well-being has hedonic and eudai-
monic components. Previous research has found that there are
different neural associations with hedonic and eudaimonic well-
being (Kong et al., 2015b). Here, we focused on the dynamic FC of
only the hedonic component of SWB. Future studies exploring
the dynamic FC underlying the eudaimonic component will be
needed to provide a complete understanding of the dynamic
FC of SWB.

Conclusion
In summary, the current study extends previous studies
attempting to examine the SWB-related functional connectivity
between large-scale brain networks during rs-fMRI (both static
and dynamic). We found that the strength of static functional
connectivity between the SN and the aDMN was negatively
correlated with SWB. In addition, SWB was negatively correlated
with the fraction of the time that participants spent in a
brain state characterized by weak cross-network connectivity
(between the DMN, the SN and the FPN) and strong within-
network connectivity (within the DMN and within the FPN).
More importantly, we demonstrated the robustness of this
relationship using different analysis parameters and in a
new independent sample. These results suggest that the
dynamic interactions between networks involved in self-focused
processing, emotional regulation and the cognitive control
process underlie SWB. Overall, these findings enriched the
understanding of the neural correlates of SWB and provided
insight into the dynamic neural underpinnings of SWB, which
will be useful for future research.
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