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ABSTRACT
Background: Combined antiretroviral treatment (cART) for HIV infection is highly effective in 
controlling viral replication. However, it cannot achieve a sterilizing cure. Several strategies have 
been proposed to achieve a functional cure, some of them based on immune-mediated clearing 
of persistently infected cells. Here, we aimed at identifying factors related to CD8TC and CD4TC 
quality before cART initiation that associate with the persistence of CD8TC antiviral response 
after cART, inflammation levels, and the size of the viral reservoir. 

Methods: Samples from 25 persons living with HIV were obtained before and after (15 months) 
cART initiation. Phenotype and functionality of bulk and HIV-specific T cells were assayed 
by flow cytometry ex vivo or after expansion in pre-cART or post-cART samples, respectively. 
Cell-Associated (CA) HIV DNA (total and integrated) and RNA (unspliced [US] and multiple 
spliced [MS]) were quantitated by real-time PCR on post-cART samples. Post-cART plasma  
levels of CXCL10 (IP-10), soluble CD14 (sCD14) and soluble CD163 (sCD163) were measured  
by ELISA. 

Results: Pre-cART phenotype of CD8TCs and magnitude and phenotype of HIV-specific re-
sponse correlated with the phenotype and functionality of CD8TCs post-cART. Moreover, the 
phenotype of the CD8TCs pre-cART correlated with markers of HIV persistence and inflamma-
tion post-cART. Finally, exhaustion and differentiation of CD4TCs pre-cART were associated 
with the composition of the HIV reservoir post-cART and the level of inflammation. 

Conclusions: Overall, this work provides data to help understand and identify parameters that 
could be used as markers in the development of immune-based functional HIV cure strategies.
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INTRODUCTION
Human Immunodeficiency Virus (HIV) is a retrovirus that causes a chronic infection, which pro-
duces an irreversible and profound deterioration of the immune system, ultimately leading to the 
development of acquired immunodeficiency syndrome (AIDS) in the vast majority of untreated 
HIV+ persons [1]. Combination antiretroviral treatment (cART) has drastically improved the life 
expectancy and quality of life of people living with HIV/AIDS (PLWHA). Simultaneously, cART 
has an impact on the epidemic dynamics since good coverage of suppressive cART has been prov-
en to lower transmission rates. Finally, cART is available as pre-exposure or post-exposure pro-
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phylaxis [2, 3]. Once cART is initiated, viral replication is suppressed and plasma viral load (VL) 
falls below detectable levels but, if treatment is interrupted, VL rapidly increases as a consequence 
of viral reactivation from the latent reservoir [4-6]. Consequently, cART alone is not sufficient to 
eliminate the infection and PLWHA are dependent on a lifelong treatment which still has several 
limitations in terms of administration, toxicity, and resistance, among others [7, 8]. On the other 
hand, there are several reports describing cases of PLWHA who had shown long-term control of 
the infection either spontaneously or induced by an intervention [9-13] indicating that achieving 
virus control is feasible. Based on this, different strategies have been designed to find a cure for 
HIV infection [14, 15]. 

The ability to maintain viral control is multifactorial and involves host features (clinical, genetic, 
immune, metabolic, etc), as well as viral features (genome integrity, fitness, escape mutations). 
However, HIV-specific CD8+ T cells (CD8TC) emerge as key factors to achieve control in dif-
ferent models (reviewed in [16]). CD8TC specificity, function, phenotype, and localization are 
determinants of viral control and disease progression and may determine, at least in part, the 
success of future HIV cure and prevention strategies. 

Our group has provided evidence regarding different qualitative aspects of the CD8TC response 
(specificity, functionality, and phenotype) that better associate with virus control in patients not 
receiving cART in an acute infection cohort from Argentina [17-19]. In the same cohort, we also 
determined that a higher proportion of terminally differentiated CD8TC and increased PD1 
expression before cART initiation were correlated with HIV persistence once cART was initi-
ated [20]. In another report, we analyzed the phenotype (memory/effector maturation subsets 
and PD-1 expression) and function (production of IFN-γ, IL-2, CCL4[MIP-1β], and/or TNF-α; 
CD1071/b mobilization, and direct and indirect antiviral activity) of in vitro expanded CD8TC 
from PLWHA receiving cART who initiated treatment either early or late after infection [21]. 
Results indicated that HIV-specific cells could be selectively stimulated and expanded in vitro, 
presenting a high proportion of cells able to carry out multiple effector functions. Although cART 
initiation timing had an impact on the memory/effector differentiation phenotype, expanded 
cells from both groups had potent antiviral activity. Here, we aimed at extending our previous 
work by providing a more complete picture that identifies factors related to CD8TC and CD4TC 
quality before cART initiation that associates with the persistence of CD8TC antiviral response 
after cART, inflammation levels, and viral reservoir size. For this, distribution of memory sub-
populations and PD-1 expression at CD4TC and CD8TC compartments, and polyfunctionality 
of HIV-specific CD8TCs were evaluated pre-cART. Additionally, the distribution of memory/ef-
fector subsets in CD8TC, HIV-specific CD8TC polyfunctionality, cell-associated (CA) HIV DNA 
and RNA forms, and plasma levels of IP-10, sCD14, and sCD163 were determined in samples 
obtained post-cART. Then, correlation analyses were performed between pre-cART and post-
cART measurements. 

METHODS
Study subjects: Twenty-five participants diagnosed with HIV infection were enrolled as part of 
the Grupo Argentino de Seroconversión study group [22] and included in this study. Plasma and 
peripheral blood mononuclear cells (PBMCs) were collected before cART initiation (pre-cART 
sample, median time from the presumed date of infection=90 days) and after cART initiation 
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(post-cART sample, median= 15 months on cART) (Table 1). This study was reviewed and ap-
proved by the institutional review board Comité de Ética Humana, Facultad de Medicina, Uni-
versidad de Buenos Aires, Buenos Aires, Argentina. All participants provided written informed 
consent.

Samples: We collected 40 ml of whole blood. Upon centrifugation, plasma was recovered, and 
stored at -80C. Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-Hypaque 
density gradient centrifugation (Amersham, Sweden) and cryopreserved in liquid nitrogen for 
subsequent functional assays. Plasma viral load (VL) was determined by branched-DNA, Versant 
HIV-1 RNA 3.0 assay (Siemens Healthcare, UK) or by Abbott Real Time HIV-1 assay (Abbott 
Park, IL) depending on kit availability.

CD4+ and CD8+ T-cell counts were determined by flow cytometry (FACSCalibur; BD Bio-
sciences, USA). Cellular immune activation was evaluated as the percentage of CD38- and/or 
HLA-DR-expressing CD4+ and CD8+ T cells by flow cytometry. 

Ex vivo phenotype and functionality of bulk and HIV-specific T-cells by flow cytometry: 
Pre-cART samples were thawed, rested for 2 hours, stimulated with HIV peptide pools for 5 
hours and then stained as described previously by our group [21]. Peptide pools spanning Nef 
(127 peptides) or p24 (128 peptides) were constructed using peptides from the potential T-cell 
epitope (PTE) peptide panels obtained from the NIH AIDS Reagent Program [23]. For stimu-
lation, peptide pools were used at 2 μg/mL together with costimulatory antibodies (anti-CD28 
and anti-CD49d; 1 μg/mL; BD Biosciences), monensin (Golgistop, 0.7 μL/mL; BD Biosciences) 
and brefeldin A (10 μg/mL; BD Biosciences). A DMSO condition was included to account for 
background. To evaluate polyfunctionality, anti-CD107a/b-FITC antibodies (BD Biosciences) 
were also added to identify degranulating cells. After stimulation, cells were further stained with 
Zombie NIR™ Fixable Viability Kit (Biolegend, USA), and the following conjugated antibodies: 
anti-CD14-V450, anti-CD19-V450, anti-CD3-BV786, anti-CD8-APC, and anti-CD4-BV650 (BD 
Biosciences). Then, cells were permeabilized (Permeabilization Wash Buffer, Biolegend), fixed 
(Fixation Buffer, Biolegend), and subsequently stained using anti-IL-2–PerCP-Cy5.5, anti-TNF-α-
PECy7, anti-IFN-γ-BV711, and anti-CCL4-PE conjugated antibodies (BD Biosciences).

In parallel, T-cell memory phenotype was studied as also described by our group [21]. Cells were 
briefly stimulated as described above and afterwards stained with Zombie NIR™ Fixable Viability 
Kit plus the following conjugated antibodies, anti-CCR7-Alexa700, anti-PD-1-PE, anti-CD3-
BV786, anti-CD8-APC, anti-CD4-BV650, anti-CD14-V450, anti-CD19-V450, anti-CD45RO-Per-
CPCy5.5, and anti-CD95-PE-CF594 (BD Biosciences, USA). Following permeabilization, cells 
were fixed and stained with anti-IL-2, anti-TNF-α, and anti-IFN-γ antibodies, all of them conju-
gated to FITC (BD Biosciences) to identify specific cells regardless of function.

Flow cytometry data acquisition was performed on a 3-laser 14-color BD FACSAria FUSION 
flow cytometer using the BD FACSDiva v 8.0.1 software (BD Biosciences). Instrument settings 
and fluorescence compensation were performed using unstained samples and single-stained BD 
CompBeads (BD Bioscience). Isotype controls, consisting of stimulated cells stained with conju-
gated antibodies to CD14, CD19, CD3, CD4, and CD8 plus the isotype controls corresponding to 
the CCR7, CD45RO, CD95, PD-1, and/or the corresponding intracellular marker were performed 
for each individual in order to set negative populations accurately.
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Acquired data was analyzed using FlowJo v10 (Data Analysis Software, LLC). Gating strategy 
was performed as described before [21]. First, single cells were selected in a forward scatter area 
(FSC-A) vs FSC-Height plot. Then, dead cells were excluded based on Zombie NIR™ fluorescence, 
and monocytes and B lymphocytes were also excluded according to CD14 and CD19 staining. 
Subsequently, the lymphocyte population was selected in an FSC-A vs side scatter (SSC) plot. 
Samples with at least 100,000 events in the lymphocyte gate were included in subsequent analyses. 
Finally, CD3+ CD8+ (or CD4+) cells were gated in CD3-vs-CD8 (or CD4) dot plots.

To study T-cell polyfunctionality, CD107a/b, IFN-γ, IL-2, CCL4, or TNF-α plots were constructed 
on the CD8+ and CD4+ populations and a Boolean gate platform was used to create all possible 
combinations. Data presented correspond to background-subtracted results using the DMSO 
plus CD28/CD49d control. This was performed on a cytokine-subset-by-cytokine-subset basis, 
ie, subtracting the result from this condition for a given cytokine subset to the same subset of a 
peptide-stimulated condition. One standard deviation (SDs) above background was set as the 
threshold for determining positive responses. Values below this threshold were set at 0.

The distribution of the different T-cell phenotype subsets was studied in bulk and HIV-specific 
CD8+ T cells and bulk CD4+ T cells. HIV-specific CD8+ T cells were identified in a CD8 vs FITC 
plot (CD107a/b, IFN-γ, IL-2, CCL4, and TNF-α). A positive cytokine response was defined as 
at least twice the background value, >0.05% after subtraction of background and at least 1,000 
events. This criterion was established to minimize the possibility of error due to a low number of 
events when further subdividing these cells into the different memory subsets. Central memory 
T cells (TCM, CCR7+/CD45RO+), effector memory T cells (TEM, CCR7−/CD45RO+), and termi-
nal effector T cells (TTE, CCR7−/CD45RO−) were identified. Within the CD45RO−CCR7+ cells 
naive T-cells (Tnaive, CCR7+/CD45RO−/CD95−) and stem-cell memory T-cells (TSCM, CCR7+/
CD45RO−/CD95+) were gated. Additionally, PD-1 expression was studied on bulk and memory 
subpopulations. Based on the knowledge that HIV-specific CD8+ T-cell frequency decays signifi-
cantly following cART initiation, an in vitro cell expansion protocol was implemented as reported 
previously by our group [21]. Phenotype and polyfunctionality were subsequently studied on 
expanded cells. 

Due to limitations in sample availability, bulk CD8TC and CD4 TC responses at pre-cART sam-
ples were evaluated in 22 and 23 participants, respectively. In all participants except 1, replicates 
could be made, adding a total of 43 and 45 responses, respectively. Bulk CD8TC parameters at 
post-cART were evaluated in the 25 participants of the cohort, all of them in duplicate except 
for 3. This adds a total of 47 responses. The phenotypes of HIV-specific CD8TC responses were 
evaluated in 18 individuals pre-cART and in 23 individuals post-cART. When the quantity of 
sample allowed it, replicates were performed with different antigens in the stimulation (Nef and 
p24 peptide pools). Thus, a total of 35 responses were obtained pre-cART and 43 responses were 
obtained post-cART. CD8 TC polyfunctionality was evaluated in 24 and 23 pre-cART and post-
cART samples, respectively. When possible, samples were tested in replicate against Nef and p24 
peptide pools adding a total of 42 and 46 responses, respectively.

Additionally, antiviral activity of expanded CD8+ T cells was evaluated using the Viral Inhibition 
Assay (VIA) and the VITAL assay as described previously by our group [21]. Briefly, the VIA 
protocol was initially published by Sáez-Cirión et al [24] and it assesses the capacity of expanded 
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CD8TC to inhibit viral replication in primary autologous CD4TCs, accounting for both cytolytic 
and non-cytolytic mechanisms. Here, target cells (consisting of autologous CD4TCs purified after 
PBMC treatment with CD3/8 bi-specific antibodies) were infected and co-cultured at 1:1 ratio 
with purified expanded Nef-specific or p24-specific CD8+ T cells (effectors). At day 7, p24 anti-
gen was quantified in cell culture supernatants by ELISA. CD8TC anti-HIV suppressive capacity 
was calculated as the log10 of the percentage of p24 antigen loss when CD8TCs were present in the 
culture compared to infected CD4TC controls without effectors. On the other hand, the VITAL 
assay was adapted from the publication by Hermans et al [25], and it assesses direct HIV-specific 
cell-mediated cytotoxicity. 

Briefly, CD4+ target cells (prepared as described above) were either labeled with CFSE or PKH-
26 red fluorescent cell linker. CFSE-labeled cells were loaded with Nef or p24 peptides and then 
combined with PKH-26-labeled cells. Nef- or p24-specific effector cells were added at different 
target-to-effector (T:E) ratios (1:1, 1:5, 1:10, and 1:1 adjusted to proportion of specific CD8+ T-cell 
effectors). Following overnight incubation, cells were stained with Zombie Viability Kit and 
anti-CD3-PECy7, anti-CD4-PerCP, and anti-CD8-BV510 antibodies, and analyzed by flow 
cytometry. Adjusted survival was calculated as the mean percentage of CFSE+ events with added 
effector vs the condition with no effectors. Finally, the percentage of specific lysis was calculated 
using the equation % specific lysis= 100 - % adjusted survival. Further details can be found in 
Salido et al [21]. The VIA assay could be performed in 16 post-cART samples. In all cases, effector 
cells were prepared in parallel with Nef and p24 peptide pools resulting in 2 sets of effectors per 
sample that were tested separately. This resulted in 32 VIA values for the whole set of samples. 
Moreover, these 2 sets of effectors were obtained for the VITAL assay. However, this assay requires 
a larger number of cells and thus the number of samples tested and replicates were smaller: 1:1 
relation: 15 samples, 30 responses; 1:5: 12 samples, 21 responses; 1:10: 10 samples, 15 responses.

Quantitative real-time PCR for Cell-Associated (CA) HIV RNA and DNA: Cell-associated 
(CA) HIV DNA (total and integrated) and RNA (unspliced [US]) and multiple spliced [MS]) 
were quantitated by real-time PCR on post-cART samples. Total HIV DNA PCR measures all 
forms of viral DNA present in the cell (integrated and non-integrated forms), while HIV-integrat-
ed DNA PCR amplifies integrated provirus exclusively. The CA US-RNA form represents the ge-
nomic RNA (result of genuine HIV transcription) but can also represent host-HIV read-through 
transcripts. However, the latter transcripts have been shown to contribute poorly to the bulk of 
HIV RNA. The CA MS-RNA transcripts are more closely related to advanced stages in the cycle 
of viral replication and production of infectious particles [26]. 

CD4+ T cells were isolated from frozen PBMCs using an immunomagnetic selection kit (BD Bio-
science, USA) and only 90% purity samples (determined by flow cytometry) were assayed. DNA 
and RNA were extracted using a proteinase K lysis protocol or a commercial kit (PureLink RNA 
Mini Kit, Invitrogen, USA) respectively, then both were quantified and stored at -80°C until use. 
Total and integrated HIV DNA was quantitated following the highly sensitive real-time nested 
PCR-based assay developed by Chomont et al [27] with modifications. Briefly, cell lysates were 
used as input in a pre-PCR step in which the total or integrated HIV DNA was pre-amplified 
together with the CD3 gene (2 copies per cell) in the same reaction, in triplicate. Pre-amplified 
products were diluted and used as input in a second amplification reaction (HIV or CD3) in 
which each form was quantified by real-time PCR. The frequency of cells harboring each molecu-
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lar form was calculated from the ratio of HIV copy number/2 x (CD3 copy number). For quanti-
fication of US and MS-RNA forms, Pasternak’s protocol was used [28] with modifications. Briefly, 
a hemi-nested PCR was performed with 16 cycles of amplification followed by a second ampli-
fication round of quantitative real time PCR. Then US and MS-RNA copy numbers were stan-
dardized to cellular equivalents using a 18s RNA real time PCR (Invitrogen, USA). Each sample 
was assayed in quadruplicate and a control with no reverse transcriptase was used to reveal DNA 
contamination. Quantitative real time PCR assays were run for 40 cycles. For both HIV DNA and 
RNA PCRs, the LLODs were 1 copy per well. If there was amplification but it was not quantified 
(below the LLOD), an arbitrary value of 0.5 copies was assigned. If no amplification occurred at 
all, the value was set to 0 copies. Due to sample availability, these assays were performed in the 
following number of samples: Total HIV DNA: 17 samples, Integrated HIV DNA: 5 samples, CA 
HIV US-RNA: 18 samples, and CA HIV MS-RNA: 12 samples.

Plasma Soluble factors: The levels of CXCL10 (IP-10, BD Biosciences), soluble CD14 (sCD14) 
and soluble CD163 (sCD163) (Thermo Fisher Scientific) were measured in post-cART plasma 
samples. Due to sample availability, 9, 23, and 22 samples were used to evaluate IP-10, sCD14, and 
sCD163 respectively.

Data analysis: Data was expressed as median values with interquartile ranges (25% to 75%, IQ25-
75) and analyzed by nonparametric methods using GraphPad Prism v7.0 software, unless oth-
erwise stated. Correlation analyses were performed using the Spearman’s rank test. In this case, 
P-values were adjusted for multiple comparisons using a false discovery rate (FDR) procedure, 
according to the Benjamini and Hochberg method, using the GraphPad Prism 7 software (Graph-
Pad Software Inc., San Diego, CA, USA). Distribution analysis of CD4+ and CD8+ T-cell subsets 
in pre- and post-cART samples was performed with SPICE 6.0 software (https://niaid.github.io/
spice/). All tests were considered significant when the P-value was <0.05. Adjusted P-values for 
correlation analyses were considered significant when <0.1. 

RESULTS

Cohort description and experimental determinations:
Twenty-five participants from the Grupo Argentino de Seroconversión study group were selected. 
Samples were obtained immediately before cART initiation (pre-cART sample) and at a median 
of 15 months after cART initiation (post-cART samples). Paired pre- and post-cART samples 
were obtained for all participants but 3. A detailed description of participants is shown in Table 
1. As expected, all participants had detectable viral load pre-cART and reached levels below the 
limit of detection post-cART. 

Median CD8TC count significantly diminished while median CD4TC count and CD4/CD8 ratio 
significantly increased post-cART (Wilcoxon´s test P<0.0001, P=0.0001, and P<0.0001, respec-
tively).

https://www.paijournal.com/index.php/paijournal
https://niaid.github.io/spice/
https://niaid.github.io/spice/


www.PaiJournal.com

Pathogens and Immunity - Vol 6, No 2� 67

Table 1: Characteristics of enrolled participants.

Pre-ART sampleb Post-ART samplec

Sub-
ject 
IDa

Gen-
der Age ART regimen 

Viral 
Loadd

(HIV 
RNA 

copies/ml 
plasma)

CD4 
counte

(cells/
ml)

CD8 
counte

(cells/
ml)

CD4/ 
CD8 
ratio

Time from 
infectionf 

(days)

(HIV RNA 
copies/ml 
plasma)

Viral 
Loadd

(cells/
ml)

CD4 
counte

(cells/
ml)

CD8 
counte

CD4/ 
CD8 
ratio

Time 
from 
ART  
initi-
ationg 
(days)

DT1 F 34 3TC AZT LPV/r 48526 383 531 0,72 1140 <50 562 513 1,09 960

DT2 M 34 TDF 3TC ATV/r 132317 324 703 0,46 630 <50 297 571 0,52 210

DT3 M 42  3TC ABC EFV 125716 391 602 1,36 210 <50 711 1094 0,65 570

DT4 M 25 NA 27244 465 1027 0,45 330 <50 535 723 0,74 150

DT5 F 23 NA NA NA NA NA NA <40 739 739 1 210

DT6 M 26 3TC AZT EFV 66929 246 1047 0,24 570 <50 501 808 0,62 330

DT7 M 45 3TC LPV 15297 330 780 0,42 1530 <50 468 608 0,77 150

DT8 F 43 NA >500000 279 1085 0,26 120 <40 528 733 0,72 270

DT9 M 42 NA 28288 184 606 0,3 640 <40 579 657 0,88 450

DT10 M 37 3TC AZT EFV NA NA NA NA NA <40 563 780 0,72 600

DT11 M 49 3TC AZT EFV NA NA NA NA NA <40 1023 674 1,52 1350

DT12 M 27 TDF FTC EFV 111893 629 741 0,85 240 ND 696 472 1,48 690

Median DT (IQR25%-75%)
57728 

(27505-
122260)

330 
(263-
428)

741 
(604-
1037)

0,45 
(0,28-
0,79)

570 (225-
890)  

563 
(508-
707)

699 
(580-
770)

1 
(0,67-
1,07)

390 (210 
- 668)

ET1 M 39 TDF FTC ATV/r >500000 627 943 0,66 30 <40 594 668 0,89 450

ET2 M 45 3TC AZT EFV 283441 187 928 0,2 90 <40 522 596 0,88 600

ET3 M 41 TDF ATD 3FTC 36338 768 649 1,18 30 <50 1099 599 1,83 330

ET4 M 25  TDF FTC EFV 17292 612 1828 0,33 60 <50 1342 1010 1,31 450

ET5 M 52 TDF 3TC ATV/r 20106 787 743 1,06 60 <40 829 491 1,69 480

ET6 M 70  TDF FTC >500000 421 1379 0,31 60 <40 854 452 1,89 540

ET7 M 26 TDF FTC EFV 671440 435 3346 0,13 30 <40 842 646 1,3 510

ET8 M 30  TDF 3TC ATV/r 172468 345 761 0,45 30 <40 657 566 1,16 360

ET9 M 31 TDF FTC EFV 26547 400 571 0,7 30 ND 824 413 1,99 1000

ET10 M 35 NA 231360 330 1881 0,18 60 <40 1080 868 1,24 360

ET11 M 30 NA 9294958 654 1570 0,42 30 <40 1026 696 1,47 360

ET12 M 26 TDF FTC EFV >500000 339 4308 0,08 90 <40 691 1044 0,66 480

ET13 M 42 TDF FTC ATV/r >500000 213 1126 0,19 90 <40 386 480 0,81 360

Median ET (IQR25%-75%)
172468 
(23327-
477441)

421 
(335-
640)

1126 
(752-
1855)

0,33 
(0,19-
0,70)

60  (30-75)  
829 

(626-
1053)

599 
(489-
782)

1,3 
(0,89-
1,76)

450 (360 
- 525)

Median Total (IQR25%-75%)
66929 

(26896-
201914)

387 
(313-
616)

935 
(689-
1427)

0,42 
(0,23-
0,70)

90  (30-
390)  

691 
(531-
848)

657 
(539-
759)

1 
(0,73-
1,47)

450 (330 
- 585)

a �Participants denoted as DT initiated ART after 4 months since the estimated date of infection (DT=De-
layed Treatment). Participants denoted as ET initiated ART within 4 months post-infection (ET=Early 
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Treatment). Further analyses were performed using data from all participants without segregation. All 
study participants were White.

b Sample obtained immediately before participants started ART.
c Sample obtained on ART.
d �Versant HIV-1 RNA 3.0 assay (Siemens. Lower and upper detection limits are 50 and 500,000 RNA cop-

ies/ml, respectively) or Abbott Real Time HIV-1 assay (Abbott Park, Lower and upper detection limits 
are 40 and 107 RNA copies/ml, respectively. ND: Non-detected).

e Single platform flow cytometry (BD Biosciences, USA).
f Relative to the presumed date of infection.
g Time from the moment of cART initiation to sample obtaining.
F: Female. M: Male. NA= Data not available.
Drugs = 3TC: Lamivudine; AZT: Zidovudine; LPV/r: Lopinavir/ritonavir; TDF: Tenofovir; ATV/r: 
Atazanavir/ritonavir; ABC: Abacavir; EFV: Efavirenz; FTC: Emtricitabine

At the pre-cART samples, the following determinations were performed: i) distribution of memo-
ry subpopulations at bulk CD4TC and CD8TC compartments; ii) HIV-specific CD8TC polyfunc-
tionality and memory/effector differentiation profile; iii) PD-1 expression in bulk and memory/
effector subpopulations of CD4TC, CD8TC, and HIV-specific cells. In post-cART samples, CA 
HIV DNA and RNA forms as well as plasma levels of IP-10, sCD14, and sCD163 were determined 
ex vivo. Also, the distribution of memory/effector subsets in bulk and HIV-specific CD8TC and 
HIV-specific CD8TC polyfunctionality were determined after cell expansion in vitro as per-
formed previously [21]. Results for these determinations are shown in supplemental figures 1 
and 2. Overall, it could be observed that the pre-cART distribution of naive and memory/effector 
T-cell subsets, both at the CD4TC and CD8TC compartments, behaved as expected according to 
previous publications [18, 29] (Supplemental Figure 1A). Since it is known that the frequency of 
HIV-specific T cells decays significantly following cART initiation, cells from post-cART samples 
were expanded as reported previously [21]. No immune parameter was evaluated directly ex vivo 
in post-cART samples. During the expansion process, CD8TC are preferentially expanded over 
CD4TCs. This could be due to suboptimal culture conditions for CD4TCs proliferation, out-com-
petition by CD8TCs, underrepresentation of MHC-II-restricted compared to MHC-I-restricted 
peptides, or for other reasons. Thus, CD4TC were not evaluated at post-cART samples. 

Both bulk and HIV-specific CD8TC post-cART also showed the anticipated phenotype [21] with 
a noticeable enrichment of effector memory (TEM) at the specific compartment (Supplemen-
tal Figure 1B). HIV-specific pre-cART CD8TC were dominated by monofunctional cells. The 
most frequent functions were CD107A/B mobilization (degranulation) and TNF-a production 
followed by IFN-g, Mip1b (CCL4), and IL-2 production. On the other hand, the most frequent 
functions in expanded CD8TC from post-cART samples were IFN-g, Mip1b (CCL4), and TNF-a 
production followed by degranulation and, to a lesser extent, IL-2 production. In this group, a 
significantly higher proportion of polyfunctional cells able to carry out multiple effector functions 
were found (permutation test P<0.0001, SPICE software; Supplemental Figure 1C). In line with 
this, expanded CD8TC were able to exert significant cytotoxic activity as measured by the VITAL 
assay, ie, specific direct lysis of HIV-peptide-loaded target CD4TCs by the autologous HIV-specif-
ic expanded CD8TC (Supplemental Figure 1D). Also, 12 out of 25 participants (52%) had de-
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tectable HIV-specific CD4TC responses pre-cART. Positive responses showed a median of 0.56% 
(IQR25-75=0.42%-0.86%, data not shown).

Pre-cART PD-1 showed a significant expression when analyzed in bulk CD4TC and CD8TC 
(Supplemental Figure 1E, left and right panel, respectively), especially in those individuals with 
delayed treatment initiation. When its expression was studied in the different subpopulations, it 
was concentrated within TEM and central memory T cells (TCM). Regarding viral reservoir com-
position post-cART, total HIV DNA was more readily measured than integrated DNA, while 
US-RNA was more abundant than MS-RNA (Supplemental Figure 2A). Plus, US-RNA to total or 
integrated DNA ratios were calculated in order to account for transcriptional activity per infected 
cell; and MS- to US-RNA ratio to illustrate the stage in viral genome transcription, ie, lower MS/
US-RNA reflects higher frequency of cells in the later stages of the viral replication cycle [26] 
(Supplemental Figure 2B). Finally, plasma levels of IP-10, sCD14, and sCD163 were measured. 
These molecules have been proposed as markers of persistent inflammation in HIV infection 
since their levels remain elevated despite years of cART, compared to healthy donors [30-37]. 
Both IP-10, sCD14, and sCD163 were detected in all the samples tested. Moreover, IP-10 and 
sCD14 medians were considerably elevated compared to values corresponding to healthy donors 
found in the bibliography (Supplemental Figure 2C) [30-34, 38-41]. 

Correlation analysis showed a relationship between pre- and post-cART CD8TC response 
quality (preserved distribution of memory subsets, functionality, and lower PD-1 expression), 
while CD4TC phenotype (distribution of memory subsets and PD-1 expression) pre-cART 
was better associated with the level of HIV persistence and inflammation post-cART. 

As a first approach on how pre-cART CD8TC and CD4TC phenotype and function relate to 
the parameters evaluated post-cART, correlation analyses were performed and heat-maps were 
prepared to better visualize results (Supplemental Figure 3). The rows and columns correspond to 
determinations performed at the pre-cART and post-cART samples, respectively. Also, the esti-
mated time of infection to sampling and the pre-cART VL value were included as row variables. 
In this manner, we were able to identify patterns of consistent correlations that provide support to 
the ideas presented in our hypothesis:

i) The phenotype of CD8TC pre-cART influences the functionality of CD8TC post-cART: First, 
we observed that the percentages of pre-cART bulk CD8+ Tnaive cells correlated inversely with the 
proportions of post-cART bulk CD8+ TCM, TEM cells and with the levels of CD8+ T-cell arrest (cal-
culated as the ratio TEM/[TEM+TTE] as described previously [18]), while it correlated directly with 
the proportions of bulk CD8+ TTE cells (Figure 1A). The percentage of HIV-specific CD8TC pre-
ART evaluated ex vivo by flow cytometry correlated directly with the capacity of expanded CD8TC 
from post-cART samples to mediate direct cytolytic antiviral function measured by the VITAL as-
say (Figure 1B). In addition, the phenotype of the HIV-specific CD8+ T cells pre-cART was related 
to cell functionality post-cART: higher percentages of CD8+ stem-cell memory T cells (TSCM) and 
TTE cells correlated inversely with proportions of monofunctional HIV-specific CD8+ T cells post-
cART and correlated directly with higher proportions of polyfunctional (4- and 5-function cells 
for TSCM and 5-function cells for TTE) post-cART. Conversely, higher percentages of CD8+ TEM cells 
and higher arrest correlated directly with higher frequencies of monofunctional cells (Figure 1C) 
and correlated inversely with frequencies of polyfunctional HIV-specific CD8+ T cells post-cART.
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Figure 1: Correlation analysis between the phenotype and function of CD8+ T-cell response pre- and 
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post-cART. A. Correlations between the percentages of Tnaive CD8+ T cells pre-cART and the percentages 
of CD8+ TCM, TEM, and TTE cells, and the magnitude of CD8+ T-cell arrest post-cART. B. Correlations 
between the percentages of HIV-specific CD8+ T cells pre-cART and the percentage of CD8+ T-cell-
mediated specific lysis, measured by VITAL assay at different target-to-effector ratios, post-cART. C. 
Correlation between the proportions of HIV-specific CD8+ TSCM, TEM, and TTE cells and CD8+ T-cell 
arrest pre-cART and the percentages of HIV-specific CD8+ T cells exhibiting 1 (1fx), 4 (4fx) and 5 
(5fx) simultaneous functions post-cART. Black dots represent ET participants and gray dots represent 
DT participants. The r and P values correspond to Spearman’s test. Those correlations that remained 
statistically significant after correction for multiple comparisons are shown in red. SCM: stem-cell 
memory, CM: central memory, EM: effector memory, TE: terminal effector. 

ii) An exhausted phenotype on CD8+ T cells pre-cART also relates to HIV persistence and in-
flammation post-cART: The percentages of CD8+ T cells expressing PD-1 and PD-1high pre-cART 
were correlated directly with higher levels of total HIV DNA (Figure 2A). Higher percentages of 
CD8+ TEM

 cells, lower percentages of CD8+ TTE cells and higher CD8+ T-cell arrest were related to 
lower levels of HIV US-RNA and lower US-RNA/total DNA ratios post-cART (Figure 2B). Final-
ly, frequencies of CD8+ TEM cells, CD8+ T–cell arrest, and the frequency of CD8+ T-cells expressing 
PD-1 correlated directly with the levels of plasma IP-10 post-cART (Figure 2C).

iii) Exhaustion and differentiation of CD4+ T cells pre-cART determine the composition of 
the HIV reservoir post-cART and also the level of inflammation: The frequency of PD-1high 
CD4+ T cells pre-cART correlated directly with the levels of total HIV DNA and inversely with 
US-RNA and the US-RNA/total DNA ratio post-cART (Figure 3A). Pre-cART percentages of 
CD4+ Tnaive cells correlated directly with the levels of total HIV DNA, and MS-RNA/US-RNA ra-
tios post-cART (Figure 3B). Similarly, pre-cART percentages of CD4+ TCM cells correlated directly 
with the levels of total and integrated HIV DNA, and inversely with the levels of HIV US-RNA 
as wells as US-RNA/total DNA and US-RNA/integrated DNA ratios (Figure 3C). Finally, the 
percentages of terminally differentiated CD4+ T cells pre-cART correlated inversely with the total 
and integrated HIV DNA, and directly with the levels of US-RNA and the US-RNA/total DNA 
ratio (Figure 3D). Exactly opposite correlations were found with the magnitude of CD4+ T-cell 
differentiation arrest (Figure 3E). These results prompted us to study the relation of PD-1 expres-
sion within each of these CD4+ T-cell subpopulations and HIV persistence. 

First, higher proportions of CD8+ TCM, TEM and TTE cells expressing PD-1 pre-cART were cor-
related with higher levels of total HIV DNA post-cART (Figure 4A), suggesting an association 
between an exhausted CD8+ T-cell response and a higher HIV reservoir post-cART. On the other 
hand, higher proportions of CD4+ TCM PD-1+ pre-cART correlated with lower levels of US-RNA 
and US-RNA/total DNA ratios post-cART while higher proportions of CD4+ TEM PD-1+ pre-
cART correlated with higher levels of total DNA, lower US-RNA levels, and lower US-RNA/total 
DNA ratios post-cART. In turn, proportions of CD4+ TTE PD-1+ pre-cART correlated inversely 
with US-RNA/total DNA ratios (Figure 4B). Overall, these results indicate that HIV may persist 
in diverse CD4+ T-cell subsets with different efficiency. Pre-cART expression of PD-1 on CD4+ T 
cells seems to be a marker of lower HIV transcriptional activity, particularly in TCM and TEM cells. 
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Figure 2: Correlations analysis between the phenotype of CD8+ T-cell response pre-cART and HIV 
persistence and inflammation post-cART. A. Correlations between the expression of PD-1 in bulk CD8+ 
T cells pre-cART and levels of total HIV DNA. Proportion of total PD-1+ cells (PD-1high + PD-1low) are 
shown in the upper panel and PD-1high cells in the lower panel. B. Correlations between the percentages 
of bulk CD8+ TEM and TTE cells as well as CD8+ T-cell arrest pre-cART with the levels of US-RNA 
(upper panels) and the US-RNA/total DNA ratio (lower panels) post-cART. C. Correlations between 
the percentages of bulk CD8+ TEM, CD8+ T-cell arrest and the proportions of PD-1 expressing CD8+ T 
cells pre-cART with post-cART IP-10 plasma levels. Black dots represent ET participants and gray dots 
represent DT participants. The r and P values correspond to Spearman’s test. Those correlations that 
remained statistically significant after correction for multiple comparisons are shown in red. In C, P values 
were not corrected and shown in italics. SCM: stem-cell memory, CM: central memory, EM: effector 
memory, TE: terminal effector. 

Finally, percentages of pre-cART CD4+ Tnaive and TCM cells correlated directly with plasma levels 
of IP-10 and sCD163 post-cART while proportions of pre-cART CD4+ TTE cells showed inverse 
correlations (Figure 5). In turn, percentages of pre-cART CD4+ PD-1+ T cells correlated directly 
with both markers. 
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Figure 3: Correlation analysis between the phenotype of CD4+ T cells pre-cART and HIV persistence A. 
Correlations between the proportions of CD4+ T cells expressing PD-1high pre-cART and the levels of total 
HIV DNA, US-RNA, and US-RNA/total DNA ratios. B. Correlations between the proportions of CD4+ Tnaive 
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cells pre-cART and the levels of total HIV DNA, and MS-RNA/US-RNA ratios. C. Correlations between the 
proportions of CD4+ TCM cells pre-cART and the levels of total HIV DNA, integrated DNA, US-RNA, and 
US-RNA/total DNA and US-RNA/integrated DNA ratios. D. Correlations between the proportions of CD4+ 
TTE cells pre-cART and the levels of total HIV DNA, integrated DNA, US-RNA, and the US-RNA/total 
DNA ratio. E. Correlations between the magnitude of the CD4+ T-cell response arrest pre-cART and the 
levels of total HIV DNA, integrated DNA, US-RNA, and the US-RNA/total DNA ratio. Black dots represent 
ET participants and gray dots represent DT participants. The r and P values correspond to Spearman’s test. 
Those correlations that remained statistically significant after correction for multiple comparisons are shown 
in red. SCM: stem-cell memory, CM: central memory, EM: effector memory, TE: terminal effector. 
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Figure 4: Correlation analysis 
between the expression of PD-1 
within CD4+ and CD8+ memory/
effector subpopulations and HIV 
persistence A. Correlations between 
the percentages of CD8+ TCM, TEM, 
and TTE expressing PD-1 pre-cART 
and the levels of total HIV DNA 
post-cART. B. Correlations between 
the percentages of CD4+ TCM, TEM, 
and TTE expressing PD-1 pre-cART 
and the levels of US-RNA, the levels 
of total HIV DNA, and US-RNA/
total DNA ratios post-cART. Black 
dots represent ET participants and 
gray dots represent DT participants. 
The r and P values correspond to 
Spearman’s test. Those correlations 
that remained statistically 
significant after correction for 
multiple comparisons are shown 
in red. SCM: stem-cell memory, 
CM: central memory, EM: effector 
memory, TE: terminal effector. 
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Figure 5: Correlations analysis between the phenotype of CD4+ T cells pre-cART and inflammation 
levels post-cART. Correlations between the proportions of CD4+ Tnaive, TCM, TTE and PD-1+ cells 
pre-cART and plasma levels of IP-10 (A) and soluble CD163 (B, sCD163) measured post-ART. Black 
dots represent ET participants and gray dots represent DT participants. The r and P values correspond 
to Spearman’s test. SCM: stem-cell memory, CM: central memory, EM: effector memory, TE: terminal 
effector. 
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DISCUSSION
HIV-specific CD8+ T-cell responses are believed to be a very important factor in achieving sus-
tained long-term viral control as demonstrated in non-human primate models and elite con-
trollers [16]. Since responses elicited in most PLWHA are sub-effective, developing strategies to 
promote de novo responses or to modulate existing memory immunity in order to resemble the 
characteristics found in HIV controllers may pave the way to cure the infection. Here, we extend-
ed previous studies regarding the association of function and phenotype of CD4+ and CD8+ T 
cells pre-cART with the immune function and viral markers that persist after cART instauration. 
It was found that i) the phenotype of CD8+ T cells pre-cART as well as the magnitude and pheno-
type of HIV-specific response might be associated with the phenotype and functionality of CD8+ 
T cells post-cART; ii) the phenotype of the CD8+ T cells pre-cART correlated with markers of 
HIV persistence and inflammation post-cART; iii) exhaustion and differentiation of CD4+ T cells 
pre-cART were associated with the composition of the HIV reservoir post-cART and the level of 
inflammation (Figure 6).

• HIV persistence
• Inflammation

Pre-cART

• Preserved bulk and HIV-specific
  CD8+ T-cell differentiation

• Magnitude of HIV-specific T-cell  
  response

• Preserved bulk CD4+ T-cell 
  differentiation

Post-cART

• CD8+ T-cell effector capacity

• CD8+ T-cell antiviral activity

• CD8+ T-cell polyfunctionality

• PD-1 expression on bulk CD8+ T-cells

• PD-1 expression on CD4+ T-cells

• Higher HIV DNA levels

• HIV latency

Figure 6: Summary of the associations between the function and phenotype of CD4+ and CD8+ T-cells 
pre-cART with the immune function, viral markers of HIV persistence and inflammation levels post-
cART.

During the natural course of infection, HIV-specific CD8+ T cells play a central role in the control 
of viral replication, particularly during acute infection [16, 42, 43]. Bulk and HIV-specific CD8+ 
T cells suffer early alterations in their frequency, differentiation, activation, and functionality that 
are progressively accentuated, as antigen stimulation persists in untreated infection [17, 18, 44, 
45]. As PLWHA initiate cART, some of these alterations revert but CD8 T-cell optimal function is 
not fully restored [42, 46-54]. As more CD8+ T-cell-based vaccine or CD8+ T-cell dependent cure 
strategies are being proposed and developed, it is critical to understand and identify the limita-
tions and pitfalls of the immune response that persists in people receiving cART, and to generate 
tools in order to boost its antiviral function. Here, we show that the magnitude of the damage 
reached pre-cART associates with the level of dysfunction that remains when receiving cART. 
This is illustrated by correlations found between percentages of bulk CD8+ Tnaive cells pre-cART 
and the level of CD8TC arrest post-cART (Figure 1A), the level of CD8TC arrest in the HIV-spe-
cific CD8+ T-cell compartment pre-cART and decreased functionality post-cART (Figure 1B-C), 
and the level of CD8TC arrest and exhaustion of the bulk compartment pre-cART with the levels 
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of inflammation when receiving cART (Figure 2C). It is worth noting that the level of CD8TC 
arrest as calculated here is an indicator of maturation blockade and skewed differentiation in the 
T-cell compartment in HIV infection, and it has been correlated with markers of disease pro-
gression [18, 46, 55-57]. Thus, these CD8+ T-cell parameters, evaluated immediately before cART 
initiation, could serve as markers of CD8+ T-cell functionality post-cART, could determine if an 
individual is eligible for a given intervention, or could be useful to predict the success of a CD8+ 
T-cell-based strategy or even the need of tailored interventions. In addition, we report that per-
centages of exhausted bulk CD8+ T cells as well as the level of differentiation arrest in this com-
partment correlated with the size of the HIV DNA reservoir during cART and the activity of this 
reservoir, respectively (Figure 2A-B). This recapitulates and extends our previous finding [20] 
where similar results were obtained in an independent cohort. Two hypotheses arise; it could be 
first postulated that an early preservation of the CD8+ T-cell compartment limits viral spreading 
resulting in a smaller reservoir. It is worth noting that the correlations obtained referred to the 
bulk compartment, not the HIV-specific compartment. This could be illustrating the global alter-
ation that this cell population undergoes in the context of HIV infection. On the other hand, it 
is known that CD8+ T cells have a role in controlling viral replication during cART although it is 
neither complete nor efficient since VL inevitably re-emerges upon cART interruption [12, 16, 20, 
29, 58-61]. Thus, pre-cART CD8+ T-cell response quality might be standing as a surrogate marker 
for CD8+ T-cell response quality during cART in these correlations. Recent advances indicate that 
viral proteins were found to be expressed from latently infected CD4+ T cells, even from those 
harboring defective HIV proviruses, and that these cells are subjected to immune surveillance 
[62, 63]. Very recently, Stevenson et al [64] showed that long-term CD8+ T-cell responses during 
cART are maintained by viral protein-mediated cell triggering. This indicates that CD8+ T-cell 
response during cART contributes to the dynamics of reservoir maintenance, and warrants more 
research to understand the molecular biology of HIV persistence during cART and its interaction 
with the CD8+ T-cell response in order to expand cure and vaccine research. 

The population of CD4+ T cells is very heterogeneous and susceptibility to HIV infection and 
replication activity depends on their differentiation, activation status, functionality, phenotype, 
and even antigen specificity, among other factors [65]. In treated participants, frequency of HIV 
persistence varies across different memory subsets. While CD4+ Tnaive cells and TSCM are known to 
contribute to viral persistence, TCM and TEM are the key contributors to the viral reservoir based 
not only on their own capacity to self-renew and proliferate but also because they show the high-
est frequency of infected cells [66, 67] and the highest frequencies of intact and inducible provi-
ruses [68-72], respectively. Here, correlations were observed between the proportions of different 
CD4+ T-cell subsets pre-cART and either the magnitude of the HIV reservoir measured by total 
or integrated DNA or the transcriptional activity of that reservoir measured as levels of US-RNA 
or MS-RNA or HIV RNA/DNA ratios. Levels of HIV DNA post-cART (total and/or integrated) 
were associated with higher proportions of CD4+ TNaive cells, CD4+ TCM cells, higher CD4+ T-cell 
arrest, and lower proportions of CD4+ TTE cells pre-cART. However, exactly opposite correlations 
were found when measuring the transcriptional activity (RNA forms) of the reservoir (Figure 3). 
This is consistent with the idea that CD4+ TCM cells contribute highly to the pool of HIV-infected 
cells that persist after cART, but that they harbor virus which rather keeps in a transcriptionally 
silent state. Then, HIV transcription activity augments as memory cells transition to an activated 
effector phenotype [65]. In addition to the cellular differentiation state, the expression and coex-
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pression of certain immune checkpoint molecules on CD4+ T-cells (PD-1, TIGIT, LAG-3, CTLA4, 
among others) have been associated with different states of HIV persistence [73-76]. 

In particular, we have previously shown that the magnitude of PD-1 expression both at the CD8+ 
and CD4+ T-cell compartments, evaluated early after infection, was associated with the levels of 
subsequent viral persistence on cART [20]. Here, we show that although pre-cART expression 
of PD-1 on CD4+ T-cells associates directly with the frequency of infected cells on cART, higher 
frequencies of CD4+ PD-1+ TCM, TEM and TTE cells correlated with lower HIV transcription during 
cART measured as the level of US-RNA or US-RNA/total DNA ratio. This finding is in line with 
previous evidence suggesting that PD-1 (and other immune checkpoints) are markers of tran-
scriptionally-silent HIV-infected cells during cART [73, 74, 76]. Moreover, blockade of immune 
checkpoints (more specifically PD-1) was shown to rescue HIV transcription in these cells, and 
that it could even be proposed as a latency reversal agent [77]. So far, most cure interventions 
have been proposed to start once PLWHA are receiving suppressive cART. However, it may also 
be possible that targeting PD-1 at cART initiation could also be beneficial, leading to a smaller 
HIV reservoir post-cART by reversing HIV latency and increasing CD8+ T-cell function against 
infected cells earlier. 

This is a descriptive study seeking correlations between immune and viral parameters associ-
ated with HIV infection. We performed a comprehensive study where multiple immunological 
and virological parameters were evaluated in paired pre- and post-cART samples. Although our 
approach is only descriptive, many of the associations that were raised in the analyses are in line 
with findings from studies involving mechanistical or interventional approaches. This provides 
reciprocal support to the findings and enhances the evidence in the field. As discussed above, 
several pre-cART parameters identified here have the potential to act as biomarkers of post-cART 
immune function and viral persistence, and, hypothetically, could also serve to predict the out-
come of an intervention or even indicate whether the intervention is adequate for a given person. 
Furthermore, it is possible to postulate that the moment of cART initiation may also represent a 
moment of opportunity to intervene. 

This study has several limitations. First, limited sample availability resulted in discrepancies in 
the number of parameters evaluated in each sample. The second limitation was the need to use a 
strong and prolonged stimulation protocol for T-cell expansion in samples obtained during cART. 
Although it is a useful tool to evidence the HIV-specific response post-cART, it could also intro-
duce modifications into the cell phenotype and function. Third, cell phenotype was only studied 
by means of memory differentiation markers and PD-1 expression. Deeper analysis including 
other immune checkpoint molecules, co-stimulatory molecules, and survival markers could 
provide additional and relevant information. Similarly, inclusion of other functional markers such 
as the production of perforins and granzymes, which have been already described as key compo-
nents of CD8+ T-cell antiviral function, were not measured. 

Fourth, pre-cART and post-cART samples are not homogeneous in terms of time from infection 
and time receiving cART, respectively. Moreover, DT and ET groups differ significantly in time 
from infection to sampling and pre-cART VL values. Indeed, it is well known that these 2 vari-
ables play a significant role in immune function preservation, inflammation, immune-mediated 
damage, and composition and size of the viral reservoir. In this study, global associations between 
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pre- and post-cART parameters are described without pretending to imply a cause-effect relation-
ship nor suggest a direct underlying mechanism that could account for such associations. Wheth-
er the time from infection to sampling or the pre-cART VL values influence these associations 
could not be discounted. A proper study with an adequate sample size should be designed to rule 
out this possibility and exclude confounders. On the other hand, immune profiling of CD4TC 
was not performed in post-ART samples due to technical constraints and lack of enough biolog-
ical material. Certainly, this could have represented an added value to the study and deserves to 
be analyzed in a subsequent study. Finally, PCR-based assays aimed at quantifying HIV DNA or 
RNA have been extensively used to study the viral reservoir in PLWHA receiving cART. However, 
these techniques fail to discriminate between intact vs defective or inducible vs latent proviruses. 
This may overestimate the size of the replication-competent virus pool, and the results may not 
necessarily correlate with the dynamics of the truly inducible, replication-competent viral reser-
voir. Our results should be extended by including other measurements such as the qVOA, TILDA 
(Tat/rev Induced Limiting Dilution Assay), and IPDA (intact proviral DNA assay) assays [78].

Overall, combined and parallel analysis of CD8+ and CD4+ T-cell quality before cART together 
with immune and viral factors during cART represent an important progress in order to un-
derstand HIV persistence. Boosting and/or modulation of CD8+ T-cell responses in individuals 
receiving cART is postulated as essential in HIV cure strategies. Here, we observed that pre-cART 
quality in CD8+ T-cell response could predict the level of functionality of CD8+ T-cell response 
during cART. Similarly, proportions of the different CD4+ T-cell memory/effector subsets and the 
expression of exhaustion markers within each subset could act as determinants not only of the 
level but also of the activity of the viral reservoir. Advances made in the HIV persistence field over 
the last few years hold promise for the development of HIV functional cure strategies. Within 
these strategies, the immune environment will be a key determinant of success. This work pro-
vides data to help understand and identify parameters that could be used as markers for subse-
quent interventions. 
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