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Improving Protein Fold 
Recognition by Deep Learning 
Networks
Taeho Jo1,2,*, Jie Hou1,*, Jesse Eickholt3,* & Jianlin Cheng1

For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed 
to predict if a given query-template protein pair belongs to the same structural fold. The input used 
stemmed from the protein sequence and structural features extracted from the protein pair. We 
evaluated the performance of DN-Fold along with 18 different methods on Lindahl’s benchmark 
dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million 
protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) 
depending on the evolutionary distance between protein sequences. The correct recognition rate of 
ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, 
and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance 
of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and 
superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem 
of fold recognition to real-value regression task, which also show a promising performance. DN-Fold 
is freely available through a web server at http://iris.rnet.missouri.edu/dnfold.

Proteins are key functional units in living organisms and are involved in many biological processes in 
the cell. As a protein’s three dimensional structure largely determines its function, there is great interest 
in methods to determine or predict a protein’s tertiary structure. Several experimental methods includ-
ing X-ray crystallography, NMR spectroscopy, and electron microscopy have been used to determine 
protein structure. However, due to the significant cost and time for using those methods, the number of 
proteins with known structure(s) is significantly smaller than the number of known protein sequences 
(i.e. by a factor of approximately 200) and the sequence-structure gap is still increasing1,2. Therefore, the 
construction of computational approaches and tools to predict a protein’s three dimensional structure 
from its sequence is an important problem not only for understanding the relationship between protein 
structure and function3, but also for advancement in protein-based biotechnologies and drug discovery4.

An important task in protein structure prediction is to identify proteins that have similar tertiary 
structures (from among those that have already been determined experimentally). By identifying such 
proteins, their structures can be used as a template to model the unknown structure of another protein. 
The process for identifying these structurally similar proteins is called fold recognition and forms the 
basis of the fold recognition problem. This task grows increasingly difficult when the sequence level 
identity between two protein sequences (i.e., a query protein without known structure and a template 
protein with known structure) is very low.

In this work, we applied a new, powerful classification method – Deep-learning Networks (DNs) to 
tackle the fold recognition problem. In order to apply DNs to the protein fold recognition problem, we 
treated it as a binary classification problem (i.e., predicting whether a protein pair shares the same struc-
tural fold based on the pairwise similarity features between them as done elsewhere in the literature5,6). 
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DNs are a new set of machine learning algorithms to map a set of initial input features into multiple 
layers of higher-level representations through unsupervised learning in order to improve the prediction 
accuracy for the final supervised learning (e.g. classification) task. DNs have been applied to hand writing 
recognition and face recognition achieving state-of-art performance. Most recently, DNs were introduced 
to the field of bioinformatics to predict protein residue disorder and residue-residue contacts7–9, which 
delivered the best residue-residue contact prediction performance in the 10th Critical Assessment of 
Techniques for Protein Structure Prediction (CASP) in 2012. To the best of our knowledge, this work is 
the first attempt of using DNs for the fold recognition problem.

Specifically, our method, DN-Fold, predicts if two proteins are from the same fold, taking as input 
pairwise protein features such as sequence or family information, sequence alignment, sequence–pro-
file alignment, profile–profile alignment, structural features, and structure-seeded profiles. We com-
pared the performance of DN-Fold on the standard (LINDAHL dataset)10 along with our previous 
method, RF-Fold11, and 17 other methods such as PSI-BLAST12, HMMER13, SAM-T9814, SSHMM15, 
THREADER16, FUGUE17, SPARKS18, SP319, HHpred20, FOLDpro5, SP421, SP522, RAPTOR23, SPARKS-X24, 
and BoostThreader25. DN-Fold achieved a performance approaching those methods that represent the 
state-of-the-art at all three levels of difficulty (i.e., protein family, superfamily, and fold). In addition to 
DN-Fold, which is an ensemble method comprised of several DN models, we constructed a single model 
method which we call DN-FoldS and a single linear regression model which we call DN-FoldR.

Results and discussion
As an initial attempt to apply DNs to the protein fold recognition problem, a variety of DN architec-
tures and combinations of hyperparamenters were evaluated. The optimal DN configuration was used 
to predict fold membership for a pair of proteins at fold, superfamily and family levels and this initial 
classifier was termed DN-FoldS. We compared this approach with several fold recognition methods 
(RF-Fold, FOLDpro, THREADER, SSHMM, SSEARCH, BLASTLINK, HMMER and PSI-BLAST) on 
the LINDAHL dataset using specificity-sensitivity plots at fold, superfamily and family levels (Figs 1(a), 
2(a) and 3(a)) as done elsewhere in the literature10. In these plots, the specificity is defined as the per-
centage of predicted positives that are true positives, and the sensitivity is defined as the percentage of 
true positives that are predicted as positives. We applied the same feature extraction algorithm with 
FOLDpro (a method based on support vector machines), and the plots show that DN-FoldS performed 
better than FOLDpro at the family and fold levels in the lower and higher ranges of specificity. To show 
the sensitivity for the range of higher specificity, we made three additional figures (Figs 1(b), 2(b) and 
3(b)) plotting the performance in the high specificity range. Table 1 compares the sensitivity of DN-FoldS 
against 18 other fold recognition methods tested on the LINDAHL dataset at the family, superfamily and 
fold levels, for the Top 1 and Top 5 predicted template folds respectively. Here, the sensitivity (success 
rate) is defined as the percentage of query proteins having at least one correct template fold ranked first, 
or within the Top 5, respectively10

In spite of an extensive parameter search and optimization process, the performance of DN-FoldS 
continued to lag behind RF-Fold. This was attributed, in part, to the fact the RF-Fold is an ensemble 
approach and DN-FoldS is comprised of a single classifier. Ensemble approaches typically generalize 
better and have lower variance in average performance across different datasets. As a result, an ensem-
ble approach termed DN-Fold was constructed from a pool of candidate deep networks. To construct 
DN-Fold, 10-fold cross validation was applied on each architecture such that ten deep networks were 
trained from the 10-folds of data and the results of each fold were combined into the final prediction. 
A number of different deep network architectures were used and evaluated in terms of the AUC value. 

Figure 1.  (a) The specificity - sensitivity plot of classification results at family level. (b) Plotting the 
performance at family level in the high specificity range ([0.75:1]).
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Figure  4 represents the performance of 14 deep network architectures on three kinds of categories, in 
which the models from left to right were sorted based on AUC. Within the level of superfamily and fold, 
models have relatively large variation, compared to steady trend at the level of family. We evaluated 14 
different ensembles which integrated the models sequentially from lowest AUC to highest AUC, ranging 
from 1 model to 14 models. Simple averaging was applied to ensemble prediction of different models. 
Figure 5 reveals that model ensembling provides improved performance through all three levels, which 
also reduce the bias and variance.

We compared our novel method DN-Fold and a new meta-method RFDN-Fold (a combination 
of deep learning networks and random forests) with the other fold recognition methods (RF-Fold, 
FOLDpro, THREADER, SSHMM, SSEARCH, BLASTLINK, HMMER and PSI-BLAST) as previously 
described on the LINDAHL dataset using specificity-sensitivity plots at fold, superfamily and family 
levels (Figs 1(a), 2(a) and 3(a)) as in the work by Lindahl and Elofsson10. The sensitivity of DN-Fold and 
RFDN-Fold was also calculated and shown in Table 1. The last five rows in the table show that DN-Fold 
and RFDN-Fold performed better than FOLDpro5 in all but one case (i.e. Top 1 predictions at the family 
level). At the family level for Top 1 predictions, the success rate (sensitivity) of FOLDpro (85.0%) was 
slightly better than DN-Fold (84.5%), and RFDN-Fold (84.7%). At the superfamily level, the sensitivity 
of DN-Fold for the Top 1 or Top 5 predictions is 61.5% and 76.5%, about 6% higher than FOLDpro. 
In the case of RFDN-Fold, at the superfamily level, the sensitivity for the Top 1 or Top 5 predictions 
is 65.7% and 78.8%, 9~10% higher than FOLDpro. At the fold level, the sensitivity of DN-Fold for the 
Top 1 or Top 5 predictions is 33.64% and 60.7%, about 8~11% higher than FOLDpro. RFDN-Fold yields 
the largest improvement for Top 1 predictions at the fold level, which is 11.2% higher than FOLDPro’s. 
The sensitivity of RFDN-Fold for the Top 5 predictions is 61.7%, about 13.4% higher than FOLDpro’s.

When comparing the success rate of DN-Fold and RFDN-Fold for the Top 1 and Top 5 predic-
tions, DN-Fold and RFDN-Fold also performed better than many of the other methods in Table 1, and 

Figure 2.  (a) The specificity - sensitivity plot of classification results at super-family level. (b) Plotting the 
performance at super-family level in the high specificity range ([0.6:1]).

Figure 3.  (a) The specificity - sensitivity plot of classification results at fold level. (b) Plotting the 
performance at fold level in the high specificity range ([0.2:0.8]).
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Method

Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PSI-Blast 71.2 72.3 27.4 27.9 4 4.7

HMMER 67.7 73.5 20.7 31.3 4.4 14.6

SAM-T98 70.1 75.4 28.3 38.9 3.4 18.7

BLASTLINK 74.6 78.9 29.3 40.6 6.9 16.5

SSERCH 68.6 75.5 20.7 32.5 5.6 15.6

SSHMM 63.1 71.7 18.4 31.6 6.9 24

THREADER 49.2 58.9 10.8 24.7 14.6 37.7

Fugue 82.2 85.8 41.9 53.2 12.5 26.8

SPARKS 81.6 88.1 52.5 69.1 28.7 47.7

SP3 81.6 86.8 55.3 67.7 30.8 47.4

HHpred 82.9 87.1 58 70 25.2 39.4

SP4 80.9 86.3 57.8 57.8 30.8 53.6

SP5 82.4 87.6 59.8 70 37.9 58.7

RAPTOR 86.6 89.3 56.3 69 38.2 58.7

SPARKS-X 84.1 90.3 59.0 76.3 45.2 67.0

BoostThreader 86.5 90.5 66.1 76.4 42.6 57.4

RF-Fold 84.5 91.5 63.4 79.3 40.8 58.3

FOLDpro 85 89.9 55 70 26.5 48.3

DN-Fold 84.5 91.2 61.5 76.5 33.6 60.7

RFDN-Fold 84.7 91.5 65.7 78.8 37.7 61.7

DN-FoldS 84.1 91.2 62.7 76.7 33.3 57.9

DN-FoldR 82.3 88.3 56.0 71.0 27.4 56.7

Table 1.   The sensitivity (fold recognition success rate) of 22 fold recognition methods on the LINDAHL 
dataset at the three levels (family, superfamily, and fold) for the Top 1 prediction or Top 5 predictions 
for query proteins. Protein pairs (query – template proteins) that have substantial sequence similarity 
belong to the same family whose structural similarity is relatively easy to recognize. Protein pairs that have 
medium sequence similarity belong to the same superfamily whose structural similarity is generally difficult 
to recognize. Protein pairs that share structural fold, but have little or no sequence similarity belong to the 
same fold whose structural similarity is very hard to recognize.

Figure 4.  The prediction accuracy of 14 deep learning architectures on the training dataset at the 
levels of family, superfamily and fold at the Rank 1 and Rank 5, and were sorted by AUC from lowst to 
highest. 
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competitive with state-of-the-art methods such as RF-Fold, RAPTOR, SPARKS-X, and BoostThreader. 
In particular, DN-Fold performed comparably to RF-Fold at the family and superfamily levels, and 
RFDN-Fold slightly outperformed or was nearly on par with RF-Fold and DN-Fold. Compared with 
SPARKS-X, DN-Fold and RFDN-Fold were less accurate at the fold level, but more accurate at the family 
and superfamily levels. Compared with BoostThreader, DN-Fold and RFDN-Fold were less accurate for 
Top 1 predictions at the three levels, but more accurate for Top 5 predictions at all three levels.

To determine if our method is prone to over-fitting and to see if our method is applicable to larger 
databases, we evaluated it on an independent dataset extracted from the SCOP(v1.75). This dataset was 
called SCOP_TEST. Table 2 shows the sensitivity on SCOP_TEST at the three levels for the Top 1 pre-
diction or Top 5 predictions for query proteins. On this dataset, DN-Fold competes competitively against 
RF-Fold, and in all cases but the Top 5 at Family level and Top 1 at the superfamily level, RFDN-Fold 
shows improved results when compared with DN-Fold and RF-Fold at the fold level. For more detailed 
results of this comparison, consult the supplemental documentation. In this documentation, we provide 
a table for each method and each level which contains the name of protein domain, its identifier in 
SCOP, the length of its sequence, the number of sequences paired with each query sequence in each 
category and the final prediction results acquired by three methods. Each template sequence in Rank 
1 and Rank 5 is linked with its SCOP id to compare with its query sequence. The table provides an 
intuitive way to understand the performance of the fold recognition methods. Complete information of 
our test dataset including benchmark results can be viewed at http://iris.rnet.missouri.edu/dnfold/data/
model_evaluation.

In addition to DN-Fold which is a binary classifier based on a DN, a linear regression model was 
also developed and named DN-FoldR. Development of this method was spurred for two reasons. First, 
the fold definition is binary and arbitrary compared to a continuously distributed structural space. The 

Figure 5.  The prediction accuracy of 14 deep learning ensembles on the training dataset at the levels of 
family, superfamily and fold at the Rank 1 and Rank 5. The ensemble index was defined by the number of 
models in each ensemble. Each ensemble was evaluated by AUC.

Method

Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

RFDN-Fold 93.4 97.2 82.1 91.1 61.1 86.1

RF-Fold 93.4 98.1 83.9 91.1 55.6 72.2

DN-Fold 94.3 97.2 82.1 91.1 61.1 86.1

DN-FoldS 94.3 98.1 82.1 91.1 61.1 86.1

DN-FoldR 93.4 97.2 80.4 89.3 69.4 83.3

Table 2.   The sensitivity on the SCOP 1.75 evaluation set (SCOP_TEST) at the three levels for the Top 1 
prediction or Top 5 predictions for query proteins.

http://iris.rnet.missouri.edu/dnfold/data/model_evaluation
http://iris.rnet.missouri.edu/dnfold/data/model_evaluation
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arbitrary nature of fold classification could be a limiting factor for performance. Second, it was noted that 
many model pairings had similar score in terms of the TM-score but had different classifications. This is 
illustrated in Fig. 6(a),(b). Particularly for TM-scores in the range of 0.30 to 0.50, there was significant 
overlap between pairs that did or did not belong to the same fold. This indicates that for protein pairings 
with significant structural differences, predicting fold membership may be difficult but it may still be 
possible to predict a secondary value which could be used to infer fold membership in some cases (e.g., 
if the predicted TM-score was above a particular threshold then the prediction for the pair would be 
same fold). The predicted real value could also be used to rank models and predict fold membership as 
it was done with the binary classifier. Figure 7 represents the deviation between the TM-score predicted 
by DN-FoldR and true TM-score on the LINDAHL dataset, and the averaged deviation is 0.029. Figure 8 
shows the TM-score predicted by DN-FoldR and true value on the SCOP_TEST dataset, with given 
averaged deviation of 0.045. Table 1 reports the benchmark results of DN-FoldR on the LINDAHL data-
set. At the family level, the sensitivity of DN-FoldR was 82.3% and 88.3% in Rank 1 and Rank 5, which 
exceeds the performance of SP5, SP4, HHpred, Fugue, THREADER, SSHMM, SSEARCH, BLASTLINK, 
SAM-T98, HMMER and PSI-BLAST. DN-FoldR also shows better performance than FOLDpro at the 
level of superfamily and fold, with 56%, 71% for the Top 1 prediction, and 27.4%, 57.3% for the Top 5 
prediction. This result provides a new approach to the fold recognition problem in which a real value 
representing the on the continuously distributed structural space is learned from information such as 
sequence/profile alignment and structural information.

Conclusions
In this work, we have constructed and evaluated three approaches (DN-Fold, DN-FoldS, DN-FoldR) to 
predict protein folds by using deep learning networks. The newly proposed method, DN-Fold, performed 

Figure 6.  (a) The distribution of TM-score for protien pairings from the Foldpro dataset along with fold 
membership (i.e., if the protiens in the pair belong to the same fold). (b) The distribution of TM-score for 
protien pairings from the SCOP_TEST datasets along with fold membership.

Figure 7.  The comparison of TM-score predicted by DN-FoldR and true TM-score between protein pairs 
on FOLDpro dataset. 
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better than FOLDpro on a large standard benchmark dataset. When compared with 18 other methods 
evaluated on the same benchmark, DN-Fold was generally ranked among the top methods. Furthermore, 
combining DN-Fold with another machine learning-based fold recognition method (RF-Fold) shows 
good accuracy for fold recognition. While not advancing the state-of-the-art, the performance of DN-Fold 
was competitive, placing the approach among the top five methods at each level and demonstrates the 
effectiveness of applying the new deep learning technique to the fold recognition problem. DN-FoldR 
also extended the binary classification problem of fold recognition to a real-value regression task, which 
also show a promising performance, especially at the level of superfamily and fold.

Methods
Datasets and Feature Extraction.  The principle dataset for this study is that used to train FOLDpro, 
a fold recognition program developed by Cheng and Baldi5, and originally developed by Lindahl and 
Elofsson10. This dataset consists of 976 proteins from the SCOP dataset (version 1.37)6 and was con-
structed such that the sequence identity between of any pair of proteins was < 40%. Each protein was 
then paired with every other protein for an all-against-all comparison resulting in 951,600 (i.e., 976 * 
975) protein pairs. Of these pairings, 555 shared the same family, 434 shared the same superfamily and 
321 shared the same fold. In order to further assess the robustness of DN-Fold method, we checked how 
effectively our method could be applied to a new dataset that is independent from the LINDHAL dataset. 
Such inspection can largely determine if our method is prone to over-fitting and if our method is suitable 
for application on independent datasets. Following the database construction procedure from LINDAHL 
dataset10 and the pairwise feature generation process of each sequence pair from the FOLDpro dataset5, 
we created our test dataset from SCOP version 1.75. Since LINDAHL dataset is based on SCOP version 
1.37, we carefully selected 124 protein domains which are not included in version 1.37 to make sure the 
test dataset is completely independent to our training dataset. The sequences with mutual pair sequence 
identity of 40% or less are extracted from the SCOP 1.75 subsets. We extracted 124 protein domains 
construct our test dataset, with 614, 336, and 300 protein pairs sharing the same family, superfamily and 
fold category (see Table 3).

For each pair of proteins in the LINDAHL dataset, a number of pairwise similarity features were cal-
culated and used to characterize the protein pair. These similarity features used were obtained through 
five types of sequence alignment and/or protein structure prediction tools (i.e., sequence-sequence 

Figure 8.  The comparison of TM-score predicted by DN-FoldR and true TM-score between protein pairs 
on SCOP_TEST dataset. 

Evaluation Dataset

Protein sequence Protein pair

Family 106 614

Superfamily 56 336

Fold 36 300

Total 124 1250

Table 3.   Size of the SCOP 1.75 evaluation set (SCOP_TEST). Here 106, 56 and 36 possible correct hits 
can be detected for family, superfamily and fold category. The true protein pair for all three levels are 614, 
336, and 300, with a total of 1250 pairs among 15,252 pairwise sequences.
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alignment, sequence-family information, sequence-profile alignment, profile-profile alignment and 
structural information) and selected based on their use in prior works5. Full details for the feature gen-
eration script can be found in the FOLDpro study5. This resulted in a set of 84 features for each protein 
pair. For the SCOP_TEST dataset, pairwise features were generated by characterizing their sequence 
alignment, sequence or family information, profile-profile alignment and their structural information5 
for all 15,252 protein pairs in this dataset. We considered the same strategy of feature generation as the 
FOLDpro dataset, which also resulted in a total of 84 features which were used to train our methods, 
DN-FoldS, DN-Fold and RFDN-Fold. The results of this head-to-head comparison are shown in Table 2.

To construct the regression dataset for our experiment (i.e., the dataset used to train and evalu-
ate DN-FoldR), pdb structure files for each of 976 proteins in the LINDAHL dataset from SCOP 1.75 
were downloaded from the Protein Data Bank1. After preprocessing the pdb files, the sequence identity 
from the pdb file and SCOP 1.37 was checked. Of the 976 proteins, 973 had a matching structure file. 
The exceptions were domains: 1alo-d1alo_5, 1alo-d1alo_6, 1alo-d1alo_7. The detailed relation between 
sequence id and pdb id can be accessed from the supplementary data. Finally, 973 proteins were used 
to generate a TM-score for a total of 945,756 protein pairs which were combined with the FOLDpro 
feature data as the final regression dataset. More specifically, during the calculation of the TM-score by 
the structure alignment tool TM-align26, the prior information of protein pair’s structures was used to 
determine the choice of TM-score. If the protein pair belongs to the same fold, the higher TM-score nor-
malized by short sequence was be chosen. Otherwise, the lower TM-score normalized by long sequence 
was chosen as similarity score. We applied the same strategy on the evaluation dataset, which generated 
15,252 pairwise TM-scores for 124 proteins. The distribution of similarity scores from two categories is 
illustrated in Fig. 6(a,b).

DN-Fold: Deep Learning Approach for Protein Fold Recognition.  Determining if two proteins 
pertain to the same structural fold is a problem that can be readily addressed as a binary classification 
problem. In this context, a protein pair which shares the same structural fold is labeled as ‘1’ (i.e., the 
positive class) and pairs from dissimilar folds are labeled as ‘–1’ (i.e., the negative class). Using the afore-
mentioned features, a function can be learned to map the inputs from the feature space to the correct 
classification. With DN-Fold, the classification task was performed using deep networks.

Conceptually, a deep network (DN) is akin to a standard, two layer neural network but typically con-
tains several more hidden layers and can differ in the way the model is initialized. The additional hidden 
layers allow the network to capture more correlations and patterns present in the data and this often leads 
to increases in performance. Another advantage of deep networks is that they can be pre-initialized using 
a layer-by-layer technique that involves stacking several restricted Boltmann machines (RBMs). The end 
result is an unsupervised learning process that first attempts to learn patterns in the data and then 
maps these learned patterns to the proper labels. Furthermore, using unsupervised learning to initial-
ize weights between adjacent layers of transforming feature representations largely avoids the vanishing 
gradient problem which can occur when training a standard multi-layer neural network. This happens 
when the error gradients used to adjust weights quickly approach 0 as they are propagated through hid-
den layers. Thus, a deep learning network has the advantage of multiple-layer abstraction while largely 
avoiding the pitfall of training a multi-layer neural network, which leads to its excellent performance in 
several machine learning problems such as face recognition, hand writing recognition, and protein con-
tact map prediction7. Full details on the theory related to RBMs and training deep networks is provided 
in the foundational work by Hinton and Salakhutdinov27. For details on applying deep networks, consult 
Hinton’s practical guide28 for general information and for use as it applies to protein structure prediction 
see applications developed for protein contact prediction9 and order/disorder prediction8.

In this work, initialization of network was performed layer by layer utilizing a restricted Boltzmann 
machine (RBM). The RBM was used to initialize the weights in DNs by learning the weights between 
every two adjacent layers in a step-wise approach, starting from the visible layer, until reaching the last 
hidden layer. After the weights have been learned by the first RBM, it is applied to each training example 
and the probability for activating the hidden layers can be calculated and used as the visible layer for 
another RBM. This procedure of training a RBM can be repeated several times to create a multilayer 
network. A one layer standard feed-forward neural network is added at the top of the last hidden layer, 
taking activation probabilities of the last hidden layer as input to predict the label of the input values of 
the visible layer. Then all the nodes can be regarded as deterministic and the whole DN can be fine-tuned 
to adjust the weights using the standard back propagation algorithm to minimize the cross-entropy error 
28–31. This process was completed over 25 epochs. The batchsize was set to 1000 training examples and 
the output of the DN was the prediction value of our method, DN-FoldS. The architecture of the overall 
deep network used in DN-FoldS was X-100-100-35-1 with X being the size of the input layer (i.e., the size 
of the feature vector). Figure 9 illustrates the model architecture and layer-by-layer learning procedure.

Different model architectures were trained using the same learning procedure but varying the num-
ber of hidden nodes and the epoch for each training process. Table 4 shows the 14 model architectures 
trained in this experiment. In order to balance the model bias and variance, an ensemble strategy was 
applied to average the outputs of these candidate deep networks. Specifically, each model was evaluated 
by the AUC value and the top ranked models were selected to construct the final ensemble network. In 
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this work, we averaged the predictions of all 14 models, and the output of the ensemble of networks was 
the final prediction results of our method, DN-Fold.

The training and evaluation of DN-Fold was done using an in-house implementation of the algo-
rithms needed to train RBMs and neural networks (i.e., standard back propagation). To increase the 
speed at which models could be trained and evaluated, the algorithms were implemented in terms of 
matrix operations and CUDAMat was used32. This allowed the more expensive operations to be per-
formed on a CUDA-enabled GPU.

Combination of Deep Learning Networks with Random Forests.  Besides DN-Fold, an addi-
tional meta-method was developed and tested. This meta-method is called RFDN-Fold and combines 
DN-Fold and RF-Fold – another fold recognition method we developed based on random forests11. This 
meta approach is a simple sum of the outputs from DN-Fold and RF-Fold.

Figure 9.  A deep learning network for classifying if two proteins share the same structural fold. 

INDEX ARCHITECTURE

MODEL 1 84-100-100-30-1_60 epoch

MODEL 2 84-250-35-1_60 epoch

MODEL 3 84-100-100-25-1_30 epoch

MODEL 4 84-100-100-25-1_60 epoch

MODEL 5 84-150-150-25-1_60 epoch

MODEL 6 84-120-120-30-1_30 epoch

MODEL 7 84-250-35-1_30 epoch

MODEL 8 84-100-100-35-1_60 epoch

MODEL 9 84-100-35-1_30 epoch

MODEL 10 84-100-100-30-1_30 epoch

MODEL 11 84-100-100-35-1_30 epoch

MODEL 12 84-250-1_30_epoch

MODEL 13 84-150-150-25-1_30 epoch

MODEL 14 84-150_150_35_1_30 epoch

Table 4.   14 deep learning architectures with different hidden units and epoch. In this table, 84-X-X-X-1_Y 
represent the architecture in the deep learning network, where X denotes the number of hidden nodes in each 
hidden layer, and Y denotes the epoch in each training process.
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DN-FoldR: Deep Learning Approach for Protein Fold Regression.  Another means of approach-
ing this problem is to learn a real-value measurement of structural similarity distributed over the struc-
tural space. A linear regression model could be used to map the input features for a protein pair to a 
structural similarity score (e.g., TM-Score). The underlying assumption is that protein pairs which share 
the same structural fold will have relatively larger structural similarity scores. To ease implementation 
and interpretation, the similarity score can be between 0 and 1.

The learning procedure was accomplished through two nonlinear hidden layers with rectified linear 
nodes and a linear layer was added as the last layer in the network for regression. The weights were 
randomly initialized within range [− 0.5, 0.5]. The log likelihood of data was maximized by stochastic 
gradient decent with learning rate as 0.01, and the batch size was set to 1000 with maximum epoch as 50. 
The architecture of such deep network was X-100-100-35-1 with X being the size of the input layer. The 
machine learning package Pylean233 was used to train the whole network on the 10 fold cross-validation 
sets.

Training and Benchmarking.  The LINDAHL dataset was partitioned into 10 subsets for the pur-
pose of cross-validation. All the protein pairs that have the same query protein were put into the same 
subset. Then 9 of the 10 subsets were used for training and the remaining subset was used for testing. 
If a query protein in the training set was found in the test set as the template, it was also removed from 
the test set. Training and testing was repeated 10 times and the standard sensitivity (recall)/specificity 
(precision) was used to evaluate the classification results. Moreover, using the same evaluation procedure 
described elsewhere in the literature5,10,23–25, we compared DN-Fold with 17 other methods using the fold 
recognition success rate for the Top 1 and Top 5 ranked templates for the query proteins. The success 
rate (also called sensitivity) was calculated by taking the Top 1 or the Top 5 template proteins ranked for 
each query protein and calculating the percentage of query proteins having at least one correct template 
ranked Top 1, or within the Top 55,10.

To further assess DN-Fold, predictions were made using the proteins contained in the SCOP_TEST 
set. After generating the features for all protein pairs, we retrained the DN-Fold method and RF-Fold, 
a method from a previous work, on the LINDAHL dataset using the same features and evaluated the 
model on our new dataset, SCOP_TEST, based on the success rate of Top 1 and Top 5 for the family, 
superfamily and fold levels.

DN-Fold is available as a web service at http://iris.rnet.missouri.edu/dnfold.
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