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Abstract

Learning arises through the activity of large ensembles of cells, yet most of the data neuroscientists accumulate is at the
level of individual neurons; we need models that can bridge this gap. We have taken spatial learning as our starting point,
computationally modeling the activity of place cells using methods derived from algebraic topology, especially persistent
homology. We previously showed that ensembles of hundreds of place cells could accurately encode topological
information about different environments (‘‘learn’’ the space) within certain values of place cell firing rate, place field size,
and cell population; we called this parameter space the learning region. Here we advance the model both technically and
conceptually. To make the model more physiological, we explored the effects of theta precession on spatial learning in our
virtual ensembles. Theta precession, which is believed to influence learning and memory, did in fact enhance learning in our
model, increasing both speed and the size of the learning region. Interestingly, theta precession also increased the number
of spurious loops during simplicial complex formation. We next explored how downstream readout neurons might define
co-firing by grouping together cells within different windows of time and thereby capturing different degrees of temporal
overlap between spike trains. Our model’s optimum coactivity window correlates well with experimental data, ranging from
,150–200 msec. We further studied the relationship between learning time, window width, and theta precession. Our
results validate our topological model for spatial learning and open new avenues for connecting data at the level of
individual neurons to behavioral outcomes at the neuronal ensemble level. Finally, we analyzed the dynamics of simplicial
complex formation and loop transience to propose that the simplicial complex provides a useful working description of the
spatial learning process.
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Introduction

Considerable effort has been devoted over the years to

understanding how the hippocampus is able to form an internal

representation of the environment that enables an animal to

efficiently navigate and remember the space [1]. This internal map

is made possible, in part, by the activity of pyramidal neurons in

the hippocampus known as place cells [2,3]. As an animal explores

a given environment, different place cells will fire in different,

discrete regions of the space that are then referred to as that cell’s

‘‘place field’’ [2,3]. Despite decades of research, however, the

features of the environment that are encoded, the identity of the

downstream neurons that decode the information, and how the

spiking activity of hundreds of cells is actually used to form the

map all remain unclear.

We recently developed a computational model for spatial

learning, focusing on what information is available to the still-

unidentified downstream neurons [4]. We reasoned that the

information they decode must be encapsulated in the temporal

patterns of the place cell spike trains, specifically place cell co-firing

[4,5]. Because place cell co-firing implies that the respective place

fields overlap, the resulting map should derive from a sequence of

overlaps between parts of the environment. The information

encoded by the hippocampus would therefore emphasize connec-

tivity between places in the environment, which is a topological

rather than a geometric quality of space [4]. One advantage of this

line of reasoning is that a topological problem should be amenable

to topological analysis, so we developed our model using

conceptual tools from the field of algebraic topology and, in

particular, persistent homology theory [6,7]. We simulated a rat

exploring several topologically distinct environments and found

that the information encoded by place cell co-firing can, in fact,

reproduce the topological features of a given spatial environment.

We also found that, in order to form an accurate spatial map

within a biologically reasonable length of time, our simplified

model hippocampus had to function within a certain range of

values that turned out to closely parallel those obtained from

actual experiments with healthy rodents. We called this sweet spot

for spatial learning the learning region, L [4]. As long as the values

of the three parameters (firing rates, place field sizes, and number
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of active neurons) remain within the learning region, spatial

learning is reliable and reproducible. Beyond the perimeters of L,

however, spatial learning fails.

Several features of this model are intuitively appealing. First, the

size and shape of L vary with the difficulty of the task: the greater

the complexity of the space to be learned, the narrower the range

of values that can sustain learning and thus the more compact the

learning region. Second, there is a certain tolerance for variation

among the three parameters within L: if one parameter begins to

fall outside the sweet spot, spatial learning can still occur if there is

sufficient compensation in the other two parameters. Our model

suggests that certain diseases (e.g., Alzheimer’s) or environmental

toxins (e.g., ethanol, cannabinoids) disrupt spatial learning over

time by gradually shifting mean neuronal function (place cell

firing, neuronal number, or place field size) beyond the perimeter

of the learning region. This notion receives support from studies of

mouse models that show a correlation between impairment in

spatial cognition and larger, more diffuse place fields, lower place

cell firing rates, and smaller numbers of active cells [8,9]. All this

corresponds well with our subjective experiences of learning: the

complexity of the task influences learning time; when the task is

difficult we can feel we are at or just beyond the limits of our

capacity; disease or intoxication can reveal limits in our spatial

cognition that would normally be compensated for.

In this paper we focus on analyzing the structure of the learning

region itself. We begin by making the computational model more

physiologically accurate. There is a h (theta) component of

subcortical LFP oscillations that occurs in the frequency range of

6-12 Hz and regulates spiking activity [10]. The timing of place

cell spiking in the hippocampus is coupled with the phase of h-

oscillations so that, as a rat progresses through a particular place

field, the corresponding place cell discharges at a progressively

earlier phase of each new h-cycle [11]. This phenomenon, called

theta phase precession, reproduces short sub-sequences of an

animal’s current trajectory during each h-cycle [11]. This has been

construed to suggest that h-phase precession helps the hippocam-

pus remember the temporal sequence of the rat’s positions in a

space (i.e., its trajectory) [12,13], thereby enhancing spatial

learning and memory. If this is the case, h phase precession

should enhance learning in our computational model. Indeed, we

find that it significantly improves and stabilizes spatial learning.

We also find that different temporal windows to define co-firing

exert a pronounced influence on learning time, and the most

efficacious window widths correspond with experimental predic-

tions. Finally, we analyze simplicial complex formation within the

learning region, examining both the structure of the complexes

and the dynamics of loop formation, and find an explanation for

the poor efficiency of ensembles at the boundary of the learning

region compared to peak-performing ensembles.

Results

Concepts underlying the topological model for spatial
learning

We will first briefly describe the fundamental concepts on which

our model is based (this section is an abbreviated version of the

approach described in [4]). Central to this work is the concept of a

nerve simplicial complex, in which a space X is covered by a number

of smaller, discrete regions [14]. If two regions overlap, the

corresponding vertices, vi and vj, are considered connected by a 1D

link vij (Figure 1). If three regions overlap, then vij, vjk, and vki

support a 2D triangular facet or simplex sijk, and so on as the

number of overlaps and links increase. The structure of the

simplicial complex approximates the structure of the environment:

the complex N(X) obtained from a sufficiently dense cover of the

space X will reproduce the correct topological indices of X (see [4]

for details). For our model we developed a temporal analogue to the

simplicial complex, i.e., a simplicial complex that builds over time:

when the animal is first introduced to the environment, there will be

only a few data points from place cell firing, but as the animal

explores the space the place cell firing data accumulate. (Rodent

experiments indicate that place fields take about four minutes to

develop [15].) As the animal explores its environment and more

place cells fire (and co-fire), the simplicial complex T grows with T

(time) (T=T(T)). Eventually, after a certain minimal time Tmin, the

space’s topological characteristics will stabilize and produce the

correct topological indices, at which point the topological informa-

tion is complete. Tmin is thus the minimal learning time, the time at

which a topologically correct map is first formed.

The correct topological indices are indicated by Betti numbers,

which in turn are manifested in persistent cycles (see [4,7,16]). As

the rat begins to explore an environment, the simplicial complex

T(T) will consist mostly of 0-cycles that correspond to small groups

of cofiring cells that mark contractible spatial domains. As the rat

continues to explore the environment, the co-firing cells will

produce links between the vertices of T(T), and higher-dimen-

sional cycles will appear. As T increases, most cycles in each

dimension will disappear as so much ‘‘topological noise,’’ leaving

only a few persisting cycles that express stable topological

information (Figure 1C). The persistent homology method [6]

(see [4] Methods) enables us to distinguish between cycles that

persist across time (reflecting real topological characteristics) and

transient cycles produced by the rat’s behavior (e.g., circling in a

particular spot during one trial or simply not venturing into one

part of the space during early explorations). The pattern of cycles

is referred to as a barcode [16] that can be easily read to give

topological information about a given environment (Figure 1C)

[6,7].

Theta precession enhances spatial learning
If theta precession serves to enhance learning, as has been

predicted [17–19], then it should enhance spatial learning in our

Author Summary

One of the challenges in contemporary neuroscience is
that we have few ways to connect data about the features
of individual neurons with effects (such as learning) that
emerge only at the scale of large cell ensembles. We are
tackling this problem using spatial learning as a starting
point. In previous work we created a computational model
of spatial learning using concepts from the field of
algebraic topology, proposing that the hippocampal map
encodes topological features of an environment (connec-
tivity) rather than precise metrics (distances and angles
between locations)—more akin to a subway map than a
street map. Our model simulates the activity of place cells
as a rat navigates the experimental space so that we can
estimate the effect produced by specific electrophysiolog-
ical components —cell firing rate, population size, etc.—
on the net outcome. In this work, we show that h phase
precession significantly enhanced spatial learning, and that
the way downstream neurons group cells together into
coactivity windows exerts interesting effects on learning
time. These findings strongly support the notion that theta
phase precession enhances spatial learning. Finally, we
propose that ideas from topological theory provide a
conceptually elegant description of the actual learning
process.

Theta Precession in Hippocampal Map Formation
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model. This could occur by any of several means. First, theta

precession might enlarge the number of ensembles capable of

the task by expanding the scope of the parameters (including

firing rates or place field sizes normally out of the bounds of L).

Second, it might make the ensembles that are in L converge

on the correct topological information more rapidly. Third, it

might make the same ensembles perform more reliably (e.g.,

succeeding in map formation a greater percentage of times in our

simulations).

To test the effect of theta precession in our model, we compared

the rates of map formation for those formed with and without h-

precession. We tested 1710 different place cell ensembles by

independently varying the number of place cells (N; 19 indepen-

dent values, from 50 to 500), the ensemble mean firing rate (f; 10

independent values, from 4 to 40), and the ensemble mean place

field sizes (s; 9 independent values, from 5 to 30) [Methods; see [4]

and Methods therein for further details]. For statistical analysis, we

simulated each map 10 times so that we could compute the mean

learning time and its relative variability, j =D Tmin/Tmin, for each

set of (s, f, N) values. In the following we will suppress the bar in the

notation for the mean f, s, N, and Tmin.

Figure 2 shows the results of these simulations in a 161 m

space with one hole. (The size of the environment in this study is

smaller than the ones used in [4], for two reasons: to avoid the

potential problem of place cells with more than one field, and to

reduce computational cost; see Methods.) The learning region L is

small and sparse in the h-off case, but notably larger and denser in

the h-on case (Figure 2A). Values that would be just beyond the

learning region—N that may be too small, or place fields that are

too large or too small, or firing rates too high or too low [4]—thus

become functional with the addition of h-precession.

Two criteria reveal the quality of the map-forming ensembles:

speed and consistency in converging toward the correct topolog-

ical signature. The fastest map formation times (under 4 minutes)

are represented by blue dots; as the color shifts toward red, map

formation times become longer and the error rate (failure to

converge) increases. The size of the dot represents the success rate:

small dots represent ensembles that only occasionally converge on

the correct information, large dots represent ensembles that

converge most or all of the time. h-precession increases the

probability of convergence across all ensembles that can form

accurate maps at all (Supplemental Figure S1). Since we were

interested in understanding the dynamics of efficient learning,

however, we created a more stringent definition of the learning

region to focus on the core of L where map-formation is most

rapid and reliable, as well as to make the results more legible (L
can be quite dense, as in Figure 2A and Supplemental Figure
S1); if h-precession truly enhances learning, its effect should be

apparent even in the most successful ensembles, and indeed this

was the case. The point clouds in Figure 2B depict those

ensembles that formed maps with a convergence rate of r$0.7

(i.e., those that produced correct topological information at least

70% of the time) and simultaneously had low relative variability of

the Tmin values, j,0.3. Even within this more efficient core of L,

the effect of h-precession was pronounced.

The histograms of the computed mean learning times are

closely fit by the Generalized Extreme Value (GEV) probability

distribution (Figure 2B). The distributions show that h-precession

reduced the mean learning times Tmin: the mode of all the h-on

GEV distributions decreased by ,50% compared with the h-off

case for the learning region as a whole (Figure 2C) and by ,15%

for the efficient ensembles at the core of L (Figure 2D).

Moreover, the effects of adding h-precession—reducing map

formation time and decreasing the relative variability of the Tmin

values—were manifested in all maps, not just those with high (r $

0.7) convergence rates (Figure 2C,D). The histograms for all

maps (all r -values) fit by the GEV distribution reveal that the

typical variability (the mode of the distributions) in the h-on cases

is about half the size of the h-off case (Figure 2E). In our model,

therefore, h-precession strongly enhances spatial learning.

Figure 1. A simplicial complex can be derived from place cell co-firing. As an animal (in experiments, typically a rodent) explores a space,
place cells fire in discrete locations that are mapped onto the space as place fields (b, colored ovals). (A) Shown are seven place cells firing, with some
temporal overlap. (B) Top: The seven corresponding place fields, along with a fragment of an animal’s trajectory (dashed line). Bottom: The elements
of the nerve (a.k.a. Čech) simplicial complex generated by the overlaps among place fields. To form a simplicial complex, each place field center is
considered to be a vertex, and each link between vertices is a simplex. Each simplex sij or sijk is labeled to indicate the vertices linked, e.g., s617

indicates a link between vertices 6,1 and 7. (C) Persistent homology ‘‘barcodes’’ show the timelines of 0D and 1D loops, respectively: each colored
horizontal line represents one 0D loop (top panel) or one 1D loop (bottom panel). The time Tmin (dotted red vertical lines) marks the moment when
spurious loops (topological ‘noise’) disappear and the correct number of loops persists, in this case one in 0D and one in 1D, indicating that there is
one hole in the environment. Thus, Tmin is the time after which the correct topological information emerges, which corresponds to the map formation
or learning time in this environment, for this particular ensemble of place cells, operating under particular conditions of mean firing rate, mean place
field size, number of cells in the population.
doi:10.1371/journal.pcbi.1003651.g001
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Theta precession enhances learning regardless of specific
theta rhythm

Since we do not know what features of h-oscillations might be

important [20], we studied four different h-oscillations, two

simulated and two derived from electrophysiological experiments

in wild-type rodents. Specifically, we modeled the effect of theta

precession on the topological map by coupling the place cells’

Poisson firing rates, lc, with the phase of the following four h-

oscillations: 1) h1 – a single 8 Hz sinusoidal wave, 2) h4 – a

combination of four sinusoids, 3) hM – a subcortical EEG signal

recorded in wild-type mouse, and 4) hR – a subcortical EEG signal

recorded in a rat (Supplemental Figure S2; see Methods).

The last three signals were filtered in the h-domain of frequencies

(6–12 Hz). The distribution of the learning times, the histograms

of the mean learning times, and the histograms of the relative

variability, j, for all four different theta cases are shown in

Supplemental Figures S3 and S4.

To compare the h-off and h-on cases, we performed two-sample

Kolmogorov-Smirnov (KS) tests for all pairwise combinations of

the studied sample sets [21]. This produced a 565 matrix of the p-

values, pij, where i, j = 0 (no theta), h1, h4, hM, and hR. Black

squares signify a statistically significant difference between cases i

and j (p,0.05); gray squares signify no statistically significant

difference. The statistical difference diagrams for the sets of Tmin

values (Supplemental Figure S3) and for the learning time

variability (Supplemental Figure S4) indicate that the distri-

butions of learning times in the various h-on cases were very

similar, but the difference between all of these and the h-off case

was statistically significant.

Theta precession makes spurious loops more transient
So far we have described the outcome of place cell ensemble

activity in terms of the time at which the correct number of loops

in the simplicial complex T emerges. But the learning process can

Figure 2. Theta precession both enlarges the learning region and reduces mean learning times. (A) Point clouds representing the mean
learning times Tmin computed for the h-off case (left) and the maps driven by a h–signal recorded in rat (right). Each point corresponds to a place cell
ensemble with a specific number of place cells, N, the mean ensemble firing rate, f, the mean ensemble place field size s. Dark blue circles represent
those ensembles that form correct topological maps most rapidly and reliably; as the color shades from blue through green, yellow, and red, the
learning times increase and map formation becomes less reliable (see [4], Methods). The rat h–signal enlarges the learning region L and speeds map
formation. (B) To zero in on the effect of h precession on the quality of learning, these clouds depict only the maps that converged at least 7 out of 10
times (r $0.7), and for which the variance of the learning times, j = DTmin/Tmin, did not exceed 30% of the mean value. Even in this more rigorously
defined core of L, with ensembles that already function well, the h–signal has a pronounced effect. (C) Histograms of the minimal times obtained in
the h-off (left) and the h-driven case (right), fit by the GEV distribution. The blue dot marks the mode of the distribution; m in the center of each panel
gives the value of the mode. All convergent maps are included. The typical learning time Tmin in the h-on case is about half as long as in the h-off case.
(D) The same histograms obtained for the core of L (r $0.7, j#0.3). The typical learning time Tmin in the h-on case is about 6.5 minutes, whereas
without h it is 15% longer. (E) One of the major effects of h phase precession is to reduce the variability of the learning times. The histograms show
that the typical value of the relative variation j in the h-on case is less than half that of the h-off case, i.e., that repeated simulations of the h-driven
maps more reliably reproduce similar learning time values.
doi:10.1371/journal.pcbi.1003651.g002
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also be described by how spurious loops are handled in the system.

These loops are a fair representation of the subjective experience

of learning. It takes time to build a framework into which new

information can be properly slotted: until that framework is in

place—whether it’s a grasp of the layout of a neighborhood or the

basic principles of a new field of study—we have incomplete

hunches and many incorrect notions before experience (more

learning) fills in our understanding. Translating this into topolog-

ical terms, as the knowledge gaps close, the spurious loops

contract. We therefore wanted to study the effects of theta

precession on the dynamics of loop formation. Does a ‘‘smarter’’

ensemble form more spurious loops or fewer? Does it resolve those

loops more quickly?

We concentrated on the 1D cycles, which represent path

connectivity within the simplicial complex, because they are more

numerous and thus produce more robust statistics than the 0D

cycles. Figure 3 shows that h-precession shortened the duration of

the spurious loops. The KS test reveals a statistically significant

difference between the lifetimes of spurious loops in the h-off case

and those in all the h-on cases (Figure 3B). To simplify the

presentation of the results produced by the statistically similar h-on

cases, we combined the data on spurious loop duration from all

four h-driven maps into a single histogram. It is interesting to note

that the probability distributions for loop dynamics are typically

better fit by the gamma distribution (Figure 3B–D). In the h-

driven maps, a typical spurious loop persisted for 50% less time

than it would without h-precession (Figure 3B). It is worth noting

that the spurious loops persisted longer at the lower boundary of

the learning region, where the mean firing rates and place field

sizes are smallest. This makes sense, insofar as whatever

information appears will take longer to be corrected.

Statistical analysis of the largest number of loops observed at

any given point over the course of the map formation period also

differentiated h-driven from h-off maps. Curiously, h-driven cases

tended to produce a significantly higher mean number of spurious

loops than the h-off case (Figure 3C), but with a lower peak

number of loops (Figure 3D). This implies that h-precession

enhances the speed of spatial learning overall at the price of

creating more (transient) errors; lots of spurious loops are formed

early on, but they disappear faster. The KS test shows that the

distributions of the mean number of loops in all h-on cases differ

from one another; only the maps driven by the two simulated h-

signals gave statistically similar results.

Too many simplices make learning less efficient
In our model, spatial learning can be quantified by the time

required for the emergence of correct topological information, but

it can also be quantified by studying the simplicial complex itself.

We noted earlier that the structure of the simplicial complex

approximates the structure of the environment. Similarly, it is

possible to conceive of a simplex as a mathematical analogue to a

cell assembly (a group of at least two cells that repeatedly co-fire

and form a synapse onto a readout neuron), and to view the

simplicial complex as analogous to the realm of possible

connections within the hippocampus. We were therefore curious:

since it is in the interest of neural function to be efficient, how

many cell assemblies (simplices) does it take to encode a given

amount of information? We would predict that the fewer the

connections, the better, for the sake of efficiency.

One of the major characteristics of a simplicial complex T is the

number of n-dimensional simplices it contains, traditionally

denoted as fn. The list of all fn –values, (f1, f2, …, fn), is referred

to as the f-vector [22]. Since the D-dimensional simplices in T
correspond to (D+1)-ary connections, the number of which

depends on the number of vertices, N, we considered the fn values

normalized by the corresponding binomial coefficients,

gD~fD=CDz1
N

which characterize the number of simplices connecting vertices in

the complex T. We can consider g an index of the connectivity of

the simplicial complex. Since we model 2D spatial navigation, we

analyzed the connections between two and three vertices, i.e., the

1D and 2D simplices, of T (the number of 0D simplexes

normalized by the number of vertices in T is g0;1).

Figure 4 shows the distribution of the normalized number of

simplices at the time the correct signature is achieved (g1 and g2,

for 1D and 2D, respectively). As expected, the number of simplices

was smaller at the lower boundary of the learning region L (the

base of the point cloud) and increased towards the top of L where

place fields are larger and the firing rates are higher, each of which

would produce more place cell co-firing events. Remarkably, the

number of simplices depended primarily on the mean place field

size and on the mean firing rate of the ensemble, and not on the

number of cells within the ensemble. This suggests a certain

universality in the behavior of place cell ensembles that is

independent of their population size. In the ensembles with

smaller place fields and lower firing rates, about 1.5% of place cell

pairs and 1.7% of the triplets were connected, and this was enough

to encode the correct topological information, whereas in the

ensembles with low spatial selectivity and higher firing rates, 25%

of pairs and 8% of triplets were connected. These ensembles, in

which the place fields and spike trains will by definition have a lot

of overlap, are forced to form many more 1D and 2D simplices in

order to encode the same amount of information and are thus less

efficient (Figure 4, third column).

According to our model, such ensembles and the hippocampal

networks whose activity they represent are inefficient on two

counts. First, these larger, more complex temporal simplicial

complexes (analogous to a larger number of coactive cell groups)

will take longer to form correct topological information, if they can

manage it at all. Second, a larger number of coactive place cells

would hamper the training of downstream readout neurons,

thereby impeding reliable encoding of spatial information. This is

consistent with studies showing that the number of cells

participating in a particular task decreases until it reaches an

optimal number that fire at a slightly higher rate than their no-

longer-participating neighbors [23].

Window size: Defining what constitutes co-firing
Our model depends on patterns of place cell co-firing, but we

had not previously explored what the optimal temporal window

for defining co-activity might be. Experimental work supports the

widely held assumption that the temporal unit for defining

coactivity ranges between tens [24] and hundreds of milliseconds

[25–27]. Our model, however, enables us to approach the

question of optimal width for the coactivity window theoretically.

Clearly, if the time window w is too small, then the spike trains

produced by the presynaptic place cells will often ‘‘miss’’ one

another, and the map will either require a long time to emerge or

it may not be established at all. One would thus expect large values

Tmin(w) for a small w. On the other hand, if w is too large, it will

allow cells whose place fields are actually distant from one another

to be grouped together, yielding incorrect topological information.

Theta rhythm itself will have a tendency to group sequential spike

trains together, but clearly there must be limits to this, or else some

place cells would be read downstream as co-firing when they

Theta Precession in Hippocampal Map Formation
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Figure 3. Theta phase precession reduces the duration of spurious loops in the simplicial complex. (A) The point clouds depict the core
of the learning region, as in Figure 2B, for the sake of legibility. In both the h-off and h-on cases, note the red circles at the lower boundary of L,
indicating longer-persisting loops. (B) Histograms showing the distributions of spurious loop durations in the h-off and h-on cases. We performed the

Theta Precession in Hippocampal Map Formation
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actually are not. Therefore, there should exist an optimal value of

w that reliably produces a finite, biologically relevant learning time

Tmin at which the learning region L is robust and stable.

We assume that the capability of a read-out neuron to detect

place cell co-activity is specified by a single parameter, the width of

the integration time window w, over which the co-appearance of

the spike trains is detected. (We considered the possible effect of

time bin position on co-activity, but found this did not affect

outcome; see Methods.) We defined cell coactivity as follows: if

presynaptic neurons c1 and c2 send a signal to a read-out neuron

within a certain time window w, their activity will be interpreted as

contemporaneous. The width of this time window may be positive

(c2 becomes active w seconds after c1) or negative (c2 becomes

active while c1 is still firing). We studied window widths w for

which the place cell spike trains would eventually be able to

produce the correct topological signature (the Betti numbers, see

Methods in [4]). In order to describe the dependence of learning

times on the window width, Tmin(w), we scanned an array of 24

values of w (ranging from 0.1 to 5 h-periods) for each combination

of the parameters (mean s, f, and N) and noted the width of the

value wo, at which the map began to produce the correct

topological signature. We call this initial correct window width the

‘‘opening’’ value. A typical result is provided by an ensemble with

f = 28 Hz, s = 23 cm and N = 350, in which an accurate topolog-

ical map emerges at a fairly small window width, wo,25 msec

(Figure 5). The distribution of the opening window widths shows

Kolmogorov-Smirnov (KS) test to statistically compare the five cases against one another: 0 = no theta, 1 = a single 8 Hz sinusoidal wave, 4 = a
combination of four sinusoids, M = a subcortical EEG signal from a wild-type mouse, and R = a subcortical EEG signal recorded from a wild-type rat.
Black squares indicate a significant difference (p,0.05) in loop duration between h-off and all other cases; the p-values for pairwise comparisons
between different h-on cases reveal no significant difference (gray squares, p.0.2). The statistical similarity of all the h-on distributions enabled us to
combine the h-on loop duration data to obtain better statistics for the histogram. The structure of the histograms is fit by the gamma distribution
(blue lines). We used the smooth histogram profile (dashed line) to show that the typical duration of the topological loops in the h-on cases is about
half that of the h-off case. (C) The typical number of loops in the h-on cases is ,40% higher than in the absence of h-precession. The h-off histogram
is fit by the GEV distribution (red line), while the h-on histogram is better fit by gamma distribution (blue). The KS diagram on the right shows that
while the simulated h-oscillations produce similar results, the signals recorded from rat and mouse produce statistically different distributions from
the simulated signals. (D) The maximal number of spurious loops observed in the h-on cases, fit by the gamma distributions, is less than half that in
the h-off case.
doi:10.1371/journal.pcbi.1003651.g003

Figure 4. Too many simplices correlates with inefficient learning. Distributions of the (A) 1D and (B) 2D connectivity indexes, g1 and the g2,
aross the ensembles that form correct maps at least 70% of the time (convergence rate r $0.7) and have low relative variability (j,0.3, as in Figs. 2
and 3) in the h-off and the h-on cases. The distribution of the g1 and the g2 values over the learning region L indicates that the normalized number of
1D and 2D simplices scales with the number of combinatorially possible connections in the place cell ensemble. Correspondingly, the structure of the
normalized connectivity in the temporal simplicial complexes can be seen in the cross-sections of the learning region (third column; notice that the
normalized connectivity increases with a rise in both the mean ensemble firng rate and the mean ensemble place field size, in both the 1D and 2D
cases). In the ensembles with high firing rates and low spatial selectivity, up to 25% of place cell pairs and up to 8% of place cell triplets are coactive.
The KS test shows that more simplices make for inefficient learning whether or not there is theta precession, though there is a difference between the
h-off and the h-on cases when considering the 1D and 2D connectivity indices together.
doi:10.1371/journal.pcbi.1003651.g004
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that wo may exceed 1.5 h-periods (,25 msec), which matches the

slow c-period [24,28] (Supplemental Figure S5). Since at this

stage c-oscillations have not been explicitly built into the model,

this correspondence is coincidental, if suggestive.

As expected, the values of learning times at wo were rather large:

Tmin(wo) ,20 minutes in h-off case and Tmin(wo) ,30 minutes in the

h-on case, and in some cases exceeding one hour (mostly for the

ensembles with low firing rates). For small window widths, the

value of the learning time Tmin(w) was very sensitive to variations in

w (Supplemental Figure S6). As w increased, however, the

learning time reached a plateau around some larger value ws. This

implies that in order to produce stable values for Tmin that are

biologically plausible, the values of the window widths should start

around ws. The distribution of the ws values demonstrates that in

the h-off case the stabilization is typically achieved at approxi-

mately one h-period, and in the h-on case at about ,1.2–1.5 h-

cycles (Figure 6), which justifies our choice of a two h-period

window width for the computations and corresponds well with the

Figure 5. The effect of theta precession on learning time depends on window width. (A) Dependence of learning time, Tmin, on window
width, w, for the ensemble N = 350, fmax = 28 Hz, and s = 23 cm, in the h-off and in the h-on cases. The radius of the circles indicates the percentage of
times the map converges on correct information (the larger the radius, the greater percentage of convergence). In both cases, the first convergence
to the correct signature occurs as the window widens to about wo = 0.2 h-periods (one h-period is approximately 125 msec). At this ‘‘opening’’ value
the learning time is about 300 mins, which is about 60 times higher than the typical value obtained for a time window of two h-periods. The learning
time Tmin at the ‘‘opening’’ values of w is highly sensitive to variations of w: as w changes from 0.2 to 0.3 h-periods, the learning time Tmin changes by
over 300%. As the integration time w increases, the dependence Tmin(w) rapidly drops off until it plateaus at about ws,1.5 h-periods, where it
stabilizes. As w increases further, the learning time Tmin does not change significantly, but learning becomes less and less reliable, i.e., the likelihood of
the spatial map converging to accurate topological information drops. Finally, the neuronal ensemble fails to encode the correct topological
information at w ??? 4.5 h-periods. (B) The dependence of the learning time on w shown above suggests that Tmin is inversely proportional to a power
of the window width, Tmin = C/wa, where a and C are constants. To test this hypothesis, we selected the maps that converged for at least 19 out of 24
values of w, and computed the product Tmin wa for 12 values of a taken from the interval 1,a,2 (See Supplemental Figure 7). The results show
that the product Tmin wa remains bounded for the entire range of window sizes. While in the h-off case the variation of the product Tmin wa remains
large, the h-on case it is nearly constant, which suggests that a nearly hyperbolic relationship Tmin wa = C is more tight in the h-on case.
doi:10.1371/journal.pcbi.1003651.g005
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predicted limit of 150 msec for h-cycle cofiring in sequence coding

[29]. Further increasing the integration time window w did not

significantly alter the learning time Tmin in L; instead, the rate of

map convergence decreased until the maps completely fail to

encode the correct topological information at w f 4.5 h-periods.

From the perspective of our current model, the range of optimal

window widths w is between 20–25 msec and 0.5 secs.

Finally, we sought to uncover a relationship between learning

time and window width. Our analysis suggests that Tmin is inversely

proportional to a power of the window width (Figure 5B,

Supplemental Figure S7).

Discussion

We have used methods derived from persistent homology

theory and algebraic topology to simulate one way physiological

data from individual neurons might combine at the level of a

neuronal ensemble to enable spatial learning [4,6,16]). With this

model, we found that h phase precession significantly increased the

size of the learning region L, reduced the learning time Tmin, and

changed the dynamics of spurious loop formation. Together, these

findings provide compelling support to the notion that phase

precession enhances spatial learning. Given that this has been

speculated to be one purpose of h phase precession [17–19], the

results of the present study validate our spatial learning model.

The correspondence of the model’s optimal window width with

values obtained from animal experiments further underscores the

physiological relevance and predictive power of the model.

h phase precession, learning, and the importance of
levels of scale

Numerous experiments have demonstrated that h precession is

important for spatial learning. h-power increases with memory

load during both spatial and non-spatial tasks in humans [30,31]

and in rodents [32,33]; spatial deficits correlate with a decrease in

the power of theta oscillations in Alzheimer’s disease [34] and in

epilepsy [35,36]. If h-signal is blocked by lesioning the medial

septum (which does not affect hippocampal place cell represen-

tations), it severely impairs memory [37] and the acquisition of

new spatial information [38]. Recent experiments demonstrate

more directly that destroying h precession by administering

Figure 6. The optimal window width is slightly larger than a single h-period. (A) The distribution of the stabilization window widths ws

across all convergent maps (any finite r and j values) in h-off and h-on cases. (B) Statistical distribution of ws in h-off and h-on cases and show a 15%
statistically significant difference in the typical value of the ws for the h-on cases.
doi:10.1371/journal.pcbi.1003651.g006
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cannabinoids to rats correlates with behavioral and spatial

learning deficits [17,39]. But at what level, and through what

mechanisms, does h precession exert its influence? The effect of h-

precession on the structure of the spike trains is rather complex

[40]. On the one hand, it groups cell spikes closer together in time

and enforces specific sequences of cell firing, which is typically

interpreted as increasing the temporal coherence of place cell

activity [41–43]. One might predict that grouping spikes together

would (somehow) speed up learning. On the other hand, h-

precession imposes extra conditions on the spike timing that

depend on h-phase and on the rat’s location with respect to the

center of the place field through which it is presently moving.

Since every neuron precesses independently, one could just as well

predict that h modulation would either restrict or enlarge the pool

of coactivity events, which in turn would slow down learning at the

level of the downstream networks, and that the beneficial effect of

the h rhythm is a higher-order phenomenon that occurs elsewhere

in the brain.

Our results suggest that h precession may not just correlate with,

but actually be a mechanism for, enhancing spatial learning and

memory. The interplay of h precession and window width,

especially the extremely long learning times at the opening

window width wo, is particularly illuminating here. As noted, theta

precession acts at both the ensemble and the individual neuron

level: it groups spikes together, but each neuron precesses

independently. When the time window is sufficiently wide, the

coactivity events are reliably captured, the first effect dominates,

and the main outcome of theta precession is to supply grouped

spikes to downstream neurons. For very small time windows,

however, the system struggles to capture events as coactive, and

the extra condition imposed by phase precession acts as an

impediment: detected coactivities are rarer, and learning slows

down. Put more simply, imagine in Suppl. Figure S8 that the

window is only one spike wide: in a train of 10 spikes that overlaps

by one spike with another train, it will take 10 windows before the

overlap is detected.

It is noteworthy that the presence of theta precession was clearly

more important than the details of the oscillation. Although theta

precession enhanced learning in our simulations, learning times

were relatively insensitive to the details of the theta precession

chosen. One might expect differences in spike train structure

induced by the four different h-signals studied to alter the

dynamics of the persistent loops and thus learning efficiency.

Our results show, however, that differences that would matter at

the level of individual cells are averaged out at the level of a large

ensemble of cells.

Here again the model shows its particular strength: it allows us

to correlate parameters of activity at the level of individual neurons

with the outcome at the level of an ensemble of hundreds of cells,

providing a framework for understanding how micro-level changes

play out at the behavioral level. Interestingly, we also saw a

difference between the micro and macro levels when we

considered whether the placement of a temporal window affected

what would be considered co-activity (see Methods and

Supplementary Figure S8). In theory it should, but the effect

at the macro level washes out and we found that only the temporal

width of the window matters for learning time.

Simplicial complex formation as a metaphor for learning
Beyond validating the model as a reliable way to study

physiological aspects of spatial learning, we have gone further in

this work to analyze the simplicial complex itself as a way of

describing learning. As a rat starts to explore an environment,

some cells begin to form place fields. Then, the co-firing of two or

more place cells will define the respective places as connected in

space and temporal experience and will create corresponding

simplices in the simplicial complex T. With time, these simplices

form a chain corresponding to the animal’s route through the

space. If the environment is bounded, the rat will discover new

connections between the same places (arriving to the same location

via different routes). As a result, the chains of connected simplices

grow together to form loops. Existing loops become thicker and

may eventually ‘‘close up’’ and disappear, yielding surfaces. The

appearance of such surfaces is significant: the closing up of a D-

dimensional surface corresponds to the contraction, or disappear-

ance, of one of its boundaries, which itself is a D1-dimensional

loop. Eventually, the structure of the simplicial complex saturates

such that no new simplices (connections between places) are

produced and no more loops contract because all that could close

have already closed. At this point, the saturated simplicial complex

T encodes not only the possible locations of the rat, but also

connections between the locations, along with the information

about how these connections can be deformed, e.g., whether they

are contractible or whether they encircle an obstacle and cannot

be contracted into a point. Thus, the saturated temporal simplicial

complex T is a framework that unifies information about places

and spatial-temporal relationships between them. This framework

might correspond fairly well to the structure formed by synaptic

connectivity in the rat’s hippocampus, which allows the rat to

explore and retrieve information by ‘‘pinging’’ the network,

without physical navigation [44].

In addition to the practical benefits of a model that consistently

produces biologically relevant results, there is a special appeal in

the ability of algebraic topology to provide insight into the

mechanisms of learning. It is fitting that a method developed to

simplify the analysis of high-dimensional data with many

coordinates might itself represent how the brain approaches a

similar challenge in the real world.

Materials and Methods

Ensemble parameters
An ensemble of N cells is described by N peak rates, f1, f2, …, fN,

and N place field widths, s1, s2, …, sN. As in [4], we assume that the

values fi, and si, are log-normally distributed around a certain

ensemble-mean firing rate and the ensemble-mean place field size,

with the variances sf and ss respectively. To simplify the analysis,

we assume that the variance of the firing rate, sf, and of the place

field size, ss, are proportional to their means, sf = af and ss = bs, so

that the distribution of the firing rates and of the place field sizes

are defined by a single parameter, f and s respectively. The

protocol of the simulations was similar to [4]: the trajectory was

fixed, but the place field centers, rc, are randomly scattered in the

environment for each simulation.

Theta signals
The first simulated h-signal (h1) contained a single sinusoidal

oscillation with the frequency f = 8.0 Hz. The second simulated h-

signal (h4) was obtained by combining four sinusoids,

h tð Þ~
X

pApsin(2pfpt),

with frequencies f1 = 6.5 Hz, f2, = 8.65 Hz, f3 = 10.0 Hz, and

f4 = 11.5 Hz, filtered between 6 and 12 Hz. The third and the

fourth h-signals (hM and hR) were obtained by filtering subcortical

EEG signals recorded in mice and in rat, filtered between 6 and

12 Hz.
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Theta precession
As the rat just enters the place field of a cell ci, that cell prefers

spiking at a high h-phase, Q*,2p, and as the animal moves over a

distance l towards the center, the preferred phase decreases,

reaching Q*,0 as the rat exits the place field [10,45]. We

approximate this dependence by a linear function,

Q� lð Þ&2p 1{l=Lið Þ,

where Li is the size of the place field ci, Li,3si, To simulate the

coupling between the firing rate and the h-phase, we modulate the

original Gaussian firing rate by a phase-dependent factor L(Q),

which peaks around 0,

L Qð Þ~exp½k(Q{Q�)
2=2"2�,

where the width e we defined as the ratio of the mean distance that

rat travels during one h-cycle to the size of the place field, e = v/Lf.

Typical examples of the resulting theta precession of spiking are

shown in Supplemental Figure S2. For persistence methods see

[4].

Choice of environment
We conducted our simulations in small environments (161 m).

In the ‘‘Reducing computational cost by subdividing
maps’’ section (see also Supplementary Figure S9) we show

that direct computations based on the Mayer-Vietoris theorem

[14] demonstrate that the spatial map corresponding to a larger

environment can be split in several smaller pieces, and that the

connectivity of the entire spatial map can be computed piece-by-

piece, so that the total learning time is approximately equal to the

times required to ‘‘learn’’ its parts. This observation helps to

reduce the computational cost of the algorithm. In addition,

simulating the maps in smaller environments allows us to avoid

multiply connected, ‘‘patchy’’ place fields (in smaller environments

there is a lesser chance of observing more than one component of

a place field, as occasionally happens when a place cell fires in

more than one place) and helps to bring the density of place cells

closer to experimental values.

Additional temporal coactivity parameters
Finally, we notice that, given a particular integration time

window width w, the co-activity between two specific spike trains

may or may not be detected depending on the position of the time

bins (Suppl. Figure S5). We studied this effect by shifting the

time windows 10 times over 10% of the fill window width w and

recomputing Tmin, and we saw no difference in the outcome. This

implies that Tmin does not depend on the shift of the time window:

over the typical learning time scale, the effect produced by the bin

shifts averages out. Second, it is clear that a fixed time width is not

physiological, because a realistic window size will ‘‘jitter’’ from cell

to cell and from moment to moment. However, a direct simulation

conducted for w equal to two h-periods shows that adding up to

50% ‘‘jitter’’ to the window width does not affect the learning

times: Tmin remains virtually invariant with respect to the

amplitude of the bin size noise. This allows us to simplify the

computations by using a single parameter w to characterize

coactivity.

Reducing computational cost by subdividing maps
One of the major computational difficulties in simulating

hippocampal spatial maps is the time it takes to analyze a large

number of simplices: in our original paper [4], simulating the map

formation time for each set of parameters (each variation tested

10,000 times) took several months for a 262 m virtual space.

Considered in mathematical terms: given N vertexes in the

simplicial complex T, the number of 1D links scales as ,N2, and

the number of 2D facets scales as ,N3. The topological

relationships between them are then defined by a,N26 N3

incidence matrix [46]. Due to restrictions in computational power,

we can investigate ensembles that include up to 400 cells, but in

the actual hippocampus there are on the order of 4000 cells active

in a given experimental environment [47,48].

To reduce the computational load, we took advantage of the

Meyer-Vietoris theorem, which allows us to simulate the map by

breaking it into its constituent parts. Using Meyer-Vietoris, it is

possible to compute the homological characteristics of the entire

space X from the homological characteristics of its constituent

parts [46]. Specifically, if a space X is split into pieces A and B,

X = A<B, then the homologies of X, Hq(X), are related to the

homologies of its parts, Hq(A) and Hq(B), via the so-called long

exact sequence:

. . .?Hq A\Bð Þ?Hq Að Þ�Hq Bð Þ?Hq Xð Þ

?Hq A\Bð Þ? . . . :

If the overlap, A>B, is topologically trivial, Hq(A>B) = 0, then the

sequence reduces to just

. . .?0?Hq Að Þ�Hq Bð Þ?Hq Xð Þ?0? . . . ,

in which case the exactness of homomorphisms implies that

Hq Að Þ�Hq Bð Þ~Hq Xð Þ,

i.e., the homologies of the whole space are equal to the direct sum

of the homologies of its parts. As a consequence, the Betti numbers

from both A and B can be combined to accurately provide

topological information about the whole space X.

This observation can be used to divide the map formation times

of the temporal simplicial complex T(T). If our virtual rat spends

time TA and TB in part A and in part B, respectively, then

assuming that A and B meet but do not overlap, the total map

formation time for the whole environment, TX, can be estimated

as

TX&TAzTB:

A more complete discussion of the mathematical aspects of this

dividing approach will be given elsewhere; for example, there is a

scale at which space can be no further atomized, and this will

require considerable effort to define the size of these ‘atoms’ and

account for these size limits. (At present, it appears that an atom of

space is approximately the size of two to three place fields.) Here

we present some numerical results justifying the piecewise

computations (Supplemental Figure S9). We simulated the

rat’s movement in a large 262 m environment with two holes,

which we formally divided into 2, 3 or 4 parts. After the fragments

have been chosen, we counted the time spent in each region, and,

by using only the spikes fired within a given region computed each

region’s own learning times. Supplemental Figure S9 shows

that the sum of these times is similar to total time spent by rat in

the entire arena (the differences are not statistically significant).

The second scenario is illustrated in the figure below.
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Place cell learning dynamics
Using the adaptive filtering method in [49] it was estimated that

in novel environments, place fields form in about four minutes,

starting at the background stochastic spiking level of 0.1 Hz

[15,50,51] and gain spatial specificity in about the same amount of

time. After that, place cells begin to (co)fire in a place-specific

manner, encoding spatial locations [52]. To include the effect of

place field formation into the model, we simulated place cell

ensembles with time-dependent firing rate amplitudes, fi, and time-

dependent place field widths, si, defined as

fi tð Þ~fi,0=(1zexp({t=ti))

and

si tð Þ~si,0=(1zexp({t=ti))

in which ti defines the slope of the sigmoid. We chose the typical

ti-value, tmean, equal to 240 seconds (see Supplemental Figure
S10) and the starting points start at 0. The results shown in

Supplemental Figure S10 demonstrate that the place field

formation produces only an additive effect on the overall spatial

map formation time: the average map formation time increases by

120% of the tmean with respect to the ‘‘base’’ value obtained for the

stable place cells.

Supporting Information

Figure S1 Theta precession enhances learning across
all ensembles that can converge onto the proper
topological information. (A) Theta precession increases

convergence rates across all ensembles in the learning region L.

(B) The corresponding probability distributions for h-off and h-on

(left and right, respectively) show that theta precession greatly

increases the probability of proper map formation. The KS test

shows this difference is statistically significant.

(TIF)

Figure S2 The four theta signals used to drive place cell
ensembles. (A) Theta oscillations tested: ‘‘1 sinusoid’’ = single

frequency f = 8.0 Hz oscillation; ‘‘4 sinusoids’’ = superposition of

four harmonics with frequencies f1 = 5.2 Hz, f2 = 6.5 Hz,

f3 = 8.65 Hz, f4 = 10.0 Hz and f5 = 11.5 Hz, filtered between 6

and 12 Hz; ‘‘mouse’’ = wild type mouse’s subcortical EEG signal,

filtered between 6 and 12 Hz, recorded at 10,000 Hz; ‘‘rat’’ = rat

subcortical EEG signal, filtered between 6 and 12 Hz, recorded at

1500 Hz. (B) Typical examples of phase precession diagrams for

each of the four cases in (A). (C) The histograms of the instant

frequencies for the four theta signals recorded at the times of

spiking (at least one cell in the ensemble fires), which show clear

structural difference between each of the four signals.

(TIF)

Figure S3 Theta precession enhances learning regard-
less of specific theta rhythm. (A) Theta precession enlarges

the learning regardless of the specific theta rhythm. Point clouds

show the minimal map formation times Tmin (color coded)

computed for the h-off case and the four h-on cases: a single

sinusoidal oscillation, h1, a combination of four sinusoids h4,

subcortical EEG signals recorded from a mouse, hM, and from a

rat, hR. Each dot corresponds to a place cell ensemble, with a

specific number of place cells, N, the mean ensemble firing rate, f,

the mean ensemble place field size, s. In all cases, we selected only

the maps that converged at least 7 out of 10 times, and for which

the variance of Tmin’s did not exceed 30% of the mean value. In

the pairwise Kolmogorov-Smirnov (KS) test computed for the

minimal time distributions, black squares indicate statistical

significance (p,0.05) and gray squares indicate no significant

difference. h-off differs from each of the four h-on cases (h1, h4, hM

and hR). (B) Theta precession reduces mean learning time,

regardless of specific theta rhythm. The histograms of the minimal

times obtained in the h-off and the four h-on cases, fit by the GEV

distribution, correspond to the cases shown in panel (A). The blue

dot marks the position of the mode of the distribution, the

corresponding value given by the number in the center of each

panel. For the stable maps (the ones that converge in at least 70%

of cases) the typical learning time Tmin in the h-on cases is about

6.5 minutes, whereas in the h-off case it is 20% higher. The KS

test reveals that there is a statistically significant difference only

between h-off and any given h-on case; the additional non-

significant p values serve to emphasize how similar the h-on cases

actually are.Figure S4

(TIF)

Figure S4 h phase precession reduces the variability of
the learning times, regardless of specific theta rhythm.
The histograms show that the typical value of the relative variation

j= DTmin/Tmin in the h-on cases is less than half that of the h-off

case, i.e., that repeated simulations of the h-driven maps more

reliably reproduce similar learning time values. Theta thus

increases the reliability and efficiency of map formation.

Interestingly, the KS test indicates that the experimentally derived

rhythms (from mouse and rat) are statistically significantly different

from the simulated oscillations, but in the case of the rat signal, it is

possible that this is because the signal itself had a wider distribution

of frequencies centered around 8 Hz.

(TIF)

Figure S5 The opening window width is close to the c-
period scale. (A) The cloud of the opening window width values,

wo, in the h-off and the h-on cases for all convergent maps (any

finite r and j values) indicates that at the core of the learning

region, the width of the opening window sizes is similar to the slow

c-period scale (,25 msec). (B) Combined histogram of the

distributions of the opening window sizes, wo, in the h-off and

the h-on case. All h-on cases are significantly different from the h-

off case.

(TIF)

Figure S6 Learning times are very large at opening
window width values. (A) The distribution of the mean amount

of time required for the correct spatial information to converge at

the opening window width, wo, across the learning region in the h-

off and the h-on cases. (B) The statistical distribution of the Tmin(wo)

’s shows that the typical learning time is about 20 minutes in the h-

off case vs. 30 minutes in the h-on case, which is a statistically

significant difference for all thetas tested in comparison with no

theta.

(TIF)

Figure S7 Learning time is inversely proportional to a
power of the window width. The test of the hypothesized

inverse proportionality dependence between the learning time,

Tmin, and the window width, w, Tmin = C/wa, where a and C are

constants (see Figure 5). To test this hypothesis, we selected the

maps that converged for at least 19 out of 24 values of w, and

computed the product Tmin wa for 12 values of a taken from the

interval 1,a,2. The results show that the product Tmin wa

remains bounded for the entire range of a values. While in the h-

off case (colormap ‘‘cool’’) the variation of the product Tmin wa
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remains large, in the h-on case (colormap ‘‘hot’’) it is nearly

constant, which suggests that a nearly hyperbolic relationship Tmin

wa = C holds in both cases. The smallest variation is achieved for

a = 1.4 in the h-on case and a = 1.28 in the h-off case. Notice that

as a varies between 1 and 2, the arms of the curve flip so the ‘‘most

horizontal’’ position is achieved for 1,aD,2.

(TIF)

Figure S8 Window widths define what counts as co-
activity. While overlap patterns A and C do not depend on the

position of the time bins, activity of cells in close temporal

succession might, in theory, be interpreted as coactivity or not

depending on the position of the time bins and/or the size of the

window width (B). In our model, however, we find that window

width is the sole determinant of co-firing at the level of neuronal

ensemble activity. See Methods.

(TIF)

Figure S9 The Mayer-Vietoris Theorem allows us to
divide maps into sections to reduce computational cost.
A. An area with two holes is divided into two, three or four pieces.

We selected the maps that converged to correct topological

information in the full arena and in each one of the pieces in which

the arena is split, in at least seven out of ten repetitions. B. We

then computed the mean learning times Tmin in the full arena

(shown by the black bars) and the divided learning times in each

piece, Tp,min, represented by colored bars. Colors on the bars

correspond to the region colors. There was no statistically

significant difference between the bars.

(TIF)

Figure S10 Place field formation time adds to the
learning time. A. Differences in learning times in the ensembles

with static place fields versus dynamic place fields. Red line marks

the mean difference, approximately 5 minutes, which is 120% of

the place field formation t. (Experimentally derived place field

formation takes approximately 4 minutes.) B. The distribution of

the differences shown in panel A, fit with normal distribution (red)

with the mean m = 5.58 and variance s = 6.83, and with the GEV

distribution (blue) with mean m = 5.66, variance s = 7.88.

(TIF)
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