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Enhancers and promoters commonly occur in accessible chromatin characterized by depleted nucleosome contact; howev-

er, it is unclear how chromatin accessibility is governed. We show that log-additive cis-acting DNA sequence features can

predict chromatin accessibility at high spatial resolution.We develop a new type of high-dimensional machine learningmod-

el, the Synergistic Chromatin Model (SCM), which when trained with DNase-seq data for a cell type is capable of predicting

expected read counts of genome-wide chromatin accessibility at every base from DNA sequence alone, with the highest

accuracy at hypersensitive sites shared across cell types. We confirm that a SCM accurately predicts chromatin accessibility

for thousands of synthetic DNA sequences using a novel CRISPR-based method of highly efficient site-specific DNA library

integration. SCMs are directly interpretable and reveal that a logic based on local, nonspecific synergistic effects, largely

among pioneer TFs, is sufficient to predict a large fraction of cellular chromatin accessibility in a wide variety of cell types.

[Supplemental material is available for this article.]

Genomic DNA comprises multiple overlapping codes that contain
information specifying cellular function. Although the “genetic
code” that governs how DNA encodes protein sequence through
triplet codons was cracked more than 40 years ago, the codes gov-
erning how genes are regulated remain largely unsolved.

Chromatin accessibility, which we define to be a measure of
the relative depletion of local nucleosome contact with genomic
DNA (see Supplemental Information for in-depth definition), is a
critical component of transcription factor (TF) binding, gene regu-
lation, and cellular identity (Weintraub and Groudine 1976; Wu
1980; Soufi et al. 2012; Sherwood et al. 2014). Several measure-
ment techniques reveal a common set of regions with accessible
chromatin (Giresi et al. 2007; Boyle et al. 2008; Gaulton et al.
2010; Song et al. 2011; Buenrostro et al. 2013), and in this work,
we primarily measure chromatin accessibility genome-wide using
DNase-seq (Boyle et al. 2008), amethod for identifyingDNase I hy-
persensitive sites (DHS) (Weintraub and Groudine 1976; Wu
1980). DNase I hypersensitivity is a common feature of most
gene regulatory elements, including enhancers and promoters
(Thurman et al. 2012), and thus systematic understanding of
what governs chromatin accessibility would be an enormous ad-
vance in understanding the genomic regulatory code.

Yet, is there a DNA logic underlying chromatin accessibility?
There is evidence that the accessibility of specific genomic regions
is governed by binding of “pioneer” TFs, which are capable of
binding to inaccessible, nucleosome-bound DNA and inducing
accessibility (Gualdi et al. 1996; Zaret and Carroll 2011; Soufi
et al. 2012). However, pioneer TFs do not bind to every instance
of their bindingmotif in the genome asmight be expected by their

imperviousness to prior chromatin state (Sherwood et al. 2014),
and thus there must be additional components determining
whether a pioneer TF will induce accessibility at a genomic motif
instance. Additionally, a causal role for pioneer TF binding in de-
termining accessibility has thus far only been confirmed at a small
number of genomic loci, and so it is unknown whether pioneer
TF binding is sufficient to explain the chromatin accessibility of
all genomic loci.

These observations suggest that chromatin accessibility is reg-
ulated by interactions among chromatin-regulating DNA sequenc-
es that are more complex than the absence or presence of a single
bound pioneer factor. We consider a specific type of interaction
between such regulatory sequences in which every short DNA se-
quence (k-mer) is given a fixed, spatial effect that multiplicatively
combine to form overall chromatin accessibility. This stands in
contrast to the single-factor hypothesis in which overall chroma-
tin accessibility is formed by the existence of a single pioneer
factor.

We reasoned that if a DNA logic for chromatin accessibility
exists, then we could discover a general model that predicts chro-
matin accessibility directly from DNA sequence. Although prior
work has focused upon prediction of regulatory sequences using
bags of k-mers (Lee et al. 2011; Ghandi et al. 2014) or identification
of motifs enriched in regulatory regions (Stergachis et al. 2013),
our goal is to construct a generative model of the DNase-seq assay
directly linking DNA sequence to DNase-seq read count. Such a
model should predict the expected number of reads observed at
any base in a DNase-seq assay and the locations of all accessible
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chromatin regions in the genome, including promoters and en-
hancers. If the computational model is sufficiently accurate at pre-
dicting sequence-dependent chromatin accessibility on novel
sequences, we can expect this framework to yield testable hypoth-
eses of how pioneers and other regulatory mechanisms control
chromatin accessibility. Tominimize bias from incomplete biolog-
ical understanding,we utilized a computational framework that ig-
nores any preconceptions of what factors or motifs might be
involved in this regulatory process and that makes predictions ge-
nome-wide rather than over some curated functional subset.

The guiding philosophy behind SCM is that the entire ge-
nome is one continuous regulatory sequence in which are imbed-
ded “code words” that induce invariant spatial effects on proximal
chromatin accessibility wherever they occur and that interact with
each other in a predictable way. Based on evidence from our previ-
ouswork (Sherwood et al. 2014), weutilized the following small set
of biological assumptions to build the SCM: (1) The building
blocks of chromatin accessibility are short stretches of DNA (k-
mers) 8 bp or smaller; (2) k-mers have exclusively local effects on
chromatin accessibility within ±1 kb of their occurrence; (3) a
small number of k-mers play a role in determining chromatin ac-
cessibility; (4) a particular k-mer always produces the same effect
on chromatin accessibility wherever it occurs in the genome;
and (5) k-mer effects on chromatin accessibility nonspecifically
synergize such that the chromatin accessibility at any DNA base
is the multiplicative product of the effects of all nearby chromatin
accessibility-affecting k-mers. This extends a line of work in tran-
scriptional regulation in which a similar multiplicative model is
used with a logistic link function to model the effect of transcrip-
tion factors on gene expression (Veitia 2003; He et al. 2010). We
define a synergistic model of chromatin accessibility as a model
in which sequence effects are log-linear in the observed chromatin
accessibility data. The rationale behind these assumptions is dis-
cussed in more detail in the Supplemental Information. It is nota-
ble that these simple assumptions do not allow for far-reaching
spreading of chromatin accessibility state or effects of specific
protein–protein interactions on chromatin accessibility unless
such interactions occur at short, fixed distances from each other
(Supplemental Fig. 1).

Our SCM approach to identifying regulatory sequences is dis-
tinct from traditional motif-finding and represents a conceptual
advance in the identification of functional sequences. In tradition-
al motif-finding and discriminative motif-finding approaches
(Bailey 2011; Huggins et al. 2011; Lee et al. 2011; Ghandi et al.
2014), the practitionersmust predetermine a class of interesting re-
gions such as accessible chromatin regions, footprints, peaks, or
enhancers, making arbitrary in versus out cutoffs in what is often
continuous data. Our work removes the step of defining an “inter-
esting region” and instead identifies any sequence that induces
changes in the observed data. This distinction gives our approach
two major advantages. First, SCM automatically yields informa-
tion on the role (or lack thereof) of every DNA sequence, whereas
traditional motif-finding approaches only return sequences that
correlate with the desired function. This allows us to gauge the ge-
nome-wide accuracy of our method through comparing model
output to actual data at high spatial resolution, as opposed to tra-
ditional methods whose accuracy can only be gauged after group-
ing data into classes. We believe that a method aimed at genomic
prediction should be able to predict the status of every region
in the genome without preconceptions, and SCM is the first
approach capable of doing so. Second, our automated approach
yields spatial information about how each DNA sequence contrib-

utes to local chromatin accessibility, which immediately suggests
the function of sequences.

Results

We train a SCM model on DNase-seq data from a particular cell
type and its underlying DNA sequence so the model can generate
cellular state-specific predictions of the chromatin accessibility of
any DNA sequence. DNase-seq data from a subset of the chromo-
somes are used to train the model, and we test the model on
DNase-seq data from the held-out chromosomes. The SCMmodel
automatically learnswhich “codewords” in the genomehave local
cis-regulatory effects on chromatin accessibility. Each code word is
a k-mer between 1 and 8 bases long and is associated with a profile
of how it is predicted to effect chromatin accessibility at every base
position ±1 kb at each site where it occurs (Fig. 1A). Because the
model computes the synergistic effect of thousands of overlapping
k-mers at any given site, the pattern of predicted chromatin acces-
sibility at a given site is not always the straightforward effect of the
strongest k-mers in the vicinity (Fig. 1A). Once the SCM has dis-
covered the chromatin accessibility code words and their spatial
patterns from cell-type–specific training data, it can output pre-
dicted chromatin accessibility patterns for any DNA sequence, be
it genomic DNA or novel DNA sequence. Since our model is
trained on a particular cell type, we will denote an instance of
the model that has been trained on data from a specific cell type
as “SCM (cell type),” such as SCM (K562). To further validate
the model, we computed novel sequences with varying degrees
of predicted accessibility, synthesized these sequences, and ob-
served their DNase-seq accessibility in vivo in a matched cell
type. Thus, the model is capable of predicting chromatin accessi-
bility of variants of the original genome. In addition, it is interpret-
able, allowing us to learn and explore the precise sequences that
direct chromatin accessibility.

Learning the chromatin accessibility profile induced by each
k-mer from hundreds of millions of examples is a challenging ma-
chine learning task. Previous approaches to learning regulatory se-
quences have restricted the genomic regions to a curated set (Lee
et al. 2011; Ghandi et al. 2014). However, by carefully constructing
our model to be tractable, we are able to avoid the use of any heu-
ristic pruning or parameter selection and use a stochastic gradient
descent algorithm (Duchi et al. 2011) to optimize the profile of ev-
ery possible k-mer to predict the expected number of DNase-seq
reads at every base of the genome. This optimization exercise is it-
erated under the influence of a penalty (L1 regularization) (Duchi
et al. 2011) that acts to limit the number of k-mer profiles and the
strength of each profile to avoid overfitting. SCM iteration contin-
ues under the L1 penalty until the model converges on the most
accurate reproduction of the training data, and then SCM predic-
tions ofDNase-seq data are generated for held-out genomic regions
to test for accuracy compared with previously unseen experi-
mental data (Fig. 1A; see Supplemental Information for details
about SCM implementation). A SCMhasmore than 40million pa-
rameters, and thus several technical innovations and a parallel
cloud-based implementation are required to yield practical run
times (Supplemental Information). Since SCM models are convex
(Supplemental Information), our gradient descent optimizer is
guaranteed to find a unique solution that is insensitive to param-
eter initialization.

As a first step to test the accuracy of a SCM at predicting geno-
mic chromatin accessibility, we trained a SCM (K562) on DNase-
seq data from Chromosomes 1–13 of human K562 cells. We
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then predicted DNase-seq data on a held-out chromosome
(Chromosome 14). The SCM (K562) predictions are remarkably
similar to actual DNase-seq reads (Fig. 1A,B; Supplemental Fig.
3), producing a chromosome-wide Pearson’s correlation value of
0.801 between predicted and actual reads on Chromosome 14,
with a range of [0.800,0.814] over Chromosomes 15–22 (Fig. 1C;
Supplemental Table 1). We measured correlation after smoothing
predicted and actual reads over 2000-bp windows, chosen to
match the SCM window size, since actual reads are insufficiently
sampled to produce accurate correlation measurements. The cor-
relations are robust to this window choice, with Pearson’s cor-
relations of 0.738 and 0.784 for windows of 200 and 1000 bp,
respectively. Despite some variation at any individual loci, the
SCM model captures the overall structure of DNase I accessibility
over the held-out chromosome. DNase-seq is known to have an
underlying sequence preference, resulting in the possibility that
a SCM model would learn the inherent sequence bias of the
DNase I enzyme rather than the relationship between DNA se-

quence and accessibility (He et al. 2013; Lazarovici et al. 2013).
In order to account for this confounder, we validate our model
on DNase I hypersensitive sites (Fig. 1D, details below) as well as
compare against a SCM trained on DNase-seq of purified DNA
stripped of proteins (Lazarovici et al. 2013), which is far less accu-
rate at predicting held-out chromatin accessibility with Pearson’s
correlation of 0.469 (Fig. 1B,C; Supplemental Table 1), showing
that the SCM is not merely reading out DNase I or sequencing
bias. Additionally, we tested a control model that eliminates k-
mer synergism by reducing the k-mer profile size to 1 bp, resulting
in each k-mer having a point effect that is then averaged over 100
bp of surrounding genomic space. This model has a Pearson’s cor-
relation of 0.409 against held-out data (Supplemental Table 1),
showing the importance of the spatial profile and of k-mer syner-
gism in predicting chromatin accessibility. The importance of spa-
tial profile and k-mer synergism are exemplified in Figure 1A,
which shows that the full SCM (top panel) predicts DNase-seq
data much more accurately than the locations of k-mers with the

Figure 1. Multiplicative effects of local k-mers accurately predict chromatin accessibility. (A) A SCM uses DNase-seq data on training chromosomes and
iterativemachine learningmethods to compute spatial profiles for each k-mer, optimizing amodel in which nearby k-mer effectsmultiply to predict DNase-
seq reads for held-out chromosomes. In this example representing a genomic region containing an NRF1 binding site, the top panel shows single base
resolution predicted (black) and 5-bp smoothed observed DNase-seq data (red) across a 600-bp window. Themiddle panel shows the SCM-predicted spa-
tial contribution of the top 10 k-mers in log-units and matchedmotifs in the legends; the teal peak corresponds to the NRF1 binding footprint. The bottom
panel shows a measure of importance of each base by the k-mer starting at that position summed over the entire spatial range of k-mer influence with
colored tick marks for the top 10 k-mers. Note that SCMs multiply effects of thousands of overlapping k-mers at each site, so the top k-mers do not
lead to the SCM predictions in a straightforward manner. (B) Example human K562 held-out genomic region showing DNase-seq reads (red), SCM-pre-
dicted reads (black), and reads from a controlmodel trained on IMR-90 nakedDNADNase-seq data (green) (Lazarovici et al. 2013), all smoothed at 200 bp.
(C ) Comparison of SCM-predicted (x-axis) and observed (y-axis) DNase-seq reads in 2-kb binned regions of K562 held-out Chromosome 14. Models were
trained on K562 DNase-seq data (black) or IMR-90 nakedDNADNase-seq (red). (D) Receiver–operator curve (ROC) showing SCMpredictive accuracy after
binary calling of DHS in observed and predicted K562 held-out DNase-seq data. The evaluation set was balanced to 5000 positive and negative samples
(uniformly taken from positive and negative sets) to avoid AUC inflation due to class imbalance.
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strongest effect on chromatin accessibility (bottom panel) and the
individual spatial profiles of such k-mers (middle panel). Figure 1,
A and B, shows that although the SCM’s accuracy decreases with
smaller window sizes, it still produces quantitatively accurate pre-
dictions of DNase-seq reads (Pearsons’s correlation of 0.738 at 200-
bp resolution).

Although SCM differs from existing methods aimed at binary
classification of hypersensitive and nonhypersensitive chromatin,
we asked how SCM performance compares to four sequence-based
classifiers that use either k-mer based models (gkm-svm, SeqGL)
or deep learning based models (deepSEA, Basset) (Ghandi et al.
2014; Setty and Leslie 2015; Zhou and Troyanskaya 2015; Kelley
et al. 2016). Although SCM is designed for quantitation andnot bi-
nary prediction, SCM performs as well as the four state-of-the-art
binary predictive methods on black-box binary prediction of func-
tional genomic regions (Supplemental Fig. 2). We also find that
SCM substantially outperforms these classificationmethods on re-
gression tasks (Supplemental Fig. 2), which compare smoothed
Pearson and Spearman correlations of predicted and observed
read counts, which is expected, because these other methods are
not designed for this purpose. Thus, SCM is comparable to or bet-
ter than existing methods at binary classification but additionally
provides a qualitatively different output of spatial read distribution
prediction.

We evaluated the performance of a nonsynergistic model to
test our hypothesis that sequence features operate synergistically
to direct chromatin accessibility. We trained a nonsynergistic, ad-
ditive model by allowing sequence effects to combine additively
(implementation details are in Supplemental Material). The addi-
tive model has a chromosome-wide Pearson’s correlation value
of 0.74 compared to the SCM’s value of 0.82, despite that both
models have the same parameter size, complexity, and training
procedure (Supplemental Fig. 4).

To confirm that SCM (K562) accurately predicts true chroma-
tin accessibility, we calculated the overlap between K562 DHS
(Thurman et al. 2012) and thresholded SCM-predicted peaks on
Chromosome 14, finding that SCM accurately predicts 72.4% of
DHS at a 1% false-discovery rate (area under ROC curve [AUC] =
0.979; PPV 0.479; TPR 0.340, under a rebalanced data set) (Fig.
1D). Among these DHS, SCM (K562) is accurate over many types
of genomic regions, such as predicted enhancers, promoters, and
other active chromatin types (Supplemental Fig. 5; Ernst and
Kellis 2012), indicating that the SCM accurately predicts sites rep-
resenting a variety of classes of predicted functional chromatin
accessibility.

We next askedwhether a SCM can accurately predict chroma-
tin accessibility in additional cell types when trained on data from
those cell types. We trained SCMs on DNase-seq data from 11 hu-
man data sets and three mouse data sets representing a wide range
of developmental origins and including both cell lines and in vivo
tissues. We found uniformly high correlation between SCM pre-
dictions and DNase-seq data across human and mouse cell types
(Fig. 2A; Supplemental Table 1).

As an additional test that SCMs predict true chromatin acces-
sibility and not DNase I bias, we analyzed data from ATAC-seq, a
technique that uses transposition to map sites of chromatin acces-
sibility (Buenrostro et al. 2013). We find that the Pearson’s correla-
tion between the raw reads derived from the twomethods is 0.584
(Supplemental Fig. 6), indicating only a partial overlap in the
chromatin accessibility signal calculated by these methods. A
SCM trained on ATAC-seq data and tested on held-out ATAC-seq
data achieves a genome-wide Pearson’s correlation of 0.610

(Supplemental Fig. 7) and achieves decent predictive accuracy of
thresholded peaks (AUC 0.953; PPV 0.384; TPR 0.385), revealing
that a SCM is able to predict ATAC-seq data, although less accurate-
ly than it predicts DNase-seq data.We speculate that this decreased
accuracy could be the result of lower ATAC-seq read counts, which
could negatively impact SCMperformance.We then asked wheth-
er a SCM trained on DNase-seq data could predict held-out ATAC-
seq data. Because of the substantial differences in the raw signal,
we focused on comparing the accuracy of a DNase I–trained SCM
(K562) at predicting the locations of thresholded ATAC-seq peaks.
The DNase I–trained SCM (K562) achieves an AUC of 0.922 in pre-
dicting thresholded ATAC-seq peaks (PPV 0.351; TPR 0.215) (Fig.
2B,C), indicating that the SCM is able to predict sites of accessibil-
ity identified by distinct techniques.

One feature that distinguishes SCMs from discriminative
motif-finding algorithms is that SCMs generate predictions of
DNase-seq data at base pair resolution. Since bound TFs are
known to leave DNase I footprints when bound (Wu 1980;
Hesselberth et al. 2009), we asked whether the SCM recapitulates
DNase I footprints at known locations. We compared the SCM
(mESC) DNase-seq predictions and actual DNase-seq data sur-
rounding NRF1 binding sites in human GM12878 cells as deter-
mined by NRF1 ChIP-seq (The ENCODE Project Consortium
2012), finding evidence of footprints in both the predicted and
actual DNase-seq data (Fig. 2D,E). Thus, SCMs are capable of gen-
erating high spatial resolution predictions of DNase-seq data, in-
cluding TF footprints.

We then compared the k-mers with the strongest effects on
chromatin accessibility across distinct cell types. By gauging k-
mer effect size, the total SCM-predicted effect of each k-mer on sur-
rounding chromatin accessibility, we find that the k-mers exerting
the strongest effect on chromatin accessibility are highly con-
served across human cell types such as between K562 and frontal
cortex cells (Fig. 3A). The Pearson’s correlation of all k-mer effect
sizes between K562 and other cell types is typically above 0.7
(Fig. 3A; Supplemental Fig. 7). Despite the conservation of a large
number of k-mers, we found that predicted read rates across cell
types recapitulate similarities in DNase-seq reads (Supplemental
Fig. 8), and we found a small number of cell-type–specific k-mers
corresponding to the binding sequence of actively expressed pro-
teins in a cell type (Supplemental Fig. 9).

The similarity in features among SCMs trained on distinct cell
types surprised us, because it is well-documented that cell-type–
specific chromatin accessibility (e.g., tissue-specific enhancer ac-
tivity) plays an important role in establishing cellular identity
(Thurman et al. 2012; Stergachis et al. 2013; Andersson et al.
2014). In fact, it has been reported that <1% of DHS are conserved
across all cell types (Thurman et al. 2012). Thus, we analyzed the
cell-type specificity of DHS in our data set of 11 human cell types.
To do so, we binned the raw DNase-seq data using a 100-bp
smoothing window and then called DHS above a threshold of stat-
istical significance (0.05 FDR). We then asked what percentage of
the genomic space covered by DHS in a given cell type is also cov-
ered by DHS in the other 10 human cell types used in this study.
We find that 25% of the genomic space (bases) covered by DHS
is conserved across the 11 human data sets used in our study,
and 12% is specific to that data set (Fig. 3B). These percentages
are similar when Hotspot-called DHS (John et al. 2011) are used
for these data sets (Supplemental Fig. 10). The fraction of hyper-
sensitive genomic space that is cell-type specific differs from previ-
ously published numbers (Thurman et al. 2012) because of our
differing definition of cell-type specificity. In our definition, we
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consider the fraction of a cell type’s hypersensitive genomic space
that is cell-type specific with respect to the other 10 data sets in our
study. Prior analysis (Thurman et al. 2012) tallied DHS from all
ENCODE DNase-seq data sets, calculating the cell-type specificity
of regions using this larger denominator and thus leading to a low-
er apparent fraction of shared DHS.

Reproducing this latter analysis from all 11 data sets, we find
that 7% of total DHS space is common to all cell types, whereas
42% of total DHS space is unique to only one data set (Supplemen-
tal Fig. 10). For the purposes of our work, we believe the overlap of
DHS space from the lens of one data set as compared to all others
(25% conserved in all 11 data sets, 12% cell-type specific) to be the
most relevant statistic, because we are interested in the accuracy of
SCMs on a single target cell type.

When a SCM is trained on one cell type, it can predict chro-
matin accessibility in a different cell type to the extent that the
accessibility or underlying logic behind the accessibility are
conserved between these cell types. Given the similarity among
SCMs trained on different data sets, we asked whether SCMs
were better at predicting conserved DHS than cell-type–specific
DHS. We plotted SCM accuracy at predicting DHS binned by their
conservation across the 11 human data sets. We found that SCMs
are most accurate at predicting conserved DHS (94% balanced ac-
curacy on DHS shared among all data sets) and less accurate at pre-

dicting cell-type–specific DHS (75% balanced accuracy at cell-
type–specific DHS) (Fig. 3C). We then asked whether SCMs were
better at predicting their own cell-type–specific DHS than they
were at predicting cell-type–specific DHS from distinct cell types.
We found that SCMsdid in fact predict their own cell-type–specific
DHSmore accurately than they predicted cell-type–specific DHS of
other cell types (Fig. 3C). We propose two possible (and not mutu-
ally exclusive) rationales for the poorer performance of SCMs on
cell-type–specific DHS than on conserved DHS. One possibility is
that the logic governing conserved DHS is better modeled by
SCMs, and highly specific DHSmay utilize amore conditional log-
ic. A secondpossibility is that cell-type–specific DHS are on average
weaker, more sparse, and more subject to noisy data, impeding
SCMs from learning their features. Nevertheless, the majority of
cellular chromatin accessibility appears to be predicted by a SCM.

Thus far, we have shown that SCMs performwell at quantita-
tive predictions of genome-wide DNase-seq reads. However, se-
quence duplication between training chromosomes and held-out
chromosomes or redundancy in genomic DNA induced by evolu-
tionary selection pressure could allow high predictive accuracy
with an overfitmodel thatwouldnot generalize to novel sequence.
To this end,we sought to test SCMaccuracy at the prediction of the
accessibility of a diverse library of novel sequences in a controlled
chromatin context.

Figure 2. SCMs predict chromatin accessibility at base pair resolution across cell types and data types. (A) Pearson correlation coefficients on held-out
Chromosome 14 DNase-seq data for SCMs trained on DNase-seq from 10 cell types. (B) Receiver–operator curve (ROC) showing predictive accuracy of a
SCM trained on GM12878 DNase-seq data at predicting held-out GM12878 ATAC-seq peaks. (C) Example human GM12878 held-out genomic region
showing ATAC-seq reads (black) and reads predicted from a DNase-seq trained SCM (red), both smoothed at 200 bp. (D) Example humanGM12878 held-
out genomic region showing 10-bp smoothed DNase-seq reads (black), SCM-predicted reads (red), and reads from a control model trained on IMR-90
naked DNA DNase-seq data (blue) surrounding two NRF1 binding sites (vertical black lines denote binding call). (E) Heatmap showing clear footprints
for both DNase-seq and SCM at NRF1 binding sites on Chromosome 14.
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To test SCM predictive accuracy on a wider range of DNA se-
quences, we developed Single Locus Oligonucleotide Transfer
(SLOT), a novel high-throughput platform that allows the interro-
gation of the chromatin accessibility of a library of synthetic
sequences in a controlled chromatin context. We optimized
CRISPR genome editing (Cong et al. 2013;Mali et al. 2013) tomax-
imize homologous recombination in mESCs (Supplemental Fig.
11), achieving site-specific insertion of 175-bp sequences in 20%–

50% of alleles, a substantial improvement over previously pub-
lished results (Cong et al. 2013;Mali et al. 2013; Findlay et al. 2014).

We designed a library of 12,000 175-bpDNA sequences to test
the SCM’s ability to predict chromatin accessibility of any DNA se-
quence in a controlled chromatin context. We developed a de
Bruijn graph technique to construct novel DNA sequences with
a wide range of SCM-predicted chromatin accessibility levels
(Supplemental Fig. 11). Most library sequences are highly diver-
gent from any genomic DNA sequence (Supplemental Fig. 11).
Each sequence in the library is flanked by PCR primers allowing
PCR amplificationwith tailed PCRprimers for site-specific genome
insertion and contains a unique barcode allowing unambiguous
identification by short-read next-generation sequencing (Supple-
mental Fig. 11). The 100 bp in the middle of this primer-flanked
template varies in each of the 12,000 sequences, and we designate
this 100-bp region a DNA “phrase” because it contains a small set
of sequence elements that alter the chromatin accessibility of the
otherwise identical locus of integration.

We performed SLOT to integrate our library of DNA phrases
with diverse predicted chromatin opening properties into a geno-

mic locus that resides in natively inaccessible chromatin. By per-
forming DNase hypersensitivity analysis on a pool of phrase-
integrated mESCs followed by deep sequencing of phrase barco-
des, we obtain quantitative information on the relative accessibil-
ity of each of the phrases in this defined chromatin environment
(Fig. 4A). The phrases identified in the genomic DNA of technical
replicates are highly concordant, indicating our ability to accurate-
ly quantify phrase abundance using SLOT (Supplemental Fig. 11),
and we confirmed that barcodes were matched to full phrase se-
quences through full phrase sequencing of genomically integrated
phrases (Supplemental Fig. 11). Off-target integration is rarely de-
tected and eliminated from downstream analysis by our library
preparation pipeline that includes locus-specific PCR amplifica-
tion (Supplemental Information). We use genomic positive and
negative control primers to ensure enrichment ofDNase hypersen-
sitive DNA before sequencing the pool of phrases.

Barcode sequencing of DNase I hypersensitive phrases reveals
an association between groups of phrases predicted by the SCM
to promote open chromatin and those which are overrepresented
in our assay (Fig. 4B; Supplemental Fig. 11). SCM is also weakly
predictive when predicting individual phrases as a binary classifi-
cation task without grouping of similar phrases; the degraded
performance arises from noise in the individual phrase measure-
ments (AUC = 0.60) (Supplemental Fig. 11). SLOT allows targeting
the sameDNA library to any genomic locus, and we have obtained
similar relationships between library sequence DNase I hypersen-
sitivity and SCM predictions in a second locus (Supplemental
Fig. 11). Thus, the SCM predicts the chromatin accessibility in a

Figure 3. SCMs are more accurate at predicting DNase I hypersensitive regions that are active in multiple cell types. (A) Summed k-mer effect sizes for
each k-mer in SCMs trained on K562 (x-axis) versus human frontal cortex (y-axis). (B) Histogram showing the fraction of the genomic space covered by
DNase I hypersensitive sites (DHS) in a single cell type that are hypersensitive in 10 other human cell types. (C) Histogram showing the average balanced
accuracy of SCM DHS predictions binned according to the cell-type specificity of DHS activity.
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uniform chromatin context of a set of sequences that often bear no
resemblance to genomic DNA sequences, demonstrating that the
SCMdoes not simplymemorizeDNase I hypersensitive sequences.

The ability of SCMs to accurately predict chromatin accessi-
bility in both native and high-throughput test environments
suggests that a SCM could describe a DNA-embedded logic for ac-
cessibility. Thus, we asked whether we could interpret a SCM to
reveal the underlying biological paradigms driving chromatin
accessibility. The fully trained mESC SCM (mESC) uses around
20,000 of the 87,380 initial k-mers to model chromatin accessibil-
ity, and models with fewer k-mers have decreased correlation with
held-out data (Supplemental Fig. 12). Our recentwork implicated a
class of pioneer TFs in opening chromatin and two other TF clas-
ses, settler TFs and migrant TFs, in responding to preexisting chro-
matin accessibility (Sherwood et al. 2014). To determine whether
pioneer TFs also play a role in SCM chromatin accessibility predic-
tion, we compared a set of the 200 k-mers with the strongest SCM-
predicted chromatin opening across both mESC and hESC to ran-
domly selected k-mers with no SCM-predicted chromatin opening
function, finding that the strongest SCM k-mers are highly en-
riched in similarity to known pioneer TF motifs (Fig. 5A). Thus,
SCMs are interpretable and consistent with previous research
into chromatin accessibility.

To explore the DNA sequence determinants of chromatin ac-
cessibility inmore depth,we performed clustering of the top 200 k-
mers in the SCM (hESC and mESC) and found that many of the
strongest SCM k-mers can be clustered into position weight matrix
(PWM) motifs (Fig. 5B; Supplemental Fig. 12). SCM-predicted spa-
tial DNase-seq read patterns surrounding thesemotifs reveal a pro-
file of increased surrounding hypersensitivity with a central
footprint (Fig. 5B; Supplemental Fig. 12), recapitulating the stereo-
typical behavior of TF motifs (Sherwood et al. 2014). The majority
of these PWMs show activity in SCMs trained on DNase-seq data
from two human and one mouse cell types (K562, hESC, and
mESC) (Fig. 5B; Supplemental Fig. 12), indicating the robustness

of the PWMs across data sets and species. Some motifs extend
past 8 bp, suggesting that chromatin accessibility-determining
elements can be longer than the SCM’s maximal k-mer length
and are modeled by the SCM as collections of truncated versions
(Fig. 5B; Supplemental Fig. 12). Thus, without any curation of
the task, SCMs are capable of recapitulating TF motifs with spatial
profiles, which is not possible with discriminative motif-finding
approaches.

In addition tomotifs that are highly similar to knownpioneer
TF motifs (Fig. 5B), SCM-identified motifs suggest a role for CpG
in affecting chromatin accessibility (Fig. 5B), and still other motifs
do not match known TFmotifs andmay represent novel TFmotifs
or sequenceswith as yet unknown roles in coordinating chromatin
accessibility (Fig. 5B; Supplemental Fig. 12). Notably, canonical
promoter motifs like the TATA box (Lenhard et al. 2012) are
not found, which suggests that chromatin accessibility may be
uncoupled from RNA polymerase recruitment. The lack of con-
tribution of such promoter motifs to chromatin accessibility is
consistent with recent computational analysis showing that
canonical promoter motifs are degenerate and not statistically en-
riched at promoter sites (Siebert and Söding 2014). Thus, the DNA
determinants underlying chromatin accessibility comprise only a
subset of all possible k-mers,manyofwhich are pioneer TF binding
motifs.

Our finding that SCMs predict chromatin accessibility
through modeling synergistic interactions led us to ask whether
SCMs could accurately model pioneer TF binding decisions. To
evaluate pioneer TF binding logic, we collected ChIP-seq data for
the strong pioneer TF NRF1 (Sherwood et al. 2014) in mESCs. As
expected, NRF1 binding is enriched at sites containing strong
NRF1 motifs (Fig. 5C); however, even the strongest NRF1 motifs
are only bound a small fraction of the time (Sherwood et al.
2014); thus, there is only weak correlation between NRF1 PWM
strength and NRF1 binding (Fig. 5C). We then trained a SCM to
predict NRF1 ChIP-seq reads using the same approach as for

Figure 4. SCMs predict sequence-dependent chromatin accessibility in a high-throughput SLOT screen. (A) In SLOT, a library of 12,000 175-bp DNA
sequences containing 100-bp variable phrases is PCR amplified to add a 67-bp homology arm to each end. mESCs stably expressing a guide RNA targeting
a natively heterochromatin region are co-electroporated with the DNA library, Cas9, and additional guide RNA, resulting in a population of cells in which
20%–50% of alleles at a single genomic locus have phrase incorporation. Comparison of phrase representation between genomic DNA and DNase I hy-
persensitive DNA reveals the subset of phrases encoding chromatin accessibility in this controlled genomic context. (B) Fraction of phrases, grouped by
their overall SCM-predicted chromatin accessibility (y-axis), that are DNase I hypersensitive in a SLOT assay (x-axis). The units shown are only appropriate
for trend comparison.
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DNase-seq SCMs. Predicted reads from this SCM (NRF1 ChIP) in
the 1-kb regions surrounding held-outNRF1motifs are highly con-
cordant with actual NRF1 ChIP-seq reads (Fig. 5D; Supplemental
Fig. 13), suggesting that a SCM can accurately quantitate NRF1
binding (correlation over motif matches: 0.85; whole genome:
0.638). The SCM (NRF1 ChIP) accurately predicts the majority of
held-out NRF1 ChIP locations after binary peak calling (AUC=
0.862; PPV = 0.438; TPR = 0.690) (Fig. 5E). As further validation
that the SCM (NRF1 ChIP) accurately predicts NRF1 binding
logic, we performed a SLOT screen integrating a library containing
a wide variety of native and synthetic phrases containing NRF1
motifs into a single genomic locus. The SCM (NRF1 ChIP) accu-
rately predicts which of the 12,000 phrases bind NRF1 in this con-
trolled genomic context, whereas NRF1 motif strength does not
(Supplemental Fig. 13). We posit that pioneer TF binding logic is
in fact predictable: Undetectably weak interactions between pio-
neer TFs and individual binding motifs can be reinforced through
a synergistic logic, resulting in an apparently binary set of bound

and unbound loci genome-wide, thus contributing predictably
to genomic chromatin accessibility.

Discussion

In sum, we have shown a method for predicting chromatin acces-
sibility from DNA sequence. We have developed a computational
algorithm, SCM, capable of learning a synergistic set of rules gov-
erning genome-wide chromatin accessibility. A SCM provides a
range of insights and capabilities. It provides a base pair resolu-
tion estimate of how specific genomic sequences direct chroma-
tin accessibility, and the effect profiles of these sequences are
interpretable (Fig. 5B). The local, nonspecific, synergistic logic
among short DNA sequences modeled by SCMs is capable of con-
sistently achieving over 0.8 Pearson’s correlation with DNase-seq
data across a diverse class of human and mouse cell types. This
logic predicts not only native accessibility but also accessibi-
lity of non-native sequences in a controlled chromatin context

Figure 5. Chromatin accessibility arises from synergistic interactions, largely among pioneer TFs. (A) Enrichment of the 200 k-mers with strongest mESC
SCM effect sizes in similarity to pioneer, settler, andmigrant TFmotifs. (B) Example position weightmatrix (PWM)motifs derived from clustering the 500 k-
mers with strongest mESC SCM effect size. Below the PWM aremerged spatial k-mer effect sizes for all k-mers contributing to the motif within ±1000 bp of
the k-mer in hESC (red), mESC (blue), and K562 (green), showing the common effects of k-mers in these cell types. Names above correspond to high-con-
fidence database matches with TF motifs when known, and known pioneer TFs are denoted. (C,D) NRF1 ChIP-seq reads from 1-kb regions surrounding
above-threshold NRF1 motif matches on held-out Chromosome 18 (y-axis) plotted versus NRF1 PWM strength (C, x-axis) or SCM (NRF1 ChIP)-predicted
ChIP reads in the region (D, x-axis). Pearson’s correlation coefficients are shown above each plot. (E) Receiver–operator curve (ROC) showing predictive
accuracy of a SCM trained on NRF1 ChIP-seq data at predicting held-out NRF1 ChIP-seq peaks.
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(Fig. 4B). Examination of key k-mers showed a correspondence
to known pioneermotifs, andwe demonstrated that the same syn-
ergistic logic was able to predict the binding of the pioneer TF
NRF1. SCM code and output data are available for use with any
DNase-seq data set.

The SLOT method we developed is independently valuable,
because it enables the integration of a defined library of DNA se-
quences into any target genomic locus, such that the effect of
the integrated sequence can be measured in a common genomic
sequence context. In this work, we showed that the synergistic
DNA logic uncovered by SCMs predicts which sequences are suffi-
cient to open chromatin and enable NRF1 binding when inserted
into two genomic siteswith natively inaccessible chromatin. To do
so, we paired SLOTwith DNase I hypersensitivity and ChIP assays.
The SLOT assay could additionally be paired with assays for DNA
methylation, histone modification, or gene expression to gain in-
sight into how DNA sequence encodes these functions in con-
trolled genomic contexts as well as elucidating cell-state–specific
chromatin accessibility and gene regulation when applying the
same DNA library across different cell states. In addition, SLOT
could be used to engineer specific genomic sites to have a desired
level of chromatin accessibility.

Although highly accurate, our model is unable to predict ev-
ery accessible site in the genome. These overlooked sites may not
occur frequently enough in our training data to impact learning
ofmodel likelihood,mayuse amore combinatorial logic of specific
cofactor interactions, or may involve nonlocal chromatin state
spreading. Specifically, differences in chromatin accessibility
among cell types play a large role in determining cellular identity
(Thurman et al. 2012; Stergachis et al. 2013), and some of the cod-
ing mechanisms regulating cell-type–specific chromatin accessi-
bility remain to be determined. Because chromatin accessibility
is a common feature of promoters, enhancers, and other gene reg-
ulatory elements, it remains to be seen whether the functional
differences among these subclasses of elements are encoded using
the logicwe identified orwhether theDNAencodes a distinct set of
sequences layered on top of the accessibility logic to distinguish
among regulatory element subclasses (McVicker et al. 2013).
Additionally, emerging techniques that permit live tracking of
gene regulation (Stasevich et al. 2014) will be important to shed
new light on the dynamic process by which protein–DNA interac-
tions govern chromatin accessibility. Unraveling the codes
underlying gene regulationwill aid efforts to guide stem cell differ-
entiation and reprogramming and to explain disease-associated
noncoding sequence variation.

Methods

The SCM model is a type of regularized generalized linear model
(GLM). We introduce the motivation and inference procedure
for SCM briefly. The Supplemental Material contains a more de-
tailed exposition of our framework. Our goal is to produce a predic-
tive model of sequence to a quantitative, integer-valued trait
measured per base on the genome.

The design of our algorithm is guided by the following goals:

Predictive model: Our model should predict traits that can be
held out and evaluated for goodness of fit. Thismakes the overall
problem well-defined and easy to evaluate.

Parameter independence: The model should not have any
performance-influencing parameters. All parameters that can
be set should be set as large as memory and computation time
allows.

Tractable runtime: The model should run in less than several
days for any number of experiments on the human genome.

Interpretable parameters: The output parameters should be
interpretable as the local effects of a k-mer.

Theoretical grounding: The model should provide reason-
able theoretical guarantees on model recovery and prediction
capacity.

These requirements naturally led us to construct a genome-wide
Poisson regression, in which the variables are k-mer indicators
that act log-linearly. The technical innovation in this paper is
the introduction of a tractablemethod for fitting L1 regularized lin-
ear models over the genome. Note that although a negative bino-
mial regression would have the advantage of allowing us to fit
overdispersed count data, it has the drawback that the overdisper-
sion parameter makes the overall objective function nonconvex
and makes comparisons between separate samples impossible
due to different variances. We instead used count truncation at
10 reads per base to control the effective overdispersion uniformly
over all samples.

In the paper, we used a maximum k-mer length of 8, which
was the maximum that would fit in memory in an Amazon EC2
c3.8xlarge instance. Larger k-mers tested on a larger memory ma-
chine did not perform substantially better than 8-mers.

Notation and genome representation

Throughout, we assume that the genome consists of one large
chromosomewith coordinate 0 toN. In practice, we will construct
this by concatenating chromosomeswith the telomeres acting as a
spacer. The variable K represents the maximum k-mer length con-
sidered; the model fits all k-mers from 1,…, K. The variableM rep-
resents the influence of each k-mer.

The regularization parameter η is a scalar representing our be-
lief about the sparsity of the problem.

Whenever possible, wewill use i for genomic coordinate, k for
k-mer length, and j for coordinate offset from the start of a k-mer.

The input variable c is a vector of length N representing
counts and ci represents the read-count observed at base i.

The latent variable λ is a vector of length N representing the
current estimate for c using θ.

θk is the parameter matrix of size 4k × 2M associated with the
set of all k-mers.

The variable gk is amapping from genomic coordinate i to the
k-mer starting at i. The k-mer for gk is represented as an integer that
maps to rows of θ such that the gkth row of θk is the effect of a k-mer
starting at coordinate i.

For instance, g4i is the 4-mer starting at coordinate i. If this is
ATCG, then the row ukg4i

must be the effect that ATCG exerts on its
neighbors.

The special parameter θ0 is used to set the average read rate of
the genome globally.

Model setup

The problem we solve is a regularized Poisson regression. We
would like to maximize the following:

max
u

∑
i

ci log(li) − li

( )
− h

∑
uk
∣∣ ∣∣

1.

The intermediate variables λ are defined by:

li = exp
∑

k[[1..K]

∑
j[[−M,M−1]

uk(gki+j,−j)

⎛
⎝

⎞
⎠− u0

⎡
⎣

⎤
⎦.
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Naive inference algorithm

We describe a simple method for fitting this model for expository
purposes. The actual method uses several acceleration techniques
described in the Supplemental Material. Due to the convexity of
regularized Poisson regression, these additional tricks do not chan-
ge the global optimum of the model.

1. Given current iterate θ, calculate current λ for all bases i [ [0,N]
by

li = exp
∑

k[[1..K]

∑
j[[−M,M−1]

uk(gki+j,−j)

⎛
⎝

⎞
⎠− u0

⎡
⎣

⎤
⎦.

2. Given current λ, calculate the per base gradient vector

d log(li) = erri = ci − li.

3. Propagate the errors back to the parameter θ. Let s be the integer
index corresponding to a k-mer. Then the gradient of this k-mer
s with offset j is

duks,j =
∑

{i:gki =s}
err{i+j}

and

du0 =
∑N
i=1

erri.

4. Update the current parameter with stepsize alpha:

uk = uk + aduk.

5. Update the constant offset

u0 = u0 − adu0.

6. Apply the proximal operator for L1 regularization

uk{s,j} =
uk{s,j} − ah if uk{s,j}

∣∣∣ ∣∣∣ . ah

0 otherwise

{
.

This algorithm is prohibitively slow, with an iteration run-
time ofO(NMK + 4KM). In practice, contribution fromNMK dwarfs
that of 4KM since the gradient computation is cache incoherent
and N≈ 3 × 109, which is much greater than 4KM≈ 6 × 104. Accel-
erated methods for inference using this model are described in
Supplemental Material.

There are two free parameters (α and η). The value for η is set
via grid-search over values of η using held-out sets startingwith the
maximal feasible η. This maximum is calculated analytically as the
maximal η for which all k-mers are nonzero.Wediscuss setting α in
Supplemental Material.

Cell culture

Mouse embryonic stem cell culture was performed according
to previously published protocols (Sherwood et al. 2014). Un-
differentiated 129P2/OlaHsd mouse ES cells were maintained on
gelatin-coated plates feeder-free in mES media composed of
Knockout DMEM (Life Technologies) supplemented with 15% de-
fined fetal bovine serum (FBS) (HyClone), 0.1 mM nonessential
amino acids (Life Technologies), Glutamax (Life Technologies),
0.55 mM 2-mercaptoethanol (Sigma), 1X ESGRO LIF (Millipore),
5 nMGSK-3 inhibitor XV, and 500nMUO126. Cells were regularly
tested for mycoplasma. Genetic manipulations to stem cell lines
are described below.

DNase-seq

DNase-seq was performed as described previously (Sherwood et al.
2014). Between 10 million and 100 million cells were digested
with 60–100 units of DNase I (Promega) per 107 nuclei. Using E-
Gel SizeSelect Agarose 2% gels (Life Technologies), 50–125 bp hy-
persensitive DNA was collected. Library preparation and Illumina
HiSeq were performed by the MIT BioMicroCenter.

ChIP-seq

ChIP was performed according to the “Mammalian ChIP-on-
chip” protocol (Agilent) using a polyclonal antibody against
NRF1 antibody (ab34682, Abcam) and Protein G Dynabeads (Life
Technologies). Between 10 million and 100 million cells were
used for each experiment. qPCR using positive and negative con-
trol primers was performed to ensure ChIP enrichment. Library
preparation and Illumina HiSeq were performed by the MIT
BioMicroCenter.

Single Locus Oligonucleotide Transfer (SLOT)

A library of 175-bp oligonucleotide sequences containing 100-bp
variable phrases was designed with the following common fea-
tures: flanking primer sequences distinct from any genomic DNA
sequence, a unique DNA barcode distinct from all other barcodes
at Levenshtein distance = 2, and a common internal primer past
the barcode (see Supplemental Fig. 8) from Broad Technology
Services. This library was amplified using primers that add 67-bp
homology arms to each end using NEBNext High-Fidelity 2×
PCR Master mix (New England Biolabs), because we found that
this polymerase minimized library amplification bias. Homology
arms were designed to flank two genomic CRISPR guide RNA se-
quences in genomic regions with no surroundingDNase-seq activ-
ity in mESC.

PCR-amplified libraries were electroporated along with Cas9
expression plasmid and sgRNA expression plasmid into mESCs
constitutively expressing a locus-specific sgRNA. For the experi-
ments described in this work, we electroporated 107 mESC with
20 µg of each component DNA, achieving 20%–50% allele fre-
quency in all three loci. Library-integrated mESCs were grown
for 7–21 d after electroporation before DNase I hypersensitivity
analysis, and care was taken to maintain high pool complexity
by splitting at high density.

DNase I hypersensitivity analysis was performed mostly ac-
cording to our previously published protocol (Sherwood et al.
2014) with several differences. Immediately after nuclear extrac-
tion, 5%–10% of nuclei were reserved for genomic DNA isolation
to serve as a control. The remaining nuclei were treated with 70–
90 units of DNase I per 107 cells. After DNA purification, E-gel
size-selection was performed to isolate 125–275 bp DNA, a size
range that accommodates the minimal size required to amplify
with locus-specific and internal primers (see Supplemental Fig.
8). qPCR using positive and negative control primers was per-
formed to ensure enrichment of DNase-hypersensitive DNA.
Then, we performed a three-step library preparation to allow
Illumina deep-sequencing analysis of barcode representation (see
Supplemental Fig. 8). For the experiments reported in this work,
we used 70-bp single-end Illumina MiSeq, performed by the MIT
BioMicroCenter. Full phrases were also sequenced from genomic
DNA using a similar library preparation strategy as above but using
the flanking primer instead of the internal primer to amplify locus-
integrated phrases. These samples were sequenced using 150 bp
paired-end MiSeq.
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Data access

Sequencing data and associated fitted models from this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE80105. SCM source code and data are available in the
Supplemental Material and at http://scm.csail.mit.edu.
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