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ABSTRACT: Here we present a novel, end-point method
using the dead-end-elimination and A* algorithms to
efficiently and accurately calculate the change in free energy,
enthalpy, and configurational entropy of binding for ligand−
receptor association reactions. We apply the new approach to
the binding of a series of human immunodeficiency virus
(HIV-1) protease inhibitors to examine the effect ensemble
reranking has on relative accuracy as well as to evaluate the
role of the absolute and relative ligand configurational entropy losses upon binding in affinity differences for structurally related
inhibitors. Our results suggest that most thermodynamic parameters can be estimated using only a small fraction of the full
configurational space, and we see significant improvement in relative accuracy when using an ensemble versus single-conformer
approach to ligand ranking. We also find that using approximate metrics based on the single-conformation enthalpy differences
between the global minimum energy configuration in the bound as well as unbound states also correlates well with experiment.
Using a novel, additive entropy expansion based on conditional mutual information, we also analyze the source of ligand
configurational entropy loss upon binding in terms of both uncoupled per degree of freedom losses as well as changes in coupling
between inhibitor degrees of freedom. We estimate entropic free energy losses of approximately +24 kcal/mol, 12 kcal/mol of
which stems from loss of translational and rotational entropy. Coupling effects contribute only a small fraction to the overall
entropy change (1−2 kcal/mol) but suggest differences in how inhibitor dihedral angles couple to each other in the bound versus
unbound states. The importance of accounting for flexibility in drug optimization and design is also discussed.

1. INTRODUCTION

One of the goals of rational, structure-based drug design is to
understand the thermodynamics of small-molecule-receptor
binding in order to design effective, high-affinity therapeutics.
Lead compound development is expensive and requires a great
deal of experimental effort to explore the large combinatorial
space of chemical functionality. To expedite the process,
computational methods are often used to optimize the search
and examine the binding thermodynamics of lead compounds.
It is difficult, however, to compute accurately both the enthalpy
(ΔHbind) and entropy changes (ΔSbind) upon binding and to
rank compounds based on a true free energy of binding (ΔG =
ΔH − TΔS). Most approaches based on physical force-fields
include enthalpic binding contributions and perhaps solvent
entropy contributions, but both are estimated from single
bound and unbound conformations. The neglect of configura-
tional entropy changes for binding partners is a clear omission

in common applications. Nonetheless, such calculations are
valuable as they can provide a more accurate and detailed
breakdown of the thermodynamic changes. Experimental
methods such as isothermal titration calorimetry (ITC)1 can
only report on ensemble averaged binding enthalpies and
entropies, and they cannot determine the source of the change
(e.g., ligand, receptor, or solvent).
Computational approaches, in principle, account for the

contributions to the free energy of binding from ligand,
receptor, and solvent degrees of freedom. Standard molecular
mechanical treatments of ligand binding separate the enthalpic
changes into separate terms for internal, van der Waals,
Coulombic, and solvation interactions.2,3 Similarly, binding
entropies are often decomposed into conformational entropy
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terms for the ligand, receptor, and solvent, but compared to the
enthalpic terms, they are much more time-consuming to
calculate. To accurately compute an ensemble free energy or
entropy change upon binding, one must fully explore and
integrate over the conformational space of the solvent, the
ligand, its receptor, and the complex,4 which is a formidable
task even for small systems. Given this difficulty, the
configurational entropy change is often assumed to be the
same for different ligands in a series or is approximated with an
empirical term that assumes a constant change in entropy per
frozen rotatable bond.5−9 However, these approaches often fail
to account for both ligand and receptor topology and lack
theoretical support. Chang et al. calculated the change in
configurational entropy of the clinically approved inhibitor
amprenavir binding to HIV-1 protease (as −TΔS) and found it
to oppose binding by ∼25 kcal/mol.10 It is still unknown,
however, whether the configurational binding entropy change is
similar for different, related protease inhibitors.
Modern computational methods that are used to compute

free energies of binding, and their component enthalpies and
entropies generally fall into one of two categories, perturbation
and end-point methods. The former includes free energy
perturbation (FEP)11,12 and thermodynamic integration
(TI),13−15 which often rely on molecular dynamics (MD) or
Monte Carlo (MC) simulations to perturb a system from one
state to another (e.g., wild type to mutant, one ligand to
another, or even unbound to bound). The total free energy
change can then be computed as a function of the perturbation
coordinate. These methods provide a well-defined thermody-
namic path between each state but can be slow to converge, as
there are significant challenges.16 End-point methods determine
free energy changes by calculating absolute free energies of the
final and initial states of the system and taking the difference.4

These absolute free energies can also be found via MD or MC
simulations and have been successfully used to study ligand
binding in a variety of molecular systems.17,18 Recent,
alternative formulations make use of the single- or predom-
inant-state approximation, in which a single or multiple low-
energy structures are identified, and the local configurational
space about each initial structure is sampled.10,19,20 Implicit in
these methods is the assumption that high-energy conforma-
tions contribute negligibly to the ensemble entropy and
enthalpy averages and that the potential energy surface is well
described using a single or set of local minima. Further
approximations are often made to analytically integrate over
local minima using the harmonic or quasiharmonic approx-
imation.17,21,22 The former assumes the potential energy surface
about the initial structure can be modeled using a multidimen-
sional harmonic potential, while the latter also assumes that
conformational fluctuations are governed by a multivariate
Gaussian probability distribution. While these methods are
efficient, they are not guaranteed to search all of phase space
and exaggerate favorable free energy changes.23

This study seeks to evaluate a number of these assumptions
using an ensemble, configurational free energy of binding to
accurately rank computationally designed human immunodefi-
ciency virus (HIV-1) protease inhibitors. Previous studies of the
examined inhibitors have shown that using a single, low-energy
configuration to evaluate each inhibitor can successfully predict
binding geometries but often fails to correctly rank inhibitors
with binding free energies within 2−3 kcal/mol of each other.24

We sought to improve upon this static, predominantly
enthalpic treatment by accounting for ensemble effects of the

ligand both in the bound and the unbound state. To this end,
we developed a novel, deterministic, end-point method for
computing the free energy of binding of ligand−receptor
complexes that uniformly searches conformational space and
explicitly accounts for both enthalpic and configurational
entropic effects. This approach fundamentally differs from the
aforementioned methods in that it does not sample from a
Boltzmann distribution of configurations to collect an average
but instead uses uniform, rotameric enumeration25 of ligand
torsional degrees of freedom to map out and explicitly integrate
over the potential energy landscape. While normally an
intractable problem, searching through this high-dimensional
space is enabled through the use of the dead-end elimination
(DEE)26−29 and the A* algorithms.30,31 DEE is used to prune
high-energy rotamers, which excludes low probability config-
urations from the search space, while A* is used to rapidly
enumerate the accessible configurational states of the structure.
Both of these algorithms are global optimizers and, when used
in conjunction, are guaranteed to both find the global minimum
energy configuration (GMEC) and eliminate all those
configurations with energies greater than a user supplied
energy cutoff above the GME. Using this method, we were able
to generate an energy-ranked, gapless list of low-energy ligand
configurations in a computationally tractable amount of time,
and evaluate the bound and unbound state partition functions
to compute the free energy, enthalpy, and configurational
entropy of binding in the context of a rigid receptor.
The configurational entropy changes of all the protease

inhibitors explored in this study were further analyzed using a
novel, additive entropy expansion. By decomposing the entropy
into a series of marginal entropy and mutual information
(coupling) terms, we were able to extract the entropic
contribution of each degree of freedom as well as the
contributions from entropic coupling between pairs, triplets,
and higher-order combinations. Similar entropy expansions
have been described in the literature to examine the
configurational entropies of liquids,32,33 spin frustrated
systems,34 as well as biological systems.35,36 However, given
the aforementioned difficulty associated with effectively
sampling the potential energy landscape of complex biological
systems, previous applications to such systems have been
limited to approximating the full entropy of the system. These
methods assume that only a low-order subset of the entropy
terms contribute significantly, as they are unable to accurately
evaluate the remaining high-dimensional terms. Additionally,
while these approximations have been reasonably successful at
describing the larger distribution, the individual terms are often
difficult to physically interpret as they contain overlapping
entropic contributions that are successively added and removed
as the level of approximation improves.35 The expansion used
in this study is similar to that used in the MIST expansion,37,38

as well as those presented by Killian et al. and Matsuda.34,35 It is
based on the generalized Kirkwood superposition approxima-
tion,35,39,40 which approximates a high-order probability
distribution using a series of successively lower-order
distributions. It differs, however, in that each entropy term in
the expansion is conditioned on the remaining degrees of
freedom of the system, which aids in the physical interpretation
of these terms by separating their contributions into non-
overlapping pieces. Each term describes either the conditional
marginal entropy of each degree of freedom or the conditional
mutual information (coupling) between sets of degrees of
freedom. By appropriately conditioning each term, these
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conditional couplings are measures of the coupling between
degrees of freedom that are not mediated by another degree of
freedom of the system, which avoids the layered, compensating
additions and subtractions of the same physical effect present in
other methods.
Applying this novel, conditional mutual information

expansion (CMIE) and DEE/A* enumeration method to a
series of protease inhibitors, we have been able to interpret
configurational variation both within a given ensemble as well
as between equilibrium ensembles in terms of specific
thermodynamic changes. We can accurately evaluate the
contribution of each marginal and coupling term to the full
entropy as well as provide some insight into how physical
coupling of degrees of freedom affects configurational entropy
of binding. Our results analyze the efficacy of our approach by
exploring thermodynamic convergence, comparisons with
experimental measurements of binding affinity, and the role
configurational entropy plays in binding. We find that our
computed free energies correlate strongly with experiment and
that most thermodynamic averages are well-defined by only a
small portion of configurational space. Compared to previous
computational studies of the inhibitors examined here,24 the
enhanced sampling methods employed in this study provide
better single-conformation and ensemble estimates that
correlate with experimental free energy measurements. We
also observe that each inhibitor loses a significant amount of
configurational entropy upon binding, and that relative entropy
differences among related inhibitors are significant (1−3 kcal/
mol). Analysis using the CMIE entropy expansion shows that
the majority of both the absolute and relative entropic losses
can be traced to changes in marginal conditional entropy and
that changes in entropic coupling play a more subtle role in the
thermodynamics of inhibitor binding.

2. METHODS
2.1. Binding Theory. The theoretical framework for

binding thermodynamics has been presented in recent
literature;4,41 here, we summarize the relevant portions to
place our work in context. The standard free energy of binding
for a ligand (L) and receptor (R) in solution can be evaluated
using the standard chemical potential for each species,

° = μ° − μ° − μ°ΔG , , , ,sol bind sol LR sol L sol R (1)

The standard chemical potential for a dilute solution of ligand
is defined as42

μ° = −
°
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Here, VN,L is the volume of the system containing N solvent
molecules and one ligand molecule. C° is the standard state
concentration, taken as 1 M, which is equivalent to 1000 NA
m−3, where NA is Avogadro’s constant. QN,L and QN are the
partition functions for systems containing N solvent molecules
and one ligand molecule, and only N solvent molecules,
respectively. The last term, P°VL, corresponds to the work
associated with moving the ligand from the gas phase to a
solvated state at constant pressure, where VL is the volume of a
single ligand and P° is the standard state pressure. This last
term will be very small except at very high pressure, and in the
present analysis, it is assumed that binding occurs at 1 atm
where this pressure−volume term will be negligible. The ratio
of partition functions is expanded as follows,
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where β = 1/(kBT), σL is the symmetry number of the ligand,
qS/L and pS/L refer to the set of all position and momentum
degrees of freedom of the solvent and ligand, respectively, and
MS andML define the total number of solvent and ligand atoms,
respectively. U is the internal energy, T is the absolute
temperature, h is Planck’s constant, and kB is Boltzmann’s
constant. This expression can be simplified by analytically
integrating over the momentum portion of phase space (from
−∞ to +∞) for each atom i of both the solvent and ligand (pS,
pL) and canceling the resulting expressions for the solvent
momentum.
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Further simplification is possible by defining a potential of
mean force W(qL) to make use of an implicit solvent treatment
and avoid explicit integration over solvent degrees of freedom.
This is done by defining the interaction potential between the
ligand and the solvent for a fixed configuration of the system
and averaging the Boltzmann factor of this potential over all
solvent degrees of freedom.
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Substituting eq 6 into eq 4 yields a reduced expression in which
the energy of the ligand no longer depends upon the exact
configuration of the solvent,
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The integral over the coordinates of the ligand (qL) can also
be simplified by defining an internal reference frame that does
not depend on absolute external coordinates (i.e., translational
and rotational coordinates) of the ligand. This coordinate frame
is defined using a set of three bonded atoms in the ligand to
specify the six external degrees of freedom and a set of 3N−6
bond length (rL), bond angle (θL), and torsional angle (ϕL)
(BAT) coordinates to recursively specify the position of each
subsequent atom relative to the position of the first three
atoms. This coordinate change allows the integral over ligand
configurational space to be separated into external and internal
pieces, where the potential of the solvated ligand (U(qL)) is
now independent of the external degrees of freedom.
Analytically integrating over these external degrees of freedom
of the ligand yields a constant factor of 8π2VN,L.

4 The remaining
integral over internal degrees of freedom can be computed
numerically (often approximately and on a coarse grid due to
size), and doing so in a BAT coordinate system often results in
improved accuracy, as BAT sampling corresponds to natural
motions of the molecule and a smoother exploration of the
potential energy surface compared to a Cartesian coordinate
system.43 After simplification, the resulting expression for μsol,L°
is
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where ZL is a configurational integral over the solvated ligand,
internal degrees of freedom, and JL = Π

L
rL
2 sin θL is the Jacobian

weight for sampling in a BAT space.44,45 Note that in this study
only torsional degrees of freedom of the ligand were explored.
Bond lengths and bond angles were held fixed at their
equilibrium values, as it has been suggested that these degrees
of freedom experience only small changes in configurational
freedom upon binding and contribute negligibly to the free
energy change.10 Receptor degrees of freedom were held fixed
due to issues of computational tractability and the large number
of receptor degrees of freedom.
The derivations for the standard chemical potential of the

receptor and complex are similar and will not be repeated here.
It should be noted, however, that in the complex the six
external (i.e., translational and rotational) degrees of freedom of
the bound ligand become internal degrees of freedom of the
complex and integration over these new internal degrees of
freedom is limited to only those conformations in which the
ligand is actually bound and contained entirely within the
receptor’s active site cavity. Combining eq 1 with eq 8 for the
ligand, receptor, and complex, the following expression for the
standard free energy change is obtained
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Note that this expression is only dependent upon the
configurational degrees of freedom of the complex, unbound
receptor, and unbound ligand; all factors resulting from
integration over the momentum portion of phase space exactly
cancel when taking the difference between the bound and
unbound states.
Once the partition functions in the bound and unbound

states have been found, the enthalpy change (excluding
negligible pressure−volume terms) can be found by calculating
the appropriate averages over solute configurational space
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where ⟨⟩qR/L defines the configurational ensemble average over

ligand and receptor degrees of freedom, respectively. The
configurational entropy change upon binding can be found
through the canonical equation46

= + ∂
∂

⎜ ⎟⎛
⎝

⎞
⎠S k Z k T

Z
T

ln
ln

B B (12)

which results in the following expression

Δ ° = Δ ° − Δ °

−
∂

∂
−

∂
∂

−
∂

∂

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

S
T

H G

W

T

W

T

W

T

q q q

q

1
( )

( , ) ( )

( )

q q q

q

sol,bind sol,bind sol,bind

R L

,

R

L

R L R

L (13)

The final three terms that appear in the above expression for
the entropy change result from the introduction of a potential
of mean force (eq 6) to implicitly deal with solvent degrees of
freedom. This formulation partitions the entropy change into
additive solute and conditional solvent components in a
mathematically and thermodynamically rigorous fashion.41,47

The first two terms in eq 13 correspond to the configurational
entropy change of the solute, while the remaining terms
correspond to the change in solvent entropy conditioned on
the configurational state of the solute, averaged over all solute
configurational degrees of freedom.
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In the present study, all reported free energy differences include
enthalpic and entropic contributions from both solute and
solvent degrees of freedom, while all reported entropic free
energies include only contributions from the solute degrees of
freedom.

2.2. Conditional Mutual Information Expansion. The
configurational entropy of each ligand was decomposed into
individual, per degree of freedom entropy and higher-order
coupling terms using a conditional mutual information
expansion (CMIE). Similar to the mutual information
expansion presented by Matsuda34 and Killian et al.,35 this
expansion divides the full entropy into a sum of sequentially
higher-order mutual information terms. However, rather than
partition the total entropy into a set of overlapping entropic
contributions that are added and subtracted with successive
terms, we partition the space into a set of mutually exclusive
terms, each of which captures the entropy content of either a
single degree of freedom or the coupling between a group of
degrees of freedom. This is done by adding up the mutual
information of all possible combinations of degrees of freedom,
given that the distributions of the remaining variables are
known. This can be expressed as
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where N is the total number of degrees of freedom of the
system, {x}c is the complement of {x}, and I({x}|{x}c) is the
mutual information of a set of variables {x} conditioned on the
complementary set {x}c or simply the conditional entropy
when |{x}| = 1. The semicolon used here denotes mutual
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information between degrees of freedom (e.g., I(xi;xj;xk)
denotes the mutual information shared between the three
probability distributions xi, xj, and xk). This decomposition
follows from the set measure-theoretic definition of multivariate
mutual information,48,49 where each conditional information
term corresponds to a nonoverlapping subset of an information
diagram.
As an example, consider a system with three degrees of

freedom {x,y,z}. The CMIE for this system is

= | + | + | + |

+ | + | +

S x y z I x y z I y x z I z x y I x y z

I x z y I y z x I x y z

( , , ) ( , ) ( , ) ( , ) ( ; )

( ; ) ( ; ) ( ; ; ) (16)

where the first three terms are of first order, the second three
terms are of second order, and the last term is of third order. As
illustrated in Figure 1, the first-order terms define the

conditional entropy due solely to each individual degree of
freedom; this corresponds to the average entropy due to a
single degree of freedom, given that the remaining degrees of
freedom are known. That is, first-order measures define the
entropy due to each degree of freedom that is not mediated by
any other degrees of freedom through coupling. Similarly, the
second-order terms define the conditional mutual information
between each pair of degrees of freedom, which correspond to
measures of the coupling present between pairs of variables that
is not mediated by higher-order coupling. The third-order term
defines the higher-order coupling present among all variables. It
is important to note that while this expansion partitions the
entropy into nonoverlapping pieces, only first- and second-
order terms are guaranteed to be positive.47 As such, higher-
order mutual information terms can either increase or decrease
the total entropy of the system. Additionally, as with any
entropy expansion, all of these terms are fundamentally
dependent upon the choice of the reference frame and thus
represent a potentially nonunique but still useful interpreta-
tion.4,41

2.3. Ensemble Enumeration and Partition Function
Determination. The bound and unbound state configura-
tional integrals (eq 9) for five HIV-1 protease inhibitors (Figure
2) were evaluated via a three-step, rotamer based, enumerative
configurational search. All internal torsions as well as the six
ligand−receptor intermolecular BAT degrees of freedom were
rotamerized using uniform step sizes to exhaustively explore
configurational space at different levels of discretization. All
examined ligands were comprised of a common chemical
scaffold with potentially variable functional groups at five
positions (R1-R5). The first step of the search involved
generating separate discretized libraries of scaffold positions
and orientations as well as rotamer libraries of all possible
functional group configurations relative to the scaffold. The
second step employed the guaranteed DEE/A* search
algorithms to explore all possible combinations of the rotamer
libraries found in the first step and generate an energy-ordered
list of all possible low-energy configurations using a pairwise
additive energy function (termed low-resolution). The third
phase of the calculation used a tiered energy function strategy
to re-evaluate the energies of the collected low-energy
configurations using a high-resolution energy function and
numerically integrate over the explored configurational space.
The ensemble of low-energy scaffold conformations was

generated using an enumerative, Metropolis Monte Carlo
(MC) search.50 The goal of this step was not to collect a
Boltzmann ensemble via sampling, as is traditionally done using
MC, but to mine for an ensemble of low-energy scaffold
configurations whose relative probabilities will be explicitly
computed after exploring the remaining configurational space.
For all simulations, a thermodynamic temperature of 298 K was
used, as was a continuous move set of all torsional rotations,
excluding methyl and amide bond rotations, and overall
translations and rotations in the bound state. The upper
bounds on step sizes for overall translations and rotations were
set to 0.5 Å and 30°, and individual torsional moves were
capped at 15° and 180° in the bound and unbound state,
respectively, with an equal weight applied to all moves. Ten
independent simulations of 50 000 steps each were performed
for each ligand in both the bound and unbound states, and the
scaffold pose and internal, torsional degrees of freedom of all
collected configurations were snapped to a uniform rotamer
grid. In the bound state, the six atoms used to define the
scaffold pose reference frame in BAT coordinates were receptor
atoms Cβ, Cγ, and Oδ2 of residue D25 (chain B) and atoms C1,
C2, and C3 of the scaffold (Figure 2). The six ligand−receptor
BAT degrees of freedom were bond length Oδ2−C1,
pseudotorsions Cβ−Cγ−Oδ2−C1, Cγ−Oδ2−C1−C2, and Oδ2−
C1−C2−C3, and pseudobond angles Cγ−Oδ2−C1 and Oδ2−C1−
C2.
The bound-state grid for the scaffold pose and internal,

torsional degrees of freedom was defined using a resolution of
0.1 Å and 10° for all bond lengths and bond angles and
torsions. The unbound state grid was defined only for internal,
torsional degrees of freedom using a resolution of 20°. All
simulations were performed using the CHARMM computer
program2,51 with the CHARMm22 force field52 and a distance-
dependent dielectric constant of 4.
The remaining internal torsional degrees of freedom (i.e.,

functional group torsions) were explored using an in-house
implementation of the DEE and A* algorithms.24 Using
uniformly sampled, complete scaffold and functional group
rotamer libraries, these algorithms are guaranteed to find the

Figure 1. Three body conditional mutual information expansion. The
entropy of a three body system with degrees of freedom x, y, and z
corresponds to the union of all three circles. This total entropy is
decomposed according to eq 16 into marginal entropies (blue, green,
and red areas), pairwise coupling entropies (purple, orange, and brown
areas), and a single three-body or third-order entropy (yellow area).
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GMEC as well as all other near-optimal structures up to a user
supplied energy cutoff. Using the list of collected energies
produced by this guaranteed search, Boltzmann factors (e−βUi)
were calculated for each configuration i and used to compute a
low-resolution estimate of the configurational integral (eq 9) by
numerical quadrature. Multiple functional group rotamer
libraries were used in this study, including those that contained
all possible combinations of internal torsional degrees of
freedom sampled uniformly every 120°, 60°, 30°, and 15° in the
bound state, and every 120°, 60°, and 30° in the unbound state.
For all high-throughput energy evaluations, a pairwise
decomposable energy function was used that included all
pairwise van der Waals and Coulombic, intra- and intermo-
lecular interactions, computed with the CHARMm22 param-
eter set52 but ignored internal energy differences for computa-
tional efficiency. The energy cutoff used in this low-resolution
estimate was always ≤10 kcal/mol, as this provided enough
coverage of the potential energy landscape to guarantee
partition function convergence (vide inf ra).
The final step of the search included the energetic re-

evaluation of the collected ensemble using a higher resolution
(more detailed) energy function to account for solvation effects
and to obtain a more accurate measure of the free energy
change upon binding. The improved energy function included
all pairwise van der Waals interactions, continuum electrostatic
solvation energies collected from a converged linearized
Poisson−Boltzmann calculation using the DelPhi computer
program,53,54 as well as solvent accessible surface area energies
to model the hydrophobic effect.55 Solvation energies were
calculated using an internal dielectric of 4 and a solvent
dielectric of 80. A grid resolution of 129 × 129 × 129 with
focusing boundary conditions56 was used, along with a Stern
layer of 2.0 Å and an ionic strength of 0.145 M.
The high-resolution (HRes) free energy was computed by

reassessing the 50 000 lowest energy configurations using the

HRes energy function and re-evaluating the configurational
integral. This truncated integral was then corrected using an
approximate term that accounted for the contributions of the
remaining low-energy configurational ensemble. This correc-
tion corresponds to integrating over the HRes energy levels of
the unaccounted portion of the ensemble using a probabilistic
formalism similar to those hierarchical evaluation methods used
in molecular design.57 Formally, this method breaks up the
ligand low-energy configurational space into two regions: one
described in terms of explicit configurational states evaluated
using the HRes energy function, and the other in terms of
distributions of HRes energy levels (EHR) inferred from the low
resolution (LRes) energy level (ELR) distribution:

∫ ∫= +β β− −Z J gq q E E( )e d ( )e d
A

E

B

q E
HR L

( )
L HR HR

HR L HR

(17)

Here, g(EHR) is the degeneracy of the HRes energy levels, and
A and B define complementary regions of configurational space
that together cover the entire space. Note that this
approximation of the HRes energy space was made for
computational efficiency, as it is currently computationally
intractable to explicitly re-evaluate a sufficiently large number of
the millions of configurations collected from the LRes DEE/A*
search necessary to ensure convergence. As outlined above, the
first term of eq 17 corresponds to the HRes partition function
defined by some fraction of the total number of low-energy
configurations, and it is calculated by explicitly re-evaluating the
energies of the top 50 000 configurations and integrating over
these states. The second term estimates the contributions made
by the remaining, higher-energy members of the full ensemble
to the HRes partition function and can be viewed as a
correction to the first term. It was computed using an
approximate distribution of HRes energy levels, inferred from
the known LRes energy-level distribution, to estimate the

Figure 2. Selected HIV-1 protease inhibitor structures. These five inhibitors were originally designed by Altman et al. to test the substrate envelope
hypothesis.24 They are derived from the darunavir/amprenavir scaffold and all exhibit nanomolar binding affinity.
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degeneracy (i.e., number density of configurations) at a given
HRes energy level. Specifically, the collected LRes energy space
(minus the top 50 000 structures) was divided into 0.1 kcal/
mol bins, and a randomly selected set of 1000 configurations
was re-evaluated in each bin. Each 1000-configuration sample
was used to approximate the distribution of HRes energy levels
observed in each LRes bin i. The resulting set of normalized
high-resolution energy-level probability distributions, P(EHR)i,
was fit to either single- or double-skew normal distributions,58

as the HRes energy distributions bore a strong resemblance to
these functional forms, to determine the approximate shape of
the distribution. Each was then weighted by the number of
configurations in that particular bin ρi, which yielded the HRes
energy level degeneracy in each bin, g(EHR)i.

ρ=g E P E( ) ( )i i iHR HR (18)

The total contribution of all bins to the high-resolution
partition function was then calculated by integrating over the
HRes energy levels in each bin via numerical quadrature and
then summing over each LRes bin
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2.4. Structure Preparation. The receptor structure used in
this study was a darunavir bound X-ray crystal structure
obtained from the Protein Data Bank (PDB; Accession code
1T3R),59,60 prepared using methods and structural modifica-
tions described by Altman et al.24 Partial atomic charges for
each inhibitor were determined by fitting to the electrostatic
potential of an optimized ground-state structure using the

restrained fitting method of Bayly et al.61 Geometry
optimizations as well as electrostatic potential calculations
were performed with the GAUSSIAN 03 computer program62

using the Restricted Hartree−Fock method with the 3-21G and
6-31G* basis sets, respectively.

2.5. Experimental Determination of Inhibitor Dissoci-
ation Constants. HIV-1 protease inhibitor activities were
determined by a fluorescence resonance energy transfer
(FRET) method. Protease substrate 1 [Arg-Glu(EDANS)-
Ser-Gln-Asn-Tyr-Pro-Ile-Val-Gln-Lys(DABCYL)-Arg] was la-
beled with the energy transfer donor, 5-((2-Aminoethyl)-
amino)naphthalene-1-sulfonic acid (EDANS), and acceptor, 4-
((4-(dimethylamino)phenyl)azo)benzoic acid (DABCYL),
dyes at its two ends to perform FRET.63 Fluorescence
measurements were carried out on Victor2V plate reader
(PerkinElmer). Excitation and emission filters were 340 and
490 nm, respectively. All inhibitors were dissolved in dimethyl
sulfoxide (DMSO) and each of them was diluted to 12
appropriate concentrations. Protease (2 μL) and inhibitor or
DMSO (2 μL) were added into a 96-well assay plate containing
76 μL of HIV-1 protease substrate buffer. All pipettings were
performed by a liquid handling system (Tecan Genesis). 80 μL
of protease substrate (2 μM) was quickly added into the well
with an injector to initiate the cleavage reaction. Each reaction
was recorded for 5 min. Inhibitor dissociation constants (Ki)
were obtained by nonlinear regression fitting (GraFit 5) of the
plot of the initial velocity as a function of inhibitor
concentrations based on the Morrison equation.64,65 The
reported Ki values were an average of at least 3 individual
measurements.

Figure 3. KB-98 enumerative Monte Carlo scaffold grid resolution convergence. (A, B) The unique scaffold configuration and pose growth rates
measured as a function of grid resolution and Monte Carlo simulation length in the bound and unbound states. (C, D) Final unique configuration
growth rates for bound and unbound state. The dotted line indicates the 0.03 configurations per step acceptance cutoff used.
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3. RESULTS AND DISCUSSION

Using the enumerative, configurational search method
described herein, we explored the configurational space of
five HIV-1 protease inhibitors. We assessed the precision and
accuracy of our method by examining its thermodynamic
convergence properties as a function of the granularity of the
rotamer libraries used and the size of the ensemble collected as
well as by comparing the converged, calculated inhibitor
binding free energies to experimental measurements. We
subsequently analyzed the source of the changes in the
entropic free energy upon binding in terms of both marginal
entropy changes of individual ligand degrees of freedom as well
as coupling entropy changes between multiple ligand degrees of
freedom.
3.1. Rotamer Grid Resolution and Thermodynamic

Convergence. Conformational space for inhibitor degrees of
freedom was explored at multiple resolutions. Ultimately, the
grid resolution used to compute all thermodynamic parameters
was selected based on the rate of exploration of scaffold degrees
of freedom and the numerical convergence observed in the
computed free energy. As the configurational search was
performed in multiple steps, we examined the convergence of
each step separately. In step one, the external and internal
scaffold degrees of freedom were explored via an enumerative
MC simulation in which collected configurations were snapped
onto a uniform rotamer grid of user defined resolution. The
coverage of low-energy space was measured at multiple grid
resolutions to find the highest resolution grid possible while
maximizing coverage (Figure 3). Simulation convergence was
quantified via the number of unique, grid-snapped config-
urations found per MC step, as this growth rate should

approach zero as the simulation length increases and more
configurational space is explored. A 0.1 Å and 10° grid was used
in the bound state and a 20° grid in the unbound, as the final
growth rate at these resolutions was 0.03 unique configurations
per step or less for all bound and unbound inhibitors.
Increasing the grid resolution to 5° and 10° increased the
number of unique configurations that required collection to a
computationally intractable number of scaffold positions in
order to ensure the configurational space was adequately
sampled. Note that in all the computed inhibitor ensembles, the
unbound state required a coarser grid in order to obtain a
comparable rate of convergence using a similar number of
overall configurations. This indicates that there is a larger
volume of configurational space accessible in the unbound
compared to the bound state. Without the receptor present to
constrain the torsional motions of the inhibitor, the scaffold is
able to adopt a much wider variety of conformations without
paying large energetic penalties. It is important to note,
however, that while the unbound state has a larger accessible
volume of configurations compared to the bound state, the
accessible configurational space is smoother, and capturing
these features should require less resolution.
In the second configurational search step, the remaining

functional group degrees of freedom were enumerated using a
user specified rotamer step size, yielding a low-resolution
measure of free energy. Convergence of this absolute free
energy was measured using the rate of change of the free energy
as a function of the grid resolution and offset calculations
(Figure 4). Comparing sampling resolutions of 15° versus 30°
in the bound state and 30° versus 60° in the unbound state, we
observed free energy changes of only ≈3% and ≈1%,
respectively. Offset calculations in which the grid was translated

Figure 4. KB-98 functional group grid resolution convergence. (A, B) Low-resolution free energy convergence of KB-98 in the bound and unbound
state as a function of the rotamer step size used when searching the functional group degrees of freedom. Error bars indicate the standard deviation
computed from the two offset calculations performed at each grid resolution. All calculations use a starting geometry collected from the lowest
energy configuration found during the bound state scaffold search. The offset calculations begin from this configuration with each degree of freedom
offset by half the step size so as to escape from the initial, low energy well. (C, D) Final rate of free energy change for each examined inhibitor in the
bound and unbound state.
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Figure 5. Configurational free energy convergence. (A−C) The convergence of the free energy, enthalpy, and entropy of KB-98 in the bound state,
using a 10° scaffold and 15° functional group grid, as a function of ensemble size, measured in kcal/mol above the global minimum energy. The red
portion of curve shows the contribution to the average from the top 50 000 configurations (computed by explicit re-evaluation), and the blue portion
shows the contribution from the remaining millions of configurations (computed via high resolution energy level inference). (D) The final rate of
convergence of each thermodynamic parameter for each inhibitor in the bound state measured as a function of change in ensemble cutoff (kcal/mol
per kcal/mol of the ensemble). (E−H) Measures of convergence for the unbound state using a 20° scaffold and 60° functional group grid.

Figure 6. Correlation between calculated and experimental binding affinity. Effect of approximation on the correlation of the calculated inhibitor
affinities with the experimental binding free energies. (A) Correlation between previously calculated static enthalpy metric (single conformation
energy assuming rigid binding) and experiment. (B) Correlation between updated, static enthalpy metric (single conformation energy difference
between bound and unbound states) and experiment. (C) Correlation between ensemble enthalpy and experiment. (D) Correlation between
updated static enthalpy with ensemble entropy change and experiment. (E) Correlation between ensemble free energy change and experiment.
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by half of the grid resolution also yielded small offsets of less
than ±1 kcal/mol. Both of these measures of free energy
uncertainty suggest that converged measures of the free energy
of binding can be found with moderate functional group grid
resolutions. These data also suggest that the unbound state has
a more degenerate low-energy configurational space than the
bound state with wider, less rugged potential energy wells (i.e.,
vast regions of unbound configurational space are well
described by coarser sampling with limited grid error).
3.2. Ensemble Size and Thermodynamic Conver-

gence. The Boltzmann distributions computed for each
inhibitor ensemble were truncated at a range of energy cutoffs
to explore the effect of collected ensemble size on free energy
convergence. These cutoffs define the ensemble of all
configurations with energies within a particular energy range
above global minimum energy (Figure 5). Our results suggest
that only a very small portion of configurational space is
necessary to achieve a very high level of convergence for the
free energy so long as it covers the low-energy conformations in
the space. The lowest 1 kcal/mol of the ensemble brings the
computed free energy within 2% (≈1.5 kcal/mol) of the
converged free energy value in the bound state and within 5%
(≈2.5 kcal/mol) in the unbound state. At the highest degree of
rotamerization, this corresponds to less than 200 and 700
configurations in the bound and unbound states, respectively.
This behavior was observed in all configurational ensembles,
and all thermodynamic averages were converged to within less
than 1 kcal/mol when the full set of configurations was
included. This rapid convergence suggests that the most
relevant portions of configurational space are low-energy wells
and that the average thermodynamic properties of these
systems are well described by low-energy configurational
ensembles, supportive of the predominant state hypothesis.10

One should note, however, that given a fixed ensemble size,
not all averages reach the same level of convergence. We
observe that ensemble enthalpies and entropies show slower
rates of convergence compared to free energies, consistent with
their derivative relationship to the partition function.66 Using a
15° grid in the bound state and a 60° grid in the unbound state,
the ensemble free energies exhibited an average final rate of
convergence of 0.001 and 0.1 kcal/mol per kcal/mol of the
ensemble, respectively. By comparison, both the enthalpy and
entropy averages showed average final rates of 0.02/0.2 and
0.02/0.3 (bound/unbound). These data suggest that larger
fractions of configurational space are required to accurately
gauge enthalpic or entropic contributions to binding compared
to the full free energy and that the sampling error associated
with these contributions partially cancels when computing the
free energy. In particular, accurate estimation of entropic
changes requires elaboration of low-probability (i.e., high-
energy) regions of the distribution, which becomes increasingly
difficult to explore as the degeneracy of configurational space
increases. Nonetheless, the required low-probability regions
identified here fall within the lowest 10 kcal/mol of the
ensemble. Finally, in all cases, a significantly smaller portion of
the less degenerate bound-state space was required to obtain
comparable levels of convergence compared to the unbound
state.
3.3. Experimental versus Calculated Inhibitor Affin-

ities. One of the primary motivations in this study was the lack
of strong correlation between the originally computed design
energies for these inhibitors and experiment (Figure 6A). We
sought to improve upon our original relative affinity predictions

and examine which methodological enhancements brought
about the most significant correlative improvement of
calculated affinity with experiment. Examining the r2 correlation
coefficients for calculated vs experimental affinity, the previous
static enthalpy metric shows almost no correlation (0.05). Note
that the single conformations used to evaluate binding in this
study were found using a coarser rotamer library, a constrained
scaffold set, and the rigid binding approximation. Using our
more exhaustive search method, we first examined the effect of
searching both the bound and unbound states in tandem for
low-energy structures with a higher resolution rotamer set
(Figure 6B). By selecting the lowest energy structure in both
the bound and unbound ensembles, we computed a static
enthalpy of binding that shows marked correlation with
experiment (r2 ≈ 0.7) and significant reduction in the variance
weighted sum of squared error (χ2 ≈ 47 vs 230). While the
relative affinity ordering is still not correct, we have effectively
separated the cluster of drugs that were previously all predicted
to bind with the same affinity. This large improvement in
correlation likely stems from two factors: searching conforma-
tional space more finely and appropriately accounting for the
significant conformational change that each inhibitor undergoes
upon binding with independent bound and unbound state
searches. Heavy atom, least-squares alignments of the best
unbound to bound conformations show root-mean-square
deviations of greater than 3.4 Å for each of the five inhibitors.
Additionally, when bound inside the protease, each inhibitor
takes on an extended shape to fit within the active site, and
when unbound, each inhibitor undergoes a structural collapse
in order to maximize solvation as well as intramolecular
interactions. We find that the solvent accessible surface area of
the best inhibitor configurations increased on average by 80 ±
20 Å2 upon binding.
We next examined the correlative effect of ensemble

averaging by computing the average enthalpy change upon
binding for each of the five inhibitors (Figure 6C). This further
improved correlation with experiment, yielding an r2 value of
0.85, an additional 2-fold reduction in χ2 error, and the correct
relative ranking of each inhibitor. Incorporating the ensemble
average into the calculation of the enthalpy change had a
significant effect on both the bound and unbound state and
moved the average enthalpy up by 2.3 ± 0.2 kcal/mol and 2.8
± 0.7 kcal/mol in the bound and unbound state, respectively.
Examining the net difference, we find that KB-98 and AD-86
experienced the largest change relative to their static enthalpy
evaluation (≈1 kcal/mol). This is due to the fact that for these
two inhibitors, the average unbound state enthalpy was pushed
up by 1 kcal/mol more than in the bound state, which suggests
that the unbound low-energy state space of these two
compounds is larger compared to the remaining inhibitors.
These changes result in residual improvement for all points
except AD-93, with KB-98, KB-92, and AD-94 showing the
largest improvement.
We also examined the correlative effect of ensemble

averaging by correcting the new static enthalpy estimates with
our computed entropy penalties (Figure 6D). Interestingly, this
also introduced a clear separation between the high-affinity
inhibitors (KB-98 and AD-93) and the less effective ones (AD-
94, KB-92, and AD-86), and significantly improved correlation
with experiment, giving a correlation coefficient of 0.84.
Comparing this correlation with that of the new static enthalpy
change, the observed improvement is primarily the result of
bringing KB-98 and AD-94 closer to the best fit line. KB-98
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shifted because its computed entropic free energy loss was
much smaller relative to the other computed entropic penalties,
while AD-94 shifted because it experienced the largest entropic
free energy loss. Note that attempts to similarly correct the new
static enthalpy with a constant, entropic penalty per rotatable
bond fail to significantly improve correlation. We explored
possible constant corrections up to 2 kcal/mol/bond, and the
most effective (0.5 kcal/mol/bond) only yielded an r2 value of
0.74.
The final effect we explored was accounting for both the

configurational entropy change of the ligand (ΔSbind) as well as
the average enthalpy change (ΔHbind) upon binding, which
together correspond to the full configurational free energy of
binding, ΔGbind (Figure 6E). Surprisingly, while separately
including either ensemble measure significantly improves
correlation, together there is only a slight improvement over
previously examined metrics (r2 ≈ 0.87). Each ensemble
measure captures similar information such that together they
have only a small, coupled effect. In total, our results show that
finding a better estimate of the global minimum energy
conformation (GMEC) in both the bound and unbound states
can substantially improve relative inhibitor rankings but that
further improvement necessitates an ensemble treatment. We
find that including information about the shape of the
minimum energy potential well and surrounding wells, in
addition to its relative position, is required to resolve more
subtle differences between inhibitors. We note that while the
slopes of these lines of best fit are larger than 1, our primary
design objective was to improve the relative ranking of these
inhibitors, which does not depend on their absolute correlation
with experimental free energies. However, we suspect that this
discrepancy may be due to the assumption that the protein
remains rigid for all bound states.
A similar quantitative picture emerges when examining the

calculated enthalpy−entropy breakdown of these inhibitors
(Table 1). We observed that ΔH is favorable and nearly twice

the size of the unfavorable, configurational entropy loss. Given
this large relative difference and the functional form of the
Boltzmann distribution, the importance of the GMEC in
ranking can be rationalized, as this distribution is strongly
biased toward and peaked about low-energy configurations. It is
interesting to note that the configurational entropy changes of
the ligand (−TΔS) are quite large (+22−26 kcal/mol), and
they are very similar to previous estimates of the configurational
entropy loss of chemically similar HIV-1 protease inhibitors
calculated using different methodologies.10 In contrast to
cheaper, empirical measures of configurational entropy loss,
these entropies show only marginal correlation with the
number of rotatable bonds explored (r2 ≈ 0.5). In particular,
the entropy losses of AD-94 and AD-86 deviate significantly
from the trend exhibited by KB-98, AD-93, and KB-92, which
show a consistent loss of ≈1 kcal/mol per rotatable bond. Both
KB-92 and AD-94 have 15 rotatable bonds, yet AD-94 loses

nearly 1.5 kcal/mol more in entropic free energy upon binding.
Structurally, these two inhibitors are also very similar and differ
only in the identity and flexibility of their R2 and R3 functional
groups. In AD-94, R2 is more flexible than R3, while the reverse
is true for KB-92. In the case of AD-86, we find that it lost
nearly 2 kcal/mol less entropic free energy than would be
expected assuming a constant entropic penalty. It is more
flexible than KB-92 at the R1 and R2 positions and AD-94 at
the R1 and R3 positions, yet it lost much less entropy than
expected given its flexibility. These deviations highlight the fact
that both the number of rotatable bonds as well as their
location influence configurational entropy losses.

3.4. Analysis of Marginal Configurational Entropy
Changes. In order to understand the subtle entropic
differences between these inhibitors and identify the major
contributions to the absolute entropy loss, we decomposed
inhibitor entropy changes using a conditional mutual
information expansion (CMIE). The decomposition separated
the entropy change into additive contributions that quantified
the marginal conditional entropy losses due to each individual
degree of freedom as well as all higher-order changes in
coupling entropy (pairs, triplets, etc.). Unlike similar
information theoretic entropy decompositions such as
MIE35,36 or MIST,37,38 this decomposition was not a means
of approximating the true entropy of the bound or unbound
state or any high-order coupling entropy terms from lower-
order ones. It is simply an alternative expansion whose
individual terms provide detail about direct coupling con-
tributions of all subsets of degrees of freedom. We note that if
one were not able to enumerate the configurational ensemble as
was done here, the CMIE would not be a useful approximation
method, as the conditioning of each term (first-order, second-
order, etc.) requires knowledge of the full probability
distribution of each degree of freedom. We find that the vast
majority (95%) of the total ligand conformational entropy
change was due to first-order, uncoupled degrees of freedom,
and coupling of degrees of freedom accounted for the
remaining 5% of contributions. As can be seen in Figure 7,Table 1. Calculated Thermodynamic Changes (kcal/mol)

upon Binding for the Five Tested HIV-1 Protease Inhibitors

KB-98 AD-93 KB-92 AD-94 AD-86

ΔG −24.3 −26.0 −19.8 −19.5 −20.1
ΔH −46.9 −49.7 −44.5 −45.6 −45.1
−TΔS 22.6 23.7 24.8 26.1 24.96
no. rot. bonds 13 14 15 15 17

Figure 7. First order conditional entropy losses. The reported entropy
loss for each group is defined as the sum of the first-order conditional
entropy losses for each degree of freedom contained within the
structure group. The scaffold contains 5 torsions, R1 contains up to 5
(KB-98/AD-93, 3; AD-94/KB-92, 4; AD-86, 5), R2 contains up to 2
(KB-98/KB-92, 1; AD-93/AD-94/AD-86, 2), R3 contains up to 2
(KB-98/AD-93/AD-94, 1; KB-92/AD-86, 2), and both R4 and R5
contain 1 torsional degree of freedom.
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all inhibitors experience large losses in external entropy (≈12.3
kcal/mol), due to constraints limiting motion corresponding to
what had been the unbound translational and rotational degrees
of freedom. For comparison, assuming a standard state
concentration of 1 M, corresponding to a volume of 13280π2

Å3 per molecule, the unbound ligand state has an external,
standard state entropic free energy (−TS°) of approximately
−7 kcal/mol, with −4.4 kcal/mol from translational entropy
and −2.6 kcal/mol from rotational entropy. Note that while
this implies that the bound state entropy of external ligand
degrees of freedom, which are now internal to the complex, is
negative, it comprises only a fraction of the total entropy, which
need not be positive. Additionally, these numbers do not
account for the entropic contribution of the momentum
portion of phase space, which exactly cancels when taking the
difference upon binding (see eq 10).67 This estimate of the
external entropy loss compares very well with a variety of
alternative formulations. In particular, Chang et al. estimate an
external entropy loss of 12.3 kcal/mol for a chemically similar
inhibitor, amprenavir, binding to HIV-1 protease using the
second generation mining minima algorithm, and a loss of 11.6
kcal/mol using the quasiharmonic approximation.10 Using
molecular dynamics in conjunction with the quasiharmonic
approximation as well as Schlitter’s entropy formula, Carlsson
and Aqvist estimate the combined translational and rotational
entropy loss of benzene binding to rigid T4 lysozyme to be ≈11
kcal/mol.68

The remaining internal, inhibitor degrees of freedom
contributed net losses of ≈9−11 kcal/mol (Table 2;

−TΔSmarginal), with a coupling independent, average loss of
0.7 ± 0.3 kcal/(mol·torsion) of configurational entropic free
energy. This average loss is in agreement with previously
reported values of 0.4 to 0.9 kcal/(mol·torsion), which were
estimated from the experimentally measured thermodynamics
of fusion of small hydrocarbons.69 Page and Jencks reported
losses of 1−1.4 kcal/(mol·torsion), which were estimated from
the entropy loss measured upon hydrocarbon cyclization.70

Note that the former estimate is derived from the entropy loss
as a molecule is captured inside a crystal lattice, while the latter
is a measure of the entropic cost of freezing out a degree of
freedom into a constrained ring structure. The difference
between our estimate and that of Page and Jencks could be due
to the fact that individual torsional angles are only partially
frozen upon ligand binding. As we can see from examining the
marginal probability distributions of individual degrees of
freedom, many torsional angles retain a considerable amount of
conformational freedom upon binding (Figure 8).

Further exploration of these distributions showed unique
differences in how each distribution changes upon binding. We
observed two major trends among all the inhibitors, which we
illustrate using KB-98 as an example. First, moving down either
column in Figure 8, we see the distributions becoming
increasingly spread out, indicating that each degree of freedom
is increasingly more mobile. Small-angle rotations about
scaffold torsions (degrees of freedom one and two) swing
large lever arms, which result in large displacements.
Comparatively, rotations around terminal dihedral angles
(e.g., degree of freedom five) swing small lever arms and, as
a result, tolerate much larger changes. Second, loss of
configurational freedom upon binding for these inhibitors was
due both to the disappearance of populated wells and to well
contraction. Comparing the unbound- and bound-state
distributions for degrees of freedom one, two, and four, we
observed a collapse from a multimodal distribution to a
unimodal one. Additionally, making the same comparison for
degrees of freedom one, three, and four, the corresponding
wells contracted from a width of 80°, 120°, and 90° in the
unbound state to 10°, 60°, and 60° in the bound. The marginal
distribution changes for scaffold torsions were particularly stark,
with unimodal collapse and contraction upon binding for
almost all core degrees of freedom across all the examined
inhibitors. The window of occupied configurational states for
these motions is always less than 20° in the bound state, which
implies that accurate sampling of these highly constrained
degrees of freedom requires very small step sizes. Compara-
tively, the most free motions correspond to hydroxyl rotations,
as they have the shortest associated lever arm. All such groups
exhibit broad, nearly uniform distributions in the unbound
state, which become more biased (widths of ≈180°) and
centered around an ideal hydrogen bond position upon
binding.
Examining these marginal distributions for the variable

functional groups R1, R2, and R3 across all of the studied
inhibitors and their marginal entropy losses, we noted a spatial
dependence of the marginal entropy loss, with differential losses
per degree of freedom depending on where the structural group
interacts within the active site. Table 3 shows the average
entropy loss upon binding per degree of freedom for the
external, scaffold, and functional groups. Averaging over all five
inhibitors, we find that for this scaffold the R3 group, which
binds in the P2′ pocket, experienced the largest entropic loss
per degree of freedom (1.2 ± 0.5 kcal/(mol·torsion)). By
comparison, the R1, R2, and R4 groups, which sit in the P2,
P1′, and P1 pockets, lost 0.6, 0.8, and 0.7 kcal/(mol·torsion),
respectively. This suggests that rigid functional groups might be
especially important at this site because groups that bind to the
P2′ pocket experience greater losses in entropy per flexible
torsion upon binding than other sites. Interestingly, when
examining the experimentally measured affinities of the larger
MIT-2 inhibitor library, we see a similar trend in which the
binding free energy became more unfavorable as the functional
groups became more flexible at position R3.24

3.5. Analysis of Coupled Configurational Entropy
Changes. The remaining contributions to the change in
configurational entropy upon binding were involved in higher-
order coupling terms. Individually, these terms were often
much smaller than the first-order terms, but their net effect was
significant, accounting for 1−2 kcal/mol of entropy in the
bound and unbound states as well as being informative of gross
intramolecular coupling behavior. By examining the cumulative

Table 2. Calculated Enthalpy and Entropy Component
Changes (kcal/mol) upon Binding for the Five Tested
HIV-1 Protease Inhibitors as Found from the Top 50 000
Lowest Energy Structures

KB-98 AD-93 KB-92 AD-94 AD-86

ΔHelec −11.66 −11.35 −10.15 −9.90 −7.87
ΔHvdw −64.74 −67.84 −60.17 −61.93 −66.63
ΔHsasa −6.23 −6.45 −6.23 −6.22 −6.29
ΔHsolvation 35.26 35.54 33.23 33.50 33.84
−TΔSext 12.25 12.37 12.45 12.30 12.03
−TΔSmarginal 8.94 9.58 10.79 10.35 10.62
−TΔScoupling 0.19 0.86 1.28 0.96 0.18
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differences between the net entropy of the bound or unbound
states and the entropy as a function of the number of higher-
order terms accounted for (i.e., the error), we observed that the
source of the coupling entropy differs between the bound and
unbound states (Figure 9A−E). In the bound state, the largest
source of coupling appears in second-order terms (as the error
drops precipitously upon the addition of second-order coupling
terms), but that the higher-order effects only become negligible
after the addition of ninth- or tenth-order terms, at which point
the cumulative error reaches 0. In the unbound state, we again
see that the largest source of coupling arises from second-order
terms, but note that higher-order effects become negligible by
the addition of fourth- or fifth-order terms. The size of the
relative drop in the error between the bound and unbound
states upon addition of second-order terms suggests that there

was more second-order coupling in the unbound versus bound
state, whose contribution translates to a loss of entropic free
energy upon binding. The relative importance of higher-order
coupling terms in the bound state suggests that there was more
significant higher-order coupling in the bound versus unbound
state, whose contribution translates to a net gain in entropic
free energy upon binding. Averaging over all inhibitors, we find
that the net change in entropic free energy upon binding was
unfavorable for all coupling interactions involving five or fewer
degrees of freedom (−TΔS ≈ + 1 kcal/mol total summed
across all terms) and generally favorable for all higher-order
coupling interactions (−TΔS ≈ − 0.3 kcal/mol total; Figure
9F). This suggests that, upon binding, the receptor restricted
not only the independent motions of individual inhibitor
rotatable bonds but many of the pairwise, three-, four-, and five-
body coupling interactions present in the unbound state as well.
Moreover, this suggests that, in the bound state, higher-order
coupling between inhibitor torsional degrees of freedom arose
as inhibitors adopted specific conformations to adapt to the
constrained receptor binding site.
We examined the large number of individual coupling

interactions in both the bound and unbound ensembles and
found that the majority of specific coupling terms each
contributed less than 0.05 kcal/mol, and that the largest
individual coupling terms never contributed more than ≈0.3
kcal/mol. Consistent with our analysis of the overall changes in

Figure 8. Selected marginal distributions of KB-98 (A) Marginal distributions for selected torsional degrees of freedom in the bound and unbound
states of KB-98. (B) Structure of KB-98 marked with degrees of freedom 1−5.

Table 3. Entropy Loss Per Rotatable Bond (kcal/mol)

−TΔS (kcal/mol)

external 2.05 ± 0.03
scaffold 0.65 ± 0.05
R1 0.6 ± 0.1
R2 0.8 ± 0.3
R3 1.2 ± 0.5
R4 0.7 ± 0.1
R5 0.49 ± 0.06
avg. internal 0.7 ± 0.3
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coupling, we saw that most of the large magnitude couplings
terms appeared in the unbound state and stem from second-
order coupling between scaffold degrees of freedom. In
particular, we observed strong coupling between adjacent
scaffold torsions or between torsions one bond apart.
Interestingly, these unique pairs of torsions can modulate the
van der Waals packing of the functional groups with each other,
and Figure 10A shows the two-dimensional probability
distribution for two such coupled torsions in KB-98. These
two dihedral angles can manipulate the position of R3 relative
to the rest of the inhibitor and cooperatively interact to
maximize intramolecular van der Waals interactions between
the R3 ring and either the scaffold backbone or the R4 phenyl
ring (Figure 10 moving from left to right, top to bottom).
These data support the notion that unbound state coupling
arose as a result of cooperative motions that maintained
intramolecular hydrophobic and ring stacking interactions.
Note, however, that none of these couplings individually
contributed more than 0.15 kcal/mol to the overall entropy
change. By comparison, we observed far fewer, large coupling
terms in the bound state, and the most significant (≈0.3 kcal/
mol) arose between the two dihedral angles surrounding the
amide moiety in the R1 functional group. These two torsions
seem to be coupled in order to modulate the position of the
distal R1 hydroxyl group to maintain its position relative to its
hydrogen bonding partners. As in the unbound case, these two
torsions compensated for each other, although here they
affected intermolecular interactions with the receptor. The
higher-order, bound state coupling terms are predicted to
couple external degrees of freedom to core, scaffold torsions
but individually rarely contribute more than 0.1 kcal/mol.

4. CONCLUSIONS

We have presented here a novel method to enumerate and
study changes in the potential energy landscape of inhibitors
upon binding. Using this enumerative, rotamer based approach,
we obtained converged binding free energies, enthalpies, and
entropies for flexible HIV protease inhibitors that accurately
ranked inhibitor affinities relative to one another. We found
that using a fine grain configurational search to refine the global
minimum energy conformation in the bound and unbound
states to rank inhibitors correlated well with experiment but
that ensemble effects were critical for more accurate resolution
of affinity differences. Breaking the free energy change into
components, we observed that average enthalpies and entropies
of binding were highly sensitive to the shapes of the global
minimum energy well and surrounding wells but that the
sampling errors associated with these sensitivities partially
canceled when computing the free energy. Additionally, we
found that the predominant state assumption appeared valid for
these high-affinity inhibitors in both the bound and unbound
states. The majority of configurational space contributed only
marginally to the ensemble free energy, and converged free
energy, enthalpy, and entropy values were obtained when
truncating the configurational integral to include only those
configurations within 10 kcal/mol of the GMEC. Compared to
the free energy, however, computing accurate entropy and
enthalpy changes required larger low-energy ensembles that
accounted for lower probability regions of phase space.
Analysis of the low-energy thermodynamic ensembles

collected in this study revealed both how the shape of this
landscape changed upon binding and how these differences
translated into changes in the thermodynamic properties of the
system. By decomposing the entropy change using an additive,

Figure 9. Cumulative CMIE summation errors. (A−E) Error associated with the cumulative summation of all conditional mutual information terms
as a function of term order for each inhibitor in the bound and unbound states. (F) Average, net change in entropic free energy as a function of term
order.
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conditional mutual information expansion, we saw that the
large computed differences in configurational entropy upon
binding originated primarily from losses in external and
uncoupled internal entropy, with average losses consistent
with previously reported experimental and computational
estimates. From a potential energy landscape perspective,
these changes arose from both well contraction and well
disappearance. Changes in coupling entropy played a more
subtle, less pronounced role, and while their net effect was
significant and critical to the rank ordering of inhibitor affinity,
the entropy present in individual coupled motions was small.
We found that most significant coupling interactions were of
low (second or third) order and most often appeared between
neighboring dihedral angles that could cooperatively modulate
intermolecular or intramolecular interactions in the bound and
unbound state, respectively. Examining the change in coupling
between the bound and unbound state, we observed a net loss

of low-order coupling interactions present in the unbound state
between core degrees of freedom, and a net gain of high-order
coupling interactions that appeared only in the bound state. It
is interesting to note that this entropy decomposition could be
used to inform the optimization of future inhibitors, as it
provides a way to estimate the spacial dependence of entropy
loss for a given scaffold and determine the ideal positions to
include either flexible or rigid chemical groups.
Overall, these results suggest that inhibitor flexibility plays an

important role in binding but that the thermodynamic
properties of these high affinity inhibitors are fundamentally
determined by a small fraction of the full configurational
ensemble. Low-energy configurations dominate the ensemble
averages and coupling between inhibitor degrees of freedom
has only a small but potentially important effect. It is interesting
to note that all of these results and conclusions arise without
approximating the geometry of the potential energy landscape

Figure 10. KB-98 unbound state coupling. (A) Pairwise probability distribution of two coupled scaffold dihedral angles in the unbound ensemble of
KB-98. The inset rectangle and arrows highlight the sequence of configurations shown in part C. (B) Unbound KB-98 labeled with dihedrals 1 and 2.
Arrows show direction of rotation moving from left to right (dihedral 2) and top to bottom (dihedral 1). (C) Sequence of most probable unbound
configurations where dihedrals 1 and 2 have the values indicated by the inset rectangle in part A. Moving from right to left corresponds to clockwise
rotation of dihedral 2 with a dihedral 1 fixed, and moving from top to bottom corresponds to counter-clockwise rotation of dihedral 1 with dihedral 2
fixed. Configurations are colored based upon their relative probabilities, with red indicating high probability and the yellow arrows indicate the
normal vector of the aromatic rings present in functional groups R3 and R4.
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or inordinate sampling times. Our method is structured around
the use the DEE/A* algorithm, which sorts configurations by
their energies and explicitly computes their contribution to the
Boltzmann distribution. As a result, the free energy is computed
from the bottom up without having to approximate or account
explicitly for landscape and well geometry. This ensures that the
enthalpic and entropic contributions of all spatially distinct,
low-energy minima are included according to their level of
import and constructs a convergent, minimal configurational
ensemble. By comparison, perturbative methods (FEP, TI) are
slow to converge, and alternative end-point approaches focus
on computing free energies on a well-by-well basis using
Boltzmann sampling to explore configurational space and map
out low-energy wells. The often used harmonic and
quasiharmonic approximations assume the shape of potential
energy well(s) can be accurately modeled as a collection of
harmonic oscillators, which provides an analytical expression
for the free energy contribution of each well. The former is the
basis for normal-mode analysis, which has been widely used to
estimate entropy changes in biological systems,71 and the latter
is used in the mining minima approach to similar effect.20 The
strong agreement found between ours and more approximate
methods speaks to the accuracy of the predominant state and
harmonic assumptions made for this system, but this may not
be true for all systems.
Finally, it is also interesting to note that all the inhibitors

examined in this study were originally developed to test the
substrate envelope hypothesis and were designed to bind inside
the substrate envelope. Four of these inhibitors (KB-98, AD-93,
AD-94, and AD-86) were experimentally shown to exhibit
relatively flat binding profiles to a variety of HIV protease
mutants.24,72 Considering just the top 50 000 configurations in
each ensemble, we find that the vast majority of configurations
in each of the respective ensembles also fit inside the substrate
envelope, suggesting that the envelope hypothesis may be
applicable in a more dynamic context. For an inhibitor to be
insensitive to mutations in its target, the low-energy ensemble
of ligand configurations must fit inside the substrate envelope
or substrate envelope ensemble.
The methods outlined here offer a flexible framework in

which to study ensemble binding effects, and while the current
study only explored ligand configurational freedom, receptor
flexibility can be incorporated into this rotamer, DEE/A* based
search scheme, given enough computational power. Nonethe-
less, there are clear limitations to the study presented here,
which only considers flexibility in the ligand, binding to a rigid
receptor. Proteins have significant numbers of degrees of
freedom with local and global motions that will be affected,
perhaps differentially, by ligand binding. Moreover, if ligand
degrees of freedom couple effectively with receptor ones, then
the ligand configurational entropy losses computed here will be
overestimates. It has been shown that upon ligand binding the
change in protein configurational entropy can be affected both
positively and negatively depending upon the specific molecular
system.73 In wild-type HIV protease, ligand binding likely
causes a decrease in the configurational freedom of many
receptor degrees of freedom, as flap mobility is markedly
decreased upon ligand binding and the side chains in direct
contact with these tight binding ligands likely experience a
reduction in configurational freedom due to enthalpy−entropy
compensation;74,75 nonetheless, it is unclear how strongly
backbone motions and/or residues not in direct contact with
these ligand are affected. Despite this limitation, in this study,

we were primarily concerned with thermodynamic differences
between structurally similar ligands, and our ability to correctly
rank them. As such, while the changes in the protein
configurational entropy will certainly affect the absolute, total
change in entropy upon binding, it may have a much smaller
effect between related ligands. Extending this methodology to
account for receptor degrees of freedom will help address how
important this effect may be. We also note that the lack of
treatment of internal energies in this study may differentially
affect inhibitors upon binding. They were not accounted for at
the high-resolution re-evaluation as they were not originally
calculated in the low-resolution energy screen used here or in
the previous study from which the inhibitors used here were
designed.24 Attempts to introduce their effects at the high-
resolution re-evaluation resulted in very poor correlation
between the low-resolution and high-resolution energy
functions and lack of partition function convergence using
the tiered approach applied here (data not shown). We expect
that appropriately accounting for the internal energies at both
stages of evaluation will result in low/high-resolution energy
function correlation comparable to that observed here and
further improve the correlation of calculated inhibitors with
experiment, both on a relative and absolute scale. Finally, we
acknowledge that while we account for the presence of highly
conserved ordered water molecules by their explicit inclusion in
the bound complex and the electrostatic effects of bulk solvent
with our implicit solvation calculations, we likely do not capture
the binding thermodynamic effects of semiordered water
networks, as such water molecules are neither directly engaged
with the complex (and thus not conserved in crystal structures)
nor part of the bulk solvent. Water clusters indirectly connected
to the ligand or receptor have been observed within the active
site in crystal structures of substrate and inhibitor struc-
tures,60,76,77 but their specific role in substrate or inhibitor
binding is unclear. It is possible that displacement of these
water molecules by conformations in the bound state ligand
ensemble is thermodynamically unfavorable, further restricting
the configurational space of bound ligands, but further study is
needed. Given the structural similarity of these inhibitors and
their common mode of binding, however, we suspect even if
water clusters do further reduce the configurational entropy of
each bound ligand, the differential effect between inhibitors is
likely small.
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