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The finding that human infants and many other animal species are sensitive

to numerical quantity has been widely interpreted as evidence for evolved,

biologically determined numerical capacities across unrelated species,

thereby supporting a ‘nativist’ stance on the origin of number sense. Here,

we tackle this issue within the ‘emergentist’ perspective provided by artifi-

cial neural network models, and we build on computer simulations to

discuss two different approaches to think about the innateness of number

sense. The first, illustrated by artificial life simulations, shows that numerical

abilities can be supported by domain-specific representations emerging from

evolutionary pressure. The second assumes that numerical representations

need not be genetically pre-determined but can emerge from the interplay

between innate architectural constraints and domain-general learning mech-

anisms, instantiated in deep learning simulations. We show that deep neural

networks endowed with basic visuospatial processing exhibit a remarkable

performance in numerosity discrimination before any experience-dependent

learning, whereas unsupervised sensory experience with visual sets leads

to subsequent improvement of number acuity and reduces the influence of

continuous visual cues. The emergent neuronal code for numbers in the

model includes both numerosity-sensitive (summation coding) and numer-

osity-selective response profiles, closely mirroring those found in monkey

intraparietal neurons. We conclude that a form of innatism based on

architectural and learning biases is a fruitful approach to understanding

the origin and development of number sense.

This article is part of a discussion meeting issue ‘The origins of numerical

abilities’.
1. Introduction
It is widely believed that mathematical learning is rooted into a phylogeneti-

cally ancient ‘number sense’ that humans share with many animal species

[1,2]. Perceiving the number of objects is a key aspect of the number sense

and it is highly adaptive for survival [3,4]. Visual numerosity appears to be

extracted directly and spontaneously from vision [5,6] by a specialized mechan-

ism that yields an approximate representation of numerical quantity, the

approximate number system (ANS) [7]. The ANS representation can be con-

ceived as a distribution of activation on a putative ‘mental number line’,

where the overlap between distributions of activation increases with numerical

magnitude due to either scalar variability or compression of the scale [8,9].

Accordingly, discrimination between two numerosities is modulated by their

numerical ratio, thereby obeying Weber’s Law, and this ratio-dependent

effect in numerosity comparison is considered to be a primary signature of

the ANS. The striking similarity in performance between human and non-

human primates has suggested phylogenetic continuity of the ANS [10], as
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also indicated by the shared neural correlates found in the

intraparietal sulcus of the primate brain [11,12].

The ability to discriminate between numerosities, known

as number acuity, improves throughout childhood [13,14].

Human babies seem to be able, since their first hours of

life, to discriminate the numerosity of object sets if the ratio

is at least 1 : 3 [15]. Dramatic changes in number acuity

have been observed within the first years of life: for instance,

six-month-old infants can reliably discriminate between sets

with a ratio of 1 : 2 but fail with a 2 : 3 ratio, which is instead

discriminated by 10-month-olds [16,17]. The 2.5-year-old tod-

dlers discriminate a ratio of 3 : 4 [18]. Changes in number

acuity are thought to index the representational precision of

the ANS, and it is widely believed that the latter is founda-

tional to the subsequent acquisition of formal numerical

competences. Indeed, individual number acuity has been

linked to mathematical achievement [19–21] (for a meta-

analysis, see [22]) and it has been showed to be impaired in

dyscalculia [14,23].

In the present article, we discuss the origin of number

sense within the emergentist framework provided by artifi-

cial neural network models [24]. The emergentist approach

to cognition [25] assumes that the structure seen in overt be-

haviour and its patterns of change (e.g. during development)

reflect the operation of subcognitive processes, such as propa-

gation of activation and inhibition among neurons and

adjustment of strengths of connections between them. In

the context of the visual number sense (i.e. numerosity per-

ception), the crucial question is what kind of biological

constraints lead to its emergence (for a broader discussion,

also see [26]). Is the number sense innate? We show below

that connectionist simulations with artificial neural networks

can provide a fresh perspective on this debate. Elman et al.
[27] have thoroughly discussed the issue of innateness in

the context of connectionism. Here, we focus on their obser-

vation that there are two different ways to think about

innateness, which also readily apply to the discussion on

the origin of numerical abilities.

(a) Representation
Domain-specific knowledge is pre-specified before learning

and must be controlled by the genotype. This view, first

endorsed in the domain of language by leading scholars

like Chomsky [28] and Pinker [29], has been also applied to

the notion of number representation [30,31]. The findings of

studies on human newborns and pre-linguistic infants

[15,16,32] have often been cited as supporting this type of

innatist stance. A related proposal is that there is an innate

representation of at least one base quantity, from which the

other numbers can be generated through a recursive ‘succes-

sor function’ [33]. Together with the extensive literature on

numerical abilities in many animal species [34–38], these

results converge in promoting an ‘evolutionary perspective’

on the origin of number sense.

(b) Architecture
The genotype determines architectural constraints (or biases)

and the learning algorithms that respond to the environment

[27]. Latent structure in the environment—numerosity in the

present case—can therefore be acquired by general-purpose

learning algorithms. This approach might seem to be at odds

with the evidence for numerical competence in early
development. However, we show below that this alternative,

non-representationalist type of innatism can also adequately

address the origin of number sense. It should be noted that the

notion of a domain-specific learning mechanism [26] is some-

what intermediate, because it implies the existence of innate

learning devices that have specifically evolved for processing

numerical information, even if number representations per se
might not need to be genetically coded [39].

The two approaches markedly differ in how they account

for initial numerical competence. Here, we discuss these two

hypotheses, building upon computer simulations that inves-

tigate sensitivity to numerosity in neural processing systems

that are shaped by either evolutionary or architectural con-

straints. We then investigate the role of sensory experience

for refining the ANS, which, regardless of its origin, remains

a key issue for understanding developmental changes of

number acuity in early childhood.
2. Number sense emerges from evolutionary
pressure

As noted above, the finding that human infants and many

other animal species are sensitive to numerical quantity sup-

ports the hypothesis that at least some aspects of number

sense might be genetically determined. Though learning

and experience clearly play a role in the development and

refinement of the number sense [1], this evidence has

suggested that these abilities are supported by an ‘evolution-

ary start-up kit’ [30]. This possibility was explored by Hope

et al. [40] using artificial life simulations, which exploit

behaviour-based selection to capture the impact of evolution.

The simulation was built on the hypothesis that quantity

comparison emerges from selective pressure to forage effec-

tively [9]: evolving quantity-sensitive foragers would imply

the ability to judge quantity and therefore a tendency to ‘go

for more’ [37].

The artificial ecosystem used in the simulations is

depicted in figure 1a. It consisted of a two-dimensional (2D)

grid of 100 � 100 cells, each containing a certain amount of

‘food’. Food was randomly distributed and it could take

any value between 0 and 9 in each cell. The ecosystem had

a fixed population of 200 agents, each controlled by a recur-

rent, asymmetrically connected neural network (figure 1b).

The ecosystem evolved by iterative update: each update

allowed every agent the opportunity to sense its environment

and act. Sensory input to a given agent was defined by its

‘field of view’, which included the current cell and the

three cells directly ahead. The information gathered from

each visible cell was the food quantity n, which consisted in

a binary vector with n randomly chosen active neurons.

A similar coding scheme has been used by Verguts & Fias

[41]; however, it is important to emphasize that this coding

strategy dispenses with the problem of normalizing object

size [24,42]. Finally, each agent possessed a basic repertoire

of actions, encoded at the level of the effector neurons: that

is, they could turn left or right, move forward or eat.

Importantly, the agents’ neural network was shaped by

evolution rather than by lifelong learning. The evolutionary

process was controlled by a genetic algorithm, which

included crossover and mutation operators (for details, see

[40]). The agent’s genome determined the connection weights

and the size of the hidden layer, which were initially set to
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Figure 1. (a) Representation of an agent (black triangle) within a section of its artificial ecosystem. In the left panel, the agent is facing right and can sense food
(grey circles) in its right and left sensor fields. The right panel shows the same agent after making a single turn to the left: it can now sense only one cell containing
food. (b) Schematic representation of the recurrent architecture controlling each agent. The sensory layer receives information from the four cells in the agent’s field
of view, with food quantity in each cell encoded by nine binary neurons. The effector neurons in the motor layer define which action is chosen at each time-step.
(c) Test trial, where the agent must select between two food sources encoding different numerosities. (d ) Mean accuracy (left panel) and response time (RT, right
panel) as a function of the numerical distance between food quantities. (e) Examples of numerosity-sensitive hidden neurons showing monotonically increasing or
decreasing response profiles (i.e. summation coding). All panels have been adapted from [40].
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random values. The goal of the evolutionary process was to

promote the emergence of agents that forage in a quantity-

sensitive manner, which can be achieved by defining as

‘fitness function’ the rate at which the agent collects food.

At each iteration of the ecosystem, two ‘parents’ were randomly

selected from the population and the weaker of the two (in

terms of fitness value) was replaced by their ‘child’, which

was defined by mixing the parents’ genomes and applying

a small random mutation. As typical in evolutionary simu-

lations, the average efficiency of food collection increased

over time and it became high after several million iterations.

At that point, the agents’ behaviour was tested systematically

in terms of their quantity comparison performance. Each

agent was removed from the ecosystem and placed into a

3 � 3 test environment (figure 1c), where the top left and

top right cells contained food of varying quantity. Each

trial started with the agent in the centre position, where it

could ‘sense’ both quantities, and it was allowed to move

until it selected one of the two food cells. This method

mimicked that used by Uller et al. [37] to capture quantity

comparison performance in salamanders. Accordingly, a cor-

rect choice was defined as the selection of the larger of the

two food values. Each agent in the final population was

tested with every combination of food quantities for 50

repetitions, for a total of 3600 trials per agent.

Though many agents performed above the chance level,

few agents performed at chance (approx. 20%). The persistence

of non-discriminating agents in the population is interesting
because it shows that relatively high rates of food collection

can be achieved without quantity discrimination, for example,

by trading off decision quality in favour of decision speed.

Nevertheless, the population included agents that were

highly accurate in quantity discrimination.

Notably, accuracy decreased as the two numbers became

larger (i.e. size effect) and it was strongly modulated by

numerical distance as typically observed in behavioural

studies on animals and humans [43]. The distance effect on

both accuracy and response time (number of time-steps until

selection of the food cell) is shown in figure 1d. Moreover, ana-

lyses of the internal dynamics of the neural network revealed

that the emergent internal representation of quantity had the

form of ‘summation coding’ [42,44], whereby neuronal activity

increases or decreases monotonically as a function of numerical

magnitude (see examples in figure 1e). Numerosity-sensitive

neurons with this type of tuning property have been found

in the lateral intraparietal area of the monkey brain [45].

This format is broadly consistent with the accumulator

model of Meck & Church [46], as well as with the

‘summation clusters’ in the neural network model of

Dehaene & Changeux [42]. As we will discuss below, the

same type of coding also emerges from unsupervised deep

learning on images of object sets.

In summary, the simulations reviewed above show that

representational innatism is viable in the context of evolution-

ary pressure. However, these results have two important

limitations. First, as noted above, the simulations dispense
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with the non-trivial problem of extracting numerosity

information in a way that is invariant from covarying

continuous visual properties (cumulative area, object size,

density, etc.). Whether evolutionary simulations embedding

a more realistic sensory input would still show the emergence

of numerosity representations remains an issue that requires

further investigation. Second, these simulations do not

account for the ontogeny of numerical abilities. Indeed, the

improvement of number acuity observed during early devel-

opment in both humans [7] and animal species (e.g. in fish,

see [47]) suggests that other mechanisms are also at play.

The simulations reported in the following section investigate

the role of experience-dependent learning in determining the

development of number acuity.
.R.Soc.B
373:20170043
3. Number sense emerges from architectural and
learning constraints

The nature of the mechanisms underlying numerosity per-

ception has been debated for decades [5,6,42,48,49].

However, the advent of a new generation of artificial neural

networks, known as deep learning models [50], has provided

modellers the unique opportunity to investigate the emer-

gence of high-level visual skills using realistic sensory input

[51]. This framework has been exploited by Stoianov &

Zorzi [24] to investigate the emergence of a visual number

sense. Their simulations, as well as novel simulations

described below, are characterized by two key ingredients:

generative learning and hierarchical processing. Intuitively,

generative learning corresponds to learning by observation;

unlike discriminative learning, there is no supervision or

reward because the objective of learning is simply to build

an internal model by discovering features or latent causes

of the sensory information [52]. In other words, there is no

task and the neural network does not receive any information

about what is in the input (i.e. there is no feedback/supervi-

sion signal: all training data are unlabelled). Generative

learning becomes particularly powerful when embedded

into a hierarchical architecture, where many layers of neurons

form a deep neural network [51,53], also known as ‘deep

belief network’ [52].

Unsupervised learning in deep neural networks has pro-

vided a state-of-the-art and neurobiologically plausible

account of how visual numerosity is extracted from real

images of object sets [24]. Numerosity emerged as a high-

order statistical property of images in a deep network,

which learned a hierarchical generative model of the sensory

input. The key idea was that numerosity is a statistical invar-

iant of highly variable visual input, and for this reason, it

might be encoded as a high-order visual feature (summary

statistics) in a deep neural network that simply ‘observes’

images of object sets with variable numerosity. The hypoth-

esis was therefore that numerosity is a latent factor that

explains variability in the images of sets of objects. As a

result of this unsupervised learning, numerosity-sensitive

neurons emerged in the deepest layer of the network, with

tuning functions resembling summation coding as observed

in the lateral intraparietal area of the monkey brain [45].

The population code provided by number-sensitive neurons

in the model was found to be largely invariant to continuous

visual properties, and it supported numerosity estimation

with the same behavioural signature (i.e. Weber’s Law for
numbers) and accuracy level (i.e. number acuity) of human

adults. Analyses of the emergent computations in the

model showed that numerosity was abstracted from

lower-level visual primitives through a simple two-level

hierarchical process, which exploited cumulative surface

area as a normalization signal (also see [54,55]).

In the simulations reported below, we addressed more

directly the question of how much sensory experience is

necessary for observing number-sensitive behaviour in a

deep network. In particular, we pursued the hypothesis

that sensitivity to numerosity might emerge in a hierarchical

architecture before any sensory experience of object sets,

provided that it is endowed with basic visuospatial proces-

sing mechanisms. We then investigated how subsequent

experience-dependent learning would further shape numer-

osity representations, thereby leading to the progressive

improvement in numerosity discrimination performance.

(a) Simulating the origin and development of number
sense

In our simulations, we used a processing architecture similar

to that used by Stoianov & Zorzi [24]. Visual stimuli (see

appendix A for details) were provided to the network

through an input layer, and activation was then propagated

over three additional layers (figure 2a). The connection

weights of the first hidden layer were fixed in order to

encode a set of simple on-centre and off-centre detectors

(figure 2b). This way learning in the deep network did not

start from a completely random configuration, but rather

incorporated generic visuospatial processing mechanisms

that are likely to be already present at birth [56,57]. The recep-

tive fields of these neurons closely resemble those recorded at

early visual processing stages, such as in the retinal ganglion

cells and lateral geniculate nucleus of the thalamus [58–60],

whose structural and functional development seems to

happen independently of sensory experience [61] (also see

[62] for a neural network simulation). Note that neurons in

the first hidden layer belong to a general visuospatial proces-

sing system and cannot explicitly encode numerosity.

Location-specific filters were created by mimicking those

encoded at the first hidden layer of the original model.

These high-frequency spatial filters discretize the visual

input and provide a crucial signal to upstream neurons in

the processing hierarchy; the latter can compute numerosity

by summing the activity of many spatial filters and normal-

izing it using a signal that encodes cumulative area [24,55].

Note that the key role of high-frequency spatial filtering has

also been independently highlighted in a psychophysical

model [63].

The connection weights of the second hidden layer were

instead randomly initialized, and then gradually adjusted

through unsupervised generative learning using the same

procedure and training dataset of the original model (see

appendix A). Finally, the top layer in figure 2a ‘reads out’

the internal representation at the second hidden layer and

is trained to map it onto an overt response to carry out the

numerosity comparison task. As in the original model, task

learning is supervised (see appendix A) and it only requires

a simple form of associative learning (such as the delta

rule, which is formally equivalent to the Rescorla–Wagner

rule in classical conditioning [64]). Read-out accuracy

measured at different numerical ratios was used to estimate
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the model’s Weber fraction. Numerosity comparison was

assessed before any experience-dependent learning to inves-

tigate the initial competence of the model, and then at

several time points during unsupervised learning (every 30

epochs) to track the progressive refinement of number acuity.

As shown in figure 3a, the initial Weber fraction of the

model was approximately 0.35, and then it gradually improved

until it converged to 0.20 in the final learning stages. This

suggests that, as observed in children [13,14,65], also in the

model number acuity undergoes a progressive refinement,

reaching a final value that is comparable to that of illiterate

humans [66]. The remarkable initial performance achieved by

the model is surprising, because the connections of the second
hidden layer were random, that is, they were not yet tuned

by the sensory experience. This finding therefore suggests

that a hierarchical architecture endowed only with basic

visuospatial processing at the lowest layer can support a

non-trivial level of numerical competence.

However, it should be stressed that, even if the connection

weights of the second hidden layer were random at this initial

stage, learning the comparison task at the read-out layer

involved a consistent amount of experience as well as explicit

feedback on the response. In order to assess whether read-out

would be possible even when supervised training was sig-

nificantly reduced, we randomly selected only 25% of the

patterns (4600 images out of the 51 200 used in the original



5 versus 10 6 versus 8

in
co

ng
ru

en
t

0.5

0.6

0.7

0.8

0.9

1.0

congruent incongruent

ac
cu

ra
cy

random

mature

0

0.1

0.2

0.3

0.4

0.5

0.6

1 : 2 2 : 3 3 : 4 5 : 6 7 : 8

pe
rf

or
m

an
ce

 d
if

fe
re

nc
e

ratio

random

mature

co
ng

ru
en

t

(a) (b) (c)

Figure 4. (a) Examples of congruent and incongruent stimulus pairs correctly classified by the read-out layer of the initial (random) network. (b) Accuracy of initial
and mature networks on congruent and incongruent trials (numerical ratio is 1 : 2). (c) Cost of incongruency ( performance difference between incongruent and
congruent trials) for the initial and mature networks as a function of numerical ratio.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170043

6

model) for learning the comparison task. We note that this

reduced amount of feedback is in line with that used in

training studies with humans [67,68] and other mammals,

such as macaques [69] and dolphins [70]. As shown in

figure 3b, discrimination accuracy was still remarkably

high, especially for large numerical ratios. Crucially, this

held also for the network with random connection weights

in the second hidden layer. Read-out performance was

higher—and approached human performance [67]—after

unsupervised learning.

In another set of simulations, we pushed this method to

the limit and only selected 1% of the patterns to train the

read-out layer, for a total of 184 image pairs. This massively

reduced amount of feedback is compatible with that provided

in studies involving lower vertebrates (e.g. [71]), which for

practical reasons are usually trained using a limited number

of trials [72]. As shown in figure 3c, read-out from the initial

network under this extremely limited feedback regimen still

succeeded, especially for the easier ratios. This finding corro-

borates the hypothesis that even randomly connected deep

networks endowed with simple visuospatial processing

mechanisms can support numerosity comparison.

(b) Influence of continuous visual cues on numerosity
perception

The remarkable performance of the model, especially before

visual experience, raises the recurring question of whether

numerosity comparison might in fact be carried out using

low-level continuous visual properties as a proxy for discrete

numerosity [73–77]. Indeed, even if test stimuli are carefully

designed to control for continuous variables, simultaneously

controlling all of them is not possible [78].

To assess the influence of continuous visual cues in the

model, we created a set of image pairs in which cumulative

area, contour length and individual item size were congruent

with numerosity, whereas another set contained image pairs

where all these properties were incongruent with numerosity.

The model was then tested on these sets, at both the initial

and mature stages. Notably, the initial (random) network

was often successful even on incongruent trials (examples

of correctly classified incongruent trials are shown in

figure 4a). Nevertheless, congruency had a much stronger

impact on the initial network. In particular, as shown in

figure 4b for the specific ratio of 1 : 2, the mean accuracy of
the initial network on congruent trials was much higher

(99%) compared with that measured on incongruent trials

(65%), whereas accuracy of the mature network was close

to ceiling in both cases (97 and 96%, respectively). Moreover,

for the initial network, the cost of incongruency on performance

increased as a function of numerical ratio (figure 4c).

The developmental trajectory of the sensitivity to incon-

gruent visual cues is an important issue for future work,

both empirical and computational. However, the high cost

of incongruency observed in the initial network is aligned

with the finding that both typically developing children

[79] and developmental dyscalculics [80] are less accurate

on incongruent trials in numerosity comparison. Note that

the greater resilience of the mature network to this type of

manipulation is not related to the comparison task per se
(i.e. training of the read-out layer was identical), but it

stems from the emergence of more robust representations of

numerical information (i.e. invariant to physical appearance)

following unsupervised learning on visual sets.
(c) Emergence of number coding
We replicated the regression analysis performed by

Stoianov & Zorzi [24] to investigate whether there were

neurons at the second hidden layer of the network (see

figure 2a) specifically tuned to numerosity information,

rather than to cumulative area (see appendix A). In particu-

lar, the response profile of numerosity-sensitive neurons

(‘numerosity detectors’ in [24]) should be invariant to cumu-

lative surface area: this is indexed by a large absolute value

for the numerosity regression coefficient and a small value

for the cumulative area coefficient. As shown in figure 5a,

numerosity-sensitive neurons were found even in the initial

network (n ¼ 23), although their number significantly

increased following learning (n ¼ 62). These response profiles

can be considered as a form of summation coding [42,44]: a

positive value of the coefficient indicates that activation

increases monotonically as a function of numerosity, while

a negative slope indicates that it monotonically decreases.

As can be noted in figure 5a, the response strength of numer-

osity-sensitive neurons (indexed by the regression coefficient)

increased as a result of unsupervised learning. Moreover, the

bottom panel of figure 5a shows that the impact of learning

was mostly related to the percentage of neurons negatively

tuned to number (almost a threefold increase).
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One limitation of the regression analysis, however, is that

it can only detect monotonic response profiles. Many empiri-

cal studies have shown that the neuronal code for number in

the primate cortex also relies on neurons selectively tuned to

specific numerosities (for review, see [12]). Numerosity-
selective neurons respond most strongly to one preferred

number, but they also respond to a lesser extent to adjacent

numbers, thus exhibiting a bell-shaped, nonlinear response

function. These neurons have been observed in numerically

naive monkeys [81], suggesting that this more sophisticated

form of encoding might spontaneously emerge early during

development. This way of coding numerical information

also seems to have evolved independently in vertebrate

brains with very different anatomies [82], thereby supporting

the hypothesis of convergent evolution. We adopted the pro-

cedure used by Viswanathan & Nieder [81] to assess whether

numerosity-selective neurons can also be found in our model.

A two-factor analysis of variance (ANOVA) was used to

select neurons whose activation was modulated by numeros-

ity information but not by cumulative area (see appendix A).

Individual tuning curves of the neurons with the same pre-

ferred numerosity were then pooled to compute average

response profiles. Interestingly, numerosity-selective neurons

were found both in the initial (n ¼ 108) and in the trained

(n ¼ 135) networks, with average response profiles (first
two columns in figure 5b) strikingly similar to those observed

in the ventral intraparietal (VIP) area of the monkey brain

(last column in figure 5b). The distribution of neurons

across the range of numerosities closely mirrored the empirical

data [81], especially for the mature network.

Though summation coding and numerosity-selective

coding might characterize distinct neuronal populations, as

assumed in popular computational models (e.g. [41,42]),

one potential caveat is that the response profiles of numeros-

ity-selective neurons at both extremes of the tested range are

in fact monotonic, and might thus be considered as a form of

summation coding. Moreover, computer simulations have

shown that a pool of summation coding neurons can exhibit

numerosity-selectivity at the population level [83]; a more

precise characterization of individual tuning functions is the

focus of ongoing research [84]. The present findings suggest

that even basic visuospatial filtering combined with a

random projection is sufficient for exhibiting numerosity-

selectivity. Nevertheless, number coding in the model was

significantly refined by visual experience, as suggested by

the increasing response strength of numerosity-sensitive

neurons and by the reduced impact of continuous visual

cues (as shown in section 3b). Unsupervised learning there-

fore appears to fine-tune the response profiles both at the

single neuron and at the population levels.
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4. Conclusion and future directions
During the last decades, an impressive amount of empirical

research has shown that non-verbal numerical abilities are wide-

spread within the animal kingdom. These findings have been

usually interpreted as evidence for evolved, biologically deter-

mined numerical capacities across unrelated species, thereby

supporting a ‘nativist’ stance on the origin of number sense. In

this article, we have framed the problem of the origin of

number sense within an ‘emergentist’ perspective [25], whereby

the neural processing systems that implement perception and

cognition might be shaped by a variety of constraints, which

include evolutionary, architectural and learning biases.

We have shown that, although numerical abilities can be

supported by domain-specific representations emerging from

evolutionary pressure (as in the simulations with the artificial

ecosystem), numerical representations need not be genetically

pre-determined as such. Indeed, they can also emerge from

the interplay between innate constraints (e.g. simple visuos-

patial processing embedded into a hierarchical architecture)

and domain-general learning mechanisms (e.g. unsupervised

learning of an internal model of the environment). Our com-

puter simulations demonstrated that multi-layer (deep)

neural networks endowed with only basic high-frequency

spatial filters exhibit a remarkable performance in numeros-

ity discrimination. Moreover, following exposure to sets of

visual objects, the network gradually refined its internal rep-

resentation of numerosity, thereby improving discrimination

performance up to the level of adult human observers. Thus,

our simulations are the proof-of-concept that a form of innat-

ism based on architectural and learning biases is a viable

approach to understanding the origin and development of

number sense across species.

It should be noted that one possible issue with connec-

tionist models is that several modelling choices, such as the

format of the input and output representations [85] or the

particular choice of learning algorithm [86], may have a cru-

cial impact on the model’s behaviour. One strength of the

simulations presented in this article is that we made virtually

no assumptions about the input/output representation

format (e.g. the visual stimuli were real images, encoded at

the pixel level) and the learning algorithm (e.g. internal rep-

resentations in the model emerged from probabilistic,

generative learning on the sensory signals, in line with

modern theories of cortical learning [87–89]). Notably, a

visual number sense emerges even when the deep network

is exposed to a more ecological set of images, that is, when

the size and the displacement of the items is obtained by seg-

menting objects in natural scenes (WY Zou, A Testolin, JL

McClelland 2017, submitted). However, it is still to be

shown whether a further refinement of numerical represen-

tations could be boosted by ‘recycling’ [90] generic visual

features learned from natural images, as recently shown in

the domain of visual letter recognition [91].

Key issues remain to be addressed in future research. For

example, it should be stressed that our behavioural task was

implemented by training a supervised read-out layer on the

internal representations developed by the deep network.

Though this is compatible with common experimental pro-

cedures, where explicit feedback is provided to the subjects

[67–70,72], many studies carried out with newborns and infants

are instead based on habituation paradigms [15–17]. There have

been concrete proposals about how to simulate habituation
tasks using artificial neural networks [92,93], but they have

not yet been exploited in the field of numerical cognition.

A promising research direction would also be to more

carefully investigate how the basic visuospatial filtering

implemented in the first hidden layer of our model relates

to spatial acuity in newborns. In our simulations, this early

processing stage was fixed for simplicity, but it would be

more realistic if spatial acuity also could change during devel-

opment [57]. Although in principle the refinement of early

processing stages should still be supported by unsupervised

learning (i.e. it should happen independently from explicit

numerical training), simulating the joint development of all

hidden layers of a deep neural network is challenging

because it requires a progressive learning algorithm (WY

Zou, A Testolin, JL McClelland 2017, submitted).

Another interesting question relates to the computational

properties of random matrices. How is it possible that random

projections, such as those implemented at the deepest layer of

our ‘initial’ network, create internal states that can be meaning-

fully read out by a supervised classifier? Although the

advantages of transforming input data using random mappings

have been explored in several machine learning algorithms

[94,95], a parallel with neurocognitive models has not yet been

clearly established. A mathematical motivation for the surpris-

ing effectiveness of random projections is based on the

Johnson–Lindenstrauss theorem, which suggests that good rep-

resentations forclassification and discrimination of visual objects

can indeed be obtained by dot products of the image with

random templates, because the latter provide a quasi-isometric

embedding of images [96]. However, understanding how this

theory extends to the case of visual numerosity, which implies

a different type of variability in the sensory input with respect

to the case of object recognition, is still an uncharted territory.

Finally, one of the most pressing questions to be addressed

in future research is whether the generic processing and learn-

ing constraints incorporated in our model would suffice even

for developing more sophisticated types of numerical abilities,

such as those underlying symbolic quantification and arith-

metic, which likely require cultural mediation [97] and whose

acquisition profoundly reshapes our brain [98]. Mathematical

thinking is a hallmark of human intelligence and one of the

most impressive achievements of human cultural evolution,

as well as a major target of educational efforts; a deeper under-

standing of its neurocomputational foundations is therefore

the key to the possibility of formally assessing the impact of

different learning strategies both for normal children and in

remedial treatment of mathematical learning disorders.
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Appendix A
(a) Visual stimuli
Images containing a variable number of items were created

using the same procedure as described by Stoianov & Zorzi

http://ccnl.psy.unipd.it/research/deeplearning
http://ccnl.psy.unipd.it/research/deeplearning
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[24]. In particular, a certain number of white rectangles

(ranging uniformly between 1 and 32) were randomly

placed on a black display of size 30 � 30 pixels. Cumulative

area of the items uniformly varied among eight levels (32,

64, 96, 128, 160, 192, 224, 256). Overall, 200 different images

were created for each combination of number/cumulative

area, for a total of 51 200 patterns.

(b) Training and testing procedures
On- and off-centre detectors in the first hidden layer had

approximately the same receptive field size (mean diameter

6.3 pixels, standard deviation 0.5). Unsupervised learning

in the second hidden layer was implemented by training a

restricted Boltzmann machine (RBM) on the hidden unit acti-

vations of the first processing layer using the contrastive

divergence algorithm [99]. The RBM had 74 visible neurons

(corresponding to all on- and off-centre detectors) and 400

hidden neurons. Connection weights were randomly initia-

lized according to a Gaussian distribution with mean 0 and

standard deviation of 0.01. Learning was performed on

graphic processing units [100] for a total of 180 epochs,

using a learning rate of 0.1, a momentum coefficient of 0.9

and a weight decay factor of 0.0004. The supervised read-

out layer was trained using an efficient implementation of

linear associative learning (‘pseudoinverse method’ [101]).

In the simulation of the developmental trajectory of number

acuity (figure 3a), the read-out layer received the pattern of

activation of neurons in the second hidden layer (elicited by

a given image) and was trained to assess the numerosity

against a reference value of 12. Input numerosities varied

between 4, 6, 8, 9, 16, 18, 24 and 32. Comparison accuracy

at different numerical ratios was used to estimate the

model’s Weber fraction (as in [24]). In all subsequent simu-

lations, the read-out layer simultaneously received the

pattern of activity elicited by two different input images

and was trained to assess which of the two contained the

larger numerosity (as in [54]). This constitutes a more realistic

approximation of the experimental procedure adopted in

empirical studies, where the comparison typically involves
two visual sets rather than a fixed internal standard, and it

is appropriate for assessing the influence of continuous

visual properties (see section 3b). Input numerosities were

selected with the aim of creating five different levels of

numerical ratio: 1 : 2 (5 versus 10; 6 versus 12; 7 versus 14);

2 : 3 (6 versus 9; 8 versus 12; 10 versus 15); 3 : 4 (6 versus 8;

9 versus 12; 12 versus 16); 5 : 6 (5 versus 6; 10 versus 12)

and 7 : 8 (7 versus 8; 14 versus 16). Response variability

was obtained by replicating 10 times the supervised training

of the read-out layer.

(c) Number coding
The regression analysis was carried out using the method

described for the original model [24]. A linear regression

was performed on the activation profile of each hidden

neuron in the second hidden layer, using numerosity and

cumulative surface area as predictors. Numerosity varied

between 1 and 32, while cumulative area varied across five

levels (96, 128, 160, 192, 224 pixels). All variables were nor-

malized between 0 and 1 and both predictors were

logarithmically transformed. The criterion for a neuron to

be classified as a numerosity detector was that the regression

explained at least 10% of the variance and the regression coef-

ficient of the cumulative area had an absolute value smaller

than 0.1 (see [24, electronic supplementary material]).

Numerosity-selective neurons in the second hidden layer

were found using the method described in [81]. A two-way

ANOVA with numerosity and cumulative surface area as fac-

tors was performed for each neuron to identify those with

activity significantly modulated only by numerosity

(threshold criterion: p , 0.01; other main effects and inter-

actions not significant; see [81]). Numerosity varied

between 1 and 5, while cumulative area varied across five

levels (96, 128, 160, 192, 224 pixels). All individual response

profiles were normalized between 0 and 1. The average

response profiles for numerosity-selective neurons were com-

puted by first grouping the neurons according to their

preferred numerosity (indexed by the maximum activation

value) and then averaging the individual tuning curves.
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