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The perturbation of gut health is a common yet unresolved problem in broiler chicken

production. Antibiotics used as growth promoters have remarkably improved the broiler

production industry with high feed conversion efficiency and reduced intestinal problems.

However, the misuse of antibiotics has also led to the increase in the development of

antibiotic resistance and antibiotic residues in the meat. Many countries have enacted

laws prohibiting the use of antibiotics in livestock production because of the increasing

concerns from the consumers and the public. Consequently, one of the most significant

discussions in the poultry industry is currently antibiotic-free livestock production.

However, the biggest challenge in animal husbandry globally is the complete removal of

antibiotics. The necessity to venture into antibiotic-free production has led researchers

to look for alternatives to antibiotics in broiler chicken production. Many strategies can

be used to replace the use of antibiotics in broiler farming. In recent years, many studies

have been conducted to identify functional feed additives with similar beneficial effects

as antibiotic growth promoters. Attention has been focused on prebiotics, probiotics,

organic acids, emulsifiers, enzymes, essential oils, tributyrin, and medium-chain fatty

acids. In this review, we focused on recent discoveries on gut healthmaintenance through

the use of these functional feed additives as alternatives to antibiotics in the past 10 years

to provide novel insights into the design of antibiotic-free feeds.
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INTRODUCTION

Gut health is an increasingly important topic in broiler chicken production. The rapid rise in
the global human population has increased the demand for animal protein for human nutrition,
which consequently led to the intensive production of broiler chickens to meet the demand
for food, causing unintended gut health problems and performance impairment in broiler
chickens. Intestinal diseases are associated with gut mucosal barrier leakage, inflammation, and
gut microbiome dysbiosis. For a long time, broiler production has relied on the use of antibiotics,
which have led to significant improvements in the growth performance of broiler chicken and have
helped in the fight against bacterial infections (1–3). Antibiotics have demonstrated significant
value in terms of the enhancement of health and productivity in broiler chickens. However, their
misuse in intensive livestock production has led to public and consumer concerns about antibiotic
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FIGURE 1 | Graphical abstract.

residues in the meat and the development of antibiotic resistance
among pathogenic bacteria, with serious implications for human
and animal health and the environment. This has led to the
enactment of legal regulations prohibiting the use of antibiotics
in broiler production to alleviate its risks to human and animal
health, as well as threats to the environment (4, 5). This has
led to the need to identify alternatives to antibiotics that can
be used to fight gut pathogens that cause intestinal diseases
(Figure 1).

This review aims to identify the causes of gut health problems,
show the reported results of various regulatory measures or
alternative antibiotics, and analyze the feasibility of feeding
without antibiotics.

LESSONS FROM THE GUT HEALTH
IMPAIRMENT IN BROILERS

Poultry production losses caused by avian necrotic enteritis
(NE) and parasitic diseases, such as coccidiosis, have become
a global challenge for the poultry industry (6, 7). Since the
ban on antibiotics in animal feed, the high prevalence of NE
and coccidiosis has become a major cause of mortality in
broilers (8–10) (Figure 2).

Necrotic enteritis increases feed consumption and mortality
rates but reduces the growth performance of broiler chickens
(11). Several reasons can be cited as to why broilers contract
NE. Nutrition, stress, and coccidiosis are predisposing factors
that influence the incidence of NE (8). Clostridium perfringens
is a crucial factor for the development of NE in broiler chickens
because of its negative influence on the epithelial barrier (12,
13). C. perfringens uses and releases more than 16 toxins that
cause histotoxic and intestinal infections in animals. Different
toxins may bring virulence flexibility to C. perfringens, thereby
causing a series of diseases (14). C. perfringens is also one of

the most common contaminants in feeds (15). Alpha toxins
are C. perfringens type A product, which causes gas gangrene
(16, 17). Early studies on NE showed that alpha-toxin is the main
virulence factor for the development of the disease, but recent
studies proposed that alpha-toxin is not an essential virulence
factor in the pathogenesis of NE in poultry (8, 13, 18–20). NetB
is identified in a C. perfringens strain isolated from NE in broilers
and has considerable potential for novel vaccines against NE in
broilers (19, 21–23).

Coccidiosis is a recurring disease that endangers the intestinal
health of broilers and causes economic losses in the chicken
industry (24). The effects of coccidiosis include indigestion and
increased feed conversion rate, weight gain, and susceptibility
to secondary diseases in infected broilers (25). The main cause
of coccidiosis outbreaks is the protozoan Eimeria species, and
the infection route is through fecal–oral transmission (2, 9). The
Eimeria species increase their environmental survival through
their ability as oocysts and their drug resistance (9, 10). Eimeria
induces plasma protein leakage by damaging epithelial cells
in the intracellular phase, which includes mucus production
enhancement and the secretion of collagenases and collagenolytic
enzymes in the intestines (18, 20).

IMPAIRMENT FACTORS OF GUT HEALTH
IN BROILERS

Among the wide range of significant factors affecting broiler
health, stress, diets, exogenous infection, and water are
the most common indicators. Recently, more studies on
the impairment factors of the intestinal health of broilers
have focused on phytic acid, non-starch polysaccharides
(NSPs), inhibitors of enzymes, lectins, and heat stress
(Figure 3).
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FIGURE 2 | Avian necrotic enteritis and parasitic diseases in broilers.

FIGURE 3 | Impairment factors of gut health in broilers.
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FIGURE 4 | Antibiotic-free management strategies in broilers.

Phytic Acid
Phytic acid is a natural antioxidant found naturally in the
form of salts and is present in cereals, vegetables, nuts, and
natural oils (26). For example, phytic acid forms insoluble salts
with minerals, including phosphorus, calcium, zinc, magnesium,
and copper. Phytic acid increases the mucin (MUC) excretion
and endogenous nutrient losses, which are hazardous to
intestinal health.

Early studies showed that phytic acid is considered an
antinutritional component because of its ability to chelate with
minerals, but recent studies proposed that phytic acid performs
well in various pathological conditions, intoxication, and cancer
(27, 28). Phytic acid protects the integrity of the cytoplasmic
membrane of intestinal cells against the harmful effects of
deoxynivalenol, which is related to NE (29).

Low-phytate pea affects iron bioavailability, physiological
status, gut microbiota composition and metagenome, and
intestinal function (30). Phytase optimizes the phosphate
transporter gene expression and improves efficient dietary
phosphorus utilization (31).

Non-Starch Polysaccharides
Non-starch polysaccharides, together with resistant starch and
lignin from the dietary fiber, are found in plants especially in
the endospermic cell wall of multiple kinds of seeds (32). Many
viscous NSPs are present in the diet of chickens, leading to
increased fermentation in the small intestine, which is harmful
to the performance and gut health of poultry.

In the past, NSPs are considered an antinutritional factor
because they increase the viscosity of digests and inhibit
digestion. However, the beneficial effects of NSPs cannot
be denied. NSPs can promote the immune system, reduce
inflammation (33–37), and modulate the gut microbiota (38).

Inhibitors of Enzymes
The inhibitors of enzymes, including trypsin, chymotrypsin,
carboxypeptidases, elastase, and α-amylase, are important
naturally occurring antinutritional factors. Soybeans are a major
source of trypsin inhibitors among food and feed products (39).
Trypsin inhibitors cause the enlargement of the pancreas and
decrease protein digestibility.

Toasted soya beans decrease the trypsin inhibitor activity.
Nontoasted full-fat soya beans increase subclinical NE lesions in
the gut compared with toasted full-fat soya beans (40). The high
content of trypsin inhibitors negatively affects nutrient utilization
in the diets of broiler chickens (41).

Lectins
Lectins, which can be subdivided into hololectins, merolectins,
chimerolectins, and superlens, are widely distributed in all
plant tissues.

Plant lectins have oral toxicity to higher animals because of
the resistance of lectins to proteolysis (42). Tannins are naturally
occurring water-soluble polyphenolic compounds with the ability
to complex and precipitate proteins in aqueous solutions and
are responsible for the astringent taste of many fruits and
vegetables (43).
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Heat Stress
Heat stress can adversely affect welfare and productivity by
altering the activity of the neuroendocrine system of broilers
(44). Heat stress induces perturbation in the gut microbiome of
chicken (45, 46) and impairs nutrient transport and gut health by
modulating oxidative stress and inflammation (47).

ANTIBIOTIC-FREE MANAGEMENT
STRATEGIES IN BROILERS

Housing conditions, pathogen exposure, and dietary nutrients
play major roles in moderating the gut health of broilers.
Therefore, improving the gut health includes reducing stress,
promoting precision nutrition, preventing exogenous infection,
and having concern over how antibiotic-free management
strategies are used and how the breeding environment can be
improved. In this study, a review of antibiotic-free management
strategies will be detailed and will be discussed from the feed
quality control, feed additive enzymes, prebiotics, probiotics,
organic acids, and plant extract (Figure 4).

Feed Quality Control
Mycotoxins, including aflatoxins, ochratoxin A, fumonisins,
trichothecenes, zearalenone, emerging Fusarium mycotoxins,
ergot alkaloids, and patulin, are the secondary metabolites
produced by fungi and can cause mycotoxicosis (48). The
strategies for its prevention include the use of biological control
agents, appropriate environmental factors, and favorable storage
practices (49–52). Natural means, such as thermal insulation,
radiation treatment, and low-temperature plasma; chemical
methods, such as oxidation, reduction, hydrolysis, alcoholysis,
and absorption; biological methods with the use of biological
agents can eradicate mycotoxins (53). Prevention is the most
important strategy in the fight against mycotoxins.

Fermentation is a new cheap way to improve the nutritional
value of feed ingredients for broilers. Fermented poultry feeds use
solid-state (SSF) and submerged (SmF) fermentation methods
(54). Phytase is produced from fungal strains during SmF.
Fermented feeds affect the growth performance, gastrointestinal
tract microecology, gut morphology, immune system, and
welfare of poultry.

Fermented feeds can improve growth performance, immune
function, and antioxidant capacity in chickens. Fermented-feed
diets for chickens reduce the antinutritional factors process that
modulates host T-cell proliferation, T helper type 1, and T helper
type 2 cytokine production; many antioxidation are associated
with nuclear factor-κB (NF-κB) activation (55).

Feed Additive Enzymes
Fungal and bacterial fermentationmethods produce feed additive
enzymes that maximize feed conversion efficiency. Enzymes
facilitate component, protein, phytate, and glucan degradation
and improve diet digestion. The phytase (500 FTU per kg)
enzyme increases the villus width and decreases the crypt depth,
which improves the average daily gain (ADG) (56). Ply3626 lysine
(enzyme) may be exploited as an antibacterial for the treatment
of C. perfringens infection and is proposed as a biocontrol agent

in poultry production (57). Feed additive enzymes ameliorate the
deleterious effects of coccidiosis on the gut health and function of
broiler chickens (58).

Phytase (500 and 1,500 units per kg) supplements improve
phosphorous availability and have high plasma concentrations of
kynurenine and creatinine, and low concentrations of histamine
and cis-4-hydroxyproline (59). The NSP enzyme (150mg per kg)
affects the digestive function, serum cholecystokinin, pancreatic
lipase, and amylase enzyme activities, and mRNA expression in
broilers (60). Exogenous multienzyme complexes increase the
intestinal peptide transporter 1, facilitative glucose transporter
(GLUTs; e.g., GLUT2), acetyl-CoA carboxylase, and interleukin
(IL)-2 expression levels, which improve the absorption of
micronutrients and enhance the growth performance of broiler
chickens (61).

Prebiotics
Prebiotics stimulate the growth and activity of bacteria in
the intestines through their fermentable properties, benefitting
the health of broilers. Prebiotics are composed of short-
chain polysaccharides and oligosaccharides. Prebiotics cannot be
digested by broilers but can be metabolized by gut microbes
to produce short-chain fatty acids (62). Prebiotics have been
shown to reduce Campylobacter relative to its abundance in cecal
contents and other intestinal sections of the gut. Prebiotics, such
as propionic, acetic, and butyric acids, have a positive effect on
the performance of broilers, contribute to their gut health, and
can be a good alternative to antibiotics. Prebiotics change the
composition of cecal microbes in the gut, leading to changes
in the Proteobacteria and the genus and family of bacteria and
improving the performance of broilers (56).

The addition of a product rich in mannose, mannoproteins,
and mannanoligosaccharide (0.2 and.5%) in feeds significantly
increases the number of intestinal villus cells, and
mannanoligosaccharide confers gut health benefits over
antibiotics through the reduction of pathogenic bacteria,
morphological development, and increased colonization by
beneficial bacteria (63, 64). The ingestion of in ovo prebiotics
in the chicken embryo is an effective practice and alternative to
antibiotic growth promoters in broilers (65).

Curcumin (50 and 100mg per kg) supplementation induces
the expression of nuclear factor E2-related factor 2 (Nrf2)
and Nrf2-mediated phase II detoxifying enzyme genes and
increases the glutathione content and glutathione-related
enzyme activities (66). Yeast cell wall supplementation
modulates the intestinal glutathione pathway, proteolytic
enzyme activity, nutrient transport, and messenger RNA
(mRNA) expression levels of neutral, cationic, and oligopeptide
transporters (67). Nanoparticles of Fe3O4 (50mg per kg)
prevent the invasion of Salmonella enteritidis through the
regulation of phosphatidylinositol-3-kinase (PI3K)/protein
kinase (Akt)/mammalian target of rapamycin signaling pathways
(68, 69).

Probiotics
Probiotics, as a live microorganism feed supplementation,
improve growth, feed efficiency, and intestinal health (70).

Frontiers in Nutrition | www.frontiersin.org 5 November 2021 | Volume 8 | Article 692839

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Zhu et al. Antibiotics-Free Strategies

Enterococcus faecium (5 × 108 or 5 × 109 cfu per kg feed),
Streptomyces sp., and Bacillus subtilis (5 × 108 cfu/kg feed)
have antibacterial effects on the bacterial microflora in the small
intestine. Beneficial microflora contributes to the development of
the intestinal immune system and helps in the activation of innate
and adaptive immune responses (71, 72).

In terms of coccidiosis, probiotics may also have an
anticoccidial role. A study found a protecting effect in probiotic
preparations that help reduce the negative effects of coccidiosis
(70). Probiotics help minimize the risk of coccidiosis spread and
maintain gut health.

Probiotics stimulate endogenous enzymes, reduce metabolic
reactions, and promote vitamin or antimicrobial substance
production. Bacteriocins are antimicrobial peptides of bacterial
origin and have antimicrobial activities that inhibit the
production of toxins and the adhesion of pathogens (73).

Probiotics induce IFN-γ, MUC2, transforming growth
factor-beta 4 cytokine expression patterns, and the relative
abundance of specific bacterial taxon changes in the cecal
microbiota (74). Virginiamycin supplementation enhances the
epithelial barrier integrity and increases the expression levels
of IL-2 and INF-γ, and B. subtilis supplementation improves
the growth performance, intestinal immunity, and epithelial
barrier integrity. The expression levels of IL-2 and INF-γ are
downregulated (75). E. faecium supplementation upregulates the
expression of intestinal-type IIb sodium-dependent phosphate
cotransporter mRNA, increases the concentration of serum
alkaline phosphatase, changes the gut microbiota populations,
and increases the utilization of phosphorus (76). Bacillus subtilis
BYS2 supplementation improves the production performance,
immunity, and disease resistance; promotes innate immune
response, increases the expression levels of interferon (IFN)-
stimulated genes and β-defensins, and upregulates inflammatory
cytokines (77). Lactobacillus supplementation increases the
expression of sugar transporter genes (e.g., GLUT2, GLUT5,
sodium-glucose cotransporter [SGLT] 1, and SGLT4) and
improves the bacterial population of cecal contents (78).

Organic Acids
Short-chain fatty acids, medium-chain fatty acids, and other
organic acids are used as an alternative to antibiotics to reduce
the pathogenic bacteria in the gut based on their antimicrobial
activity outside the gut. The antibacterial effect of organic acids
is specific to species (79). The addition of organic acids causes
a decrease in Escherichia coli, Salmonella, Campylobacter, and
other potentially pathogenic bacteria, which result in a beneficial
effect on the gut health of broilers (80).

Growth, feed conversion rate, and feed utilization can be
promoted by adding organic acids (0.06% Galliacid, 0.1%
Biacid, or 0.02% Eneramycin) to the feed or drinking water
at appropriate times (81). Butyric acid improves the growth
performance of feed proteins of low digestible sources in chickens
(82). Butyric acid is an energy source of Intestinal epithelial
cells (IECs) that stimulate proliferation and differentiation.
Thus, improving the feed efficiency of diet supplementation
with organic acids (formic, propionic, and acetic acid) can
positively affect the cecal microbiota composition and ileal

microbial glycolytic enzyme activity (83). L-theanine is available
as a dietary supplement, used as the best natural feed additive,
and can improve the growth performance, immunity, intestinal
morphology, and antioxidant status of chickens (84).

Taurine supplementation alleviates fat synthesis by
suppressing the liver X receptor alpha pathway and decreasing
lipid accumulation in the liver (85). Glutamine inducing the
Nrf2–Keap1 pathway modulates the muscle glutamine level
and improves the resistance of heat-stressed broiler muscles
to oxidative damage (86). Diets supplemented with a blend of
organic acids prime the immune cells, and boost the immune
system of chicks. Heterophils have high expression levels of
IL10, IL1β, and C-X-C Motif Chemokine Ligand 8 mRNA
(87). Taurine improves immunity by regulating the PI3K–Akt
signaling pathway (88).

Plant Extract
Plant extracts are phytogenic feed additives that can be divided
into phenolics, nitrogen-containing alkaloids, sulfur-containing
compounds, and terpenoids based on their biosynthetic origin.
Ginger and oregano are suitable for poultry feed rather than
garlic and rosemary because they appear to be less sensitive to
odor (89, 90). Similarly, essential oils are promising alternatives
to growth promoter antibiotics. Essential oils can play preventive
and curative roles in NE in broilers (91). Adding oregano
essential oil (300 and 600mg per kg) in broiler chicken feed
increases the ADG (92). Guduchi (T. cordifolia) has a positive
effect on poultry growth performance, enhances the immune
function in birds, and is used as a potent immunomodulator and
an active antimicrobial agent in poultry (93).

Essential oils interfere with the modulation of immune
responses and inflammation (5, 94). The antibacterial effects of
essential oils disrupt the structure of the membrane and inner cell
structures via their lipophilic characteristics and related ability
to penetrate through the cell wall and cytoplasmic membrane
(95). The antioxidant effects of essential oils are observed to be
connected to the reduction of tumor cell proliferation either by
apoptosis or necrotic effects (96). Ginger oil and carvacrol can
influence the digestibility and speed of feed passage through the
digestive tract, increase the secretion of saliva, bile, and mucus,
and enhance enzyme activity. Essential oils with saponins can
promote the growth performance of broilers and increase the
protein digestibility and absorption of dietary nutrients that are
related to intestinal development and protease activity (97).

Grape seed proanthocyanidin ameliorates aflatoxin B1-
induced immunotoxicity and oxidative damage by modulating
the NF-κB and activating the Nrf2 signaling pathways (98).
Leonurine hydrochloride supplementation improves intestinal
mucosal disruption by regulating the expression of tight
junction (TJ) proteins and inhibiting the activation of the NF-
κB/mitogen-activated protein kinase (MAPK) signaling pathway
(99). Genistein ameliorates the growth performance of chicks
with intestinal injury and prevents the Lipopolysaccharides
(LPS)-induced NF-κB-dependent cytokine and MAPK
cascade signaling (100). Epigallocatechin-3-gallate increases
the antioxidant activity, regulates the MAPK/Nrf2 signaling
pathway, and upregulates the P-38MAPK, Nrf2, and heme
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oxygenase 1 expression levels (101). Quercetin supplementation
decreases the expression of NF-κB inhibitor-alpha mRNA
and increases the expression levels of TNF-α, TNF receptor-
associated factor-2, TNF receptor superfamily member 1B,
NF-κB p65 subunit, and IFN-γ mRNA, thereby improving the
immune function via the NF-κB signaling pathway triggered by
TNF-α (102).

CONCLUSION

The livestock industry has paid considerable attention to the
issues of antibiotics, and topics on intestinal health have become
the spotlight. The purpose of antibiotic alternatives is to keep the
environment and consumers healthy and maintain low mortality
and high animal production. Identifying a single “ideal” solution
within the wealth of options for gut health control is difficult.
Several measures and alternatives to antibiotics can be used in
conjunction with one another to achieve the perfect gut health.

In recent years, feed additive enzymes, prebiotics,
probiotics,organic acids, and plant extracts play an increasingly
important role in fighting infectious diseases and stimulating
poultry growth. The use of antibiotic alternatives has addressed
the problem of antibiotic resistance and residues in the food
and environment, which can promote gut health. In addition,

this strategy maintains favorable sanitary conditions and
ensures high-quality feed ingredients. Precise nutrition is
also critical.
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