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ABSTRACT

Cervical cancer (CC) remains a leading cause of female cancer mortality globally. Immunogenic cell death (ICD) influences the tumor
microenvironment (TME) and adaptive immune responses. Cancer-associated fibroblasts (CAFs) within the TME suppress anti-tumor
immunity and contribute to CC progression. This study identified three ICD-related CAF clusters linked to patient survival, including
IL6þCAF and ILR1þCAF, which were associated with clinical outcomes. Using a nine-gene risk model, patients were stratified into risk
groups, with high-risk individuals showing worse survival and correlations with pathways such as hypoxia and TGFb. The model also pre-
dicted immunotherapy responses, highlighting immune infiltration differences across risk groups. These findings provide insights into the
role of CAF clusters in CC and present a risk model that supports prognosis prediction and personalized therapy.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0240772

INTRODUCTION

Cervical cancer (CC) is the fourth most common cancer among
women globally, with more than 600000 new cases in 2020 and over
340000 deaths, accounting for nearly 8% of all female cancer deaths
yearly.1–3 HPV, a human papillomavirus, is necessary to develop CC.4

However, up to 5% of CCs are not associated with HPV-persistent
infection.5 The introduction of HPV vaccines has made substantial
advancements to CC treatment.6–8 Nevertheless, CC remains a critical
healthcare concern, especially in low- to middle-income countries.9

Furthermore, the molecular pathways driving CC are still unknown. It
is thus critical to develop reliable risk models for CC that can help with
prognostic prediction and personalized treatment.

Immunogenic cell death (ICD) can modify tumor immunological
microenvironments by generating warning signals, making immuno-
therapy more effective.10,11 In combination with non-ICD-inducing
chemotherapeutic agents like cisplatin and crizotinib, an ICD-
inducing tyrosine kinase inhibitor has exceptional anti-tumor activ-
ity.12 Preclinical evidence indicates that cytotoxic agents that induce
ICD (such as oxaliplatin and cyclophosphamide) can improve immu-
notherapy.13 In CC, Wu et al. induced ICD by triggering endoplasmic
reticulum stress in human CC cells for anti-tumor treatment.14 ICD
boosts anticancer immune responses by converting dying cancer cells

into therapeutic immunotherapies. Tumors with a higher ICD propen-
sity may elicit a stronger anti-tumor immune response, aiding in anti-
tumor progression.

Tumor cells and stromal cells constitute the tumor microenviron-
ment, and their dynamic interaction contributes to the development of
cancer.15,16 Cancer-associated fibroblasts (CAFs) support tumorigene-
sis by stimulating angiogenesis.17 CAFs comprise a significant propor-
tion of the stromal cells and promote tumor growth. CAFs were
associated with immune regulation and metastasis in CC.18,19 Qu et al.
identified pro-tumorigenic cancer-associated myofibroblasts
(myCAFs) cluster by sing-cell RNA sequencing (scRNA-seq) technol-
ogy in advanced CC.20 Li et al. distinguished inflammatory CAFs
(iCAFs) in CC that promote tumor progression.21 Sheng et al. discov-
ered that CAF clusters induced radioresistance in CC by promoting
macrophage toward the M2 phenotype polarization.22 Of note, the
characteristic of CAFs in generating extracellular matrix components
and producing secreted exosomes, metabolites, cytokines, and chemo-
kines that influence tumor metabolism, immunology, and angiogene-
sis, which made the CAFs a key pro-tumorigenic effects.16,23,24 Thus, a
thorough analysis of the tumor-promoting and tumor-restraining roles
of CAF subtypes, particularly how these intricate capabilities originate
and are regulated by neoplastic cells throughout cancer progression,
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may aid in the creation of innovative diagnostic and therapeutic
strategies.

Here, we identified a risk model for CC based on ICD-related
CAF clusters. A unique nomogram was developed to assist the
practical use of CAFs in prognosis prediction. It might lead to
more customized therapies and better results for CC patients by
providing fresh insights into tumor pathogenesis. A better under-
standing of CAF biology will shed light on a novel therapeutic
strategy against CC.

RESULTS
ICD score analysis and ICD-related CAF clusters
identification

We obtained 19510 cells from four CC patients. After harmony
to remove batch effects, as demonstrated in the supplementary mate-
rial, Figs. 1(a) and 1(b), the seven samples were successfully integrated.
26 clusters were found after dimensionality reduction [supplementary
material, Fig. 1(c)]. We categorized the cells into eleven major clusters
using marker genes for distinct cell types, including endothelial cells,
smooth muscle cells, fibroblasts, T cells, monocytes/macrophages,
plasma cells, epithelial cells, neutrophils, mast cells, and NK cells
[Fig. 1(a)]. The heatmap shows the top five gene markers for each cell
type [Fig. 1(b)]. We used the “AddModuleScore” function to calculate
the ICD score in different cell types. The ICD scores of the eleven cell
types were demonstrated [Fig. 1(c)]. Immune cell types such as T cells,
monocytes/macrophages, and mast cells had considerably higher ICD
scores [Fig. 1(d)]. In addition, we found significantly elevated ICD
scores in the tumor [supplementary material, Fig. 1(d)]. The ICD
scores of fibroblasts in tumors were much higher than those in normal
samples [Fig. 1(e)]. Since the CAFs can affect tumor progression, the
fibroblasts in the tumor group were extracted for re-clustering with the
non-negative matrix factorization (NMF) method based on the ICD-
related genes. Finally, 5 CAF subclusters were identified [Fig. 1(f)].
Then, we analyzed marker genes of each subcluster [supplementary
material, Fig. 1(e)], based on which the CAF clusters were identified,
including Non-ICD-CAF-C1, IFNGR1þCAF-C2, Non-ICD-CAF-C3,
ILR1þCAF-C4, and IL6þCAF-C5 [Fig. 1(g)]. The proportion of the 5
CAF clusters in each tumor sample is demonstrated in Fig. 1(h). The
feature plots of the three ICD genes (IFNGR1, ILR1, and IL6) are illus-
trated in the supplementary material, Fig. 1(f).

Pseudotime trajectory analysis of the ICD-related CAF
clusters

The pseudotime trajectory analysis was used to further under-
stand how distinct ICD-related CAF clusters developed in CC. First,
CytoTRACE analysis was used to predict the ordering of the 5 CAF
clusters. Fig. 2(a) demonstrates the distribution of predicted order in
the CAF clusters, with IL6þCAF and ILR1þCAF showing more red-
point concentration as frontward orders. The CytoTRACE scores are
higher in IL6þCAF and ILR1þCAF than in other CAF clusters, indi-
cating a low level of differentiation and suggesting that these cells are
the starting point within these CAF clusters [Fig. 2(b)]. Then, with
monocle analysis for a detailed examination, our results showed that
the CAF clusters were classified into seven states. Pseudotime also
showed that IL6þCAF and ILR1þCAF were at the relative beginning
of the trajectory path with a lighter shade of red in the pseudotime pro-
gress, whereas the Non-ICD-CAF clusters of C1 and C3 were at a

relative terminal state [Fig. 2(c)]. In addition, the Non-ICD-CAF clus-
ters enriched more in states 1, 2, and 7, while the IL6þCAF and
ILR1þCAF enriched in states 3–6 [Figs. 2(d)–3(f)]. Of interest, the
ridge map demonstrated the IL6þCAF was highly enriched in the
middle of the pseudotime [Fig. 2(g)], indicating an important role in
tumor biological regulation. The heat map showed the related biologi-
cal processes in the pseudotiome and states among the five CAFs,
including extracellular matrix organization, response to lipopolysac-
charide, and DNA-binding transcription [Fig. 2(h)]. Finally, we con-
ducted a Branched Expression Analysis Modeling (BEAM) analysis
of the 32 ICD-related genes in the pseudotime. ENTPD1, TLR4,
and MYD88 were elevated at the beginning of the pseudo-temporal
trajectory [Fig. 2(i)], which are pivotal in immune responses,
inflammation, and infection control. Furthermore, at the end of the
pseudo-temporal trajectory, NT5E and P2RX7 were found ele-
vated. NT5E encodes for the enzyme CD73, which is crucial in
purine metabolism.25 P2RX7 also encodes the purinergic receptor
family and contributes to an essential aspect of cellular communi-
cation.26 The observation indicates that the CAF clusters undergo
distinct differentiation processes, suggesting different physiological
functions in CC.

Identification of prognostic value and functional
characteristics of CAFs

We first determined the marker genes of the five CAFs (supple-
mentary material, Table III). Then, ssGSEA score enrichment of the
marker genes of each CAF cluster was applied to the bulk datasets.
The findings revealed that the IFNGR1þCAF cluster, IL6þCAF clus-
ter, and Non-ICD-CAF-C3 cluster were linked to CC patients’ survival
[Fig. 3(a)]. Patients in the low-CAF score group survived better than
those in the high-CAF score group for the three clusters. As a stromal
component that affects the TME, CAFs secrete various growth factors
and cytokines and degrade extracellular matrix proteins, thereby affect-
ing tumor cell proliferation, metastasis, and chemotherapy resistance.
Then, we analyzed the functional characteristics of the 5 CAF clusters.
The correlation of the 5 CAFs is illustrated in Fig. 3(b). Based on a
prior study’s estimation of Pan-CAF signatures,27 we discovered that
IL6þCAF was substantially linked to inflammatory CAF (iCAF)
[Fig. 3(c)], which were reported to be located far from tumor cells in
the desmoplastic area.28 The IL1R1þCAF resembled developmental
CAF (dCAF, related to stem cell character)29 and pCAF (Pdpn
marked, related to wound healing and immune regulation).30 Non-
ICD-CAF clusters had the myofibroblastic CAF (myCAF) characteris-
tics, which were found to be located near tumor cell nests.31,32 We uti-
lized GSVA to examine the association between CAF clusters and
distinct pathways and discovered that 30 metabolic pathways varied sub-
stantially across the five CAF clusters [Fig. 3(d)]. The IFNGR1þCAF
had more metabolic pathways related to energy production, immune
responses, and lipid metabolism. The IL6þCAF had more metabolic
pathways related to pyruvate metabolism, which enables energy produc-
tion under anaerobic conditions.33 The 10 hallmark pathways then
showed markedly varied activity across the five clusters [Fig. 3(e)], and
we found that the IL6þCAF highly related to HALLMARK_
TNFA_SIGNALING_VIA_NFKB, which is involved in various cellular
processes, including immune and inflammatory responses.34

Furthermore, different activations of putative TFs were shown among
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CAF clusters according to the SCENIC analysis [Fig. 3(f)], from which
the NFKB family regulators were highly enriched in IL6þCAF.

Cell chat analysis of prognostic CAFs

Since the dynamic crosstalk between cancer cells and CAFs pro-
motes cancer progression, we performed cell chat analysis of the two
prognostic ICD-related CAF clusters. We found that the two clusters
(IFNGR1þCAF cluster, IL6þCAF cluster) had the most interactions
with epithelial cells in tumor samples [Figs. 4(a)–5(c)], indicating their

crucial role in TME regulation and tumor progression. The outgoing
interaction strength of IFNGR1þCAF and IL6þCAF ranked among the
highest compared to all other cells. Then, we analyzed potential pathways
involved in the two CAF clusters and found COLLAGEN, PTN, and MK
signaling were highly enriched in the outgoing communication of the two
CAFs [Fig. 4(d)]. The Sankey diagram demonstrated that IFNGR1þCAF
and IL6þCAF had similar secreting patterns [Fig. 4(e)]. Among these
pathways, MK participates in the epithelial-to-mesenchymal (EMT) activ-
ities that are essential for signal transduction as a bridge in the translation
from extracellular stimuli to a variety of cellular signals.35 From our

FIG. 1. ICD score analysis and ICD-related CAF cluster identification. (a) The tSNE plot of 11 cell types. (b) Dot plot showing top 5 marker genes for 11 cell types. (c) ICD score in the
11 cell types. The distribution (d) and comparison (e) of ICD scores. (f, g) The UMAP plot of 5 CAF clusters. (h) The proportion of the 5 CAF clusters in the tumor samples.
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results, the IFNGR1þCAF, IL6þCAF, and epithelial cells of the tumor all
exhibited high MK signaling activity [Fig. 4(f)]. The two CAF clusters
mostly acted as senders of MK signals in the network [Fig. 4(g)] to epithe-
lial cells and other components [Fig. 4(h)]. The MDK-SDC1 ligand–
receptor pair of the MK pathway was highly enriched in the CAF and
tumor epithelial cell interaction [Fig. 4(i)], which was found involved in
normal embryo epithelium development.36

Risk model construction based on prognostic CAF
clusters

675 DEGs of TCGA cohort showed a high correlation with prog-
nostic CAF clusters (IFNGR1þCAF and IL6þCAF clusters) [supple-
mentary material Fig. 2(a)], 23 of which were correlated with OS
[supplementary material Fig. 2(b)]. LASSO-Cox analysis was per-
formed [supplementary material Figs. 2(c) and 2(d)], and 9 genes were

FIG. 2. Trajectory analysis of the CAF clusters. (a) CytoTRACE analysis showing the predicted order of the five CAF clusters. (b) CytoTRACE scores of the five CAF clusters.
(c) Monocle analysis showing the predicted state and pseudotime of the five CAF clusters. (d) Trajectory analysis reveals CAF cluster development. (e, f) The cell proportion
and state during the pseudotime of the five CAF clusters. (g) Ridge plot showing the pseudotime of each CAF cluster. (h) Heatmap showing the enrichment of marker genes
from the five CAF clusters. (i) Trajectory analysis reveals the expression state of ICD-related genes.
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finally screened out. Then, the risk score was acquired by weighting
hub gene expression with the regression coefficients [supplementary
material Fig. 2(e)], after which patients were assigned to high-risk or
low-risk groups based on the median risk score. Furthermore, individ-
uals in the high-risk group had considerably poorer OS (p< 0.0001,
log-rank test) and worse DSS (p< 0.0001, log-rank test)

[supplementary material Figs. 2(f) and 2(h)] than those in the low-risk
group. Validation using GSE44001 of CC patients also demonstrated
that the high-risk group had worse DFS than the low-risk group
(p¼ 0.0015, log-rank test) [supplementary material Fig. 2(g)]. The
ROC curve showed the AUC values are all above 0.70 in TCGA [sup-
plementary material Fig. 2(i)]; and ranged from 0.57 to 0.65 in the

FIG. 3. Identification of prognostic value and functional characteristics of CAFs. (a) K–M plot of OS in high- and low-score groups of the five CAF clusters. Correlations between
CAF clusters (b) and identified CAF signatures (c). (d) Heatmap showing metabolic signaling pathway activities. (e) Activated signaling ways and functions of the five CAF clus-
ters. (f) Heatmap showing significantly different TFs among the five CAF clusters.
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FIG. 4. Cell–cell communications of prognostic CAF clusters. (a) The interaction weight of the two prognostic CAF clusters and other cell types in tumor. (b) The relative level
of incoming and outgoing strength of cell types in coordinate axes. (c) The correlation of incoming and outgoing strength between cell types. (d) Communication patterns of
secreting cells. (e) Sankey plot of communication patterns. (f)–(h) MK signaling network analysis in CAF clusters. (i) The network showing the ligand–receptor pair of MDK-
SDC1.
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FIG. 5. Nomogram for CC prognosis prediction. Univariate Cox (a) and multivariate Cox (b) regression analysis of risk score. (c) The proportion of patients with different T
stages in risk groups. (d) Comparison of the risk score among patients with different T stages. (e) Comparison of OS in high- and low-risk patients of T1 and T2. (f) Nomogram
construction with the risk score and T stage. (g) Calibration curve prediction. (h) Decision curve for nomogram. �P< 0.05, ns, not significant.
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validation GEO set [supplementary material Fig. 2(j)]. These findings
demonstrated the risk model’s strong discriminating capacity.

Clinical relationship of the risk model

Both univariate [Fig. 5(a)] and multivariate Cox [Fig. 5(b)]
regression analyses demonstrated the risk score as an independent
prognostic factor for CC ((HR> 1, p< 0.001). Additionally, we com-
pared the risk score between patients with different T stages. The find-
ings revealed that more patients of T3 and T4 were in the high-risk
group [Fig. 5(c)]; patients with more advanced T stages had greater
risk ratings compared to patients with less advanced T stages [Fig. 5(d)
and supplementary material, Fig. 3(a)]. Furthermore, using KM curve
analysis, we discovered that high-risk patients in T1 and T2 had a
much poorer prognosis (log-rank test, p< 0.0001) [Fig. 5(e)].
According to these results, the advanced tumor stage more likely
occurred in patients with high risk. We created a nomogram based on
the risk score and T stage to increase the clinical applicability
[Fig. 5(f)]. The calibration curves were in good agreement with actual
measurements and nomogram forecasts [Fig. 5(g)]. Furthermore, the
C-index indicated the nomogram’s consistent and strong predictive
potential, outperforming other clinical features in OS prediction [sup-
plementary material, Fig. 3(b)]. The DCA curve demonstrated that the
nomogram exhibited superior net clinical benefit [Fig. 5(h)]. These
results imply that the risk model provides a solid and accurate tool for
customized prognosis prediction in CC patients.

Enrichment analysis for the risk model

The GSEA of the low-risk group was enriched in oxidative phos-
phorylation, E2F targets, and fatty acid metabolism [Fig. 6(a)]. The
apical junction, coagulation, EMT, hypoxia, and inflammatory
response were enriched in the high-risk group [Fig. 6(b)].
Furthermore, the high-risk group had higher activity in angiogenesis,
TGF signaling, EMT, and hypoxia. The low-risk group had increased
levels of oxidative phosphorylation, spermatogenesis, and fatty acid
metabolism [Fig. 6(c)]. The risk model was strongly associated with
metabolic pathways. Moreover, we performed KM curve analysis and
found patients with higher scores of HALLMARKS_HYPOXIA,
HALLMARK_CHOLESTEROL_HOMEOSTASIS, and
HALLMARK_TGF_BETA_SIGNALING were associated with worse
prognosis [Fig. 6(d)]. These findings imply that the various prognostic
outcomes shown in the risk model may be influenced by the activation
or inhibition of these pathways. Pathways, including oxidative phos-
phorylation, DNA replication, and endocytosis, were significantly cor-
related with the hub genes [Figs. 6(e) and 6(f)]. Further analysis of the
risk score and risk genes may shed light on the mechanism underlining
the pathology of CC.

Immune characteristics of the risk model

The immune-related pathways showed higher activity in the
high-risk group [Fig. 7(a)]. The immune score and ESTIMATE score
were negatively correlated with CFAP36, ERO1A, LDHA, SHF, and
CENPM [Figs. 7(b) and 7(d)]. This suggests that higher expressions of
these markers may contribute to an immunosuppressive tumor micro-
environment, which is known to correlate with poorer immune
responses and unfavorable clinical outcomes in CC patients. These
findings underscore the potential of these biomarkers as indicators of

immune evasion mechanisms that could inform treatment strategies.
In addition, the high-risk group had a lower abundance of activated
CD8 T cells, and high proportion of CM CD4 T cells, and EM CD8 T
cells [Fig. 7(c)]. The presence of these T cell subsets indicates an active
immune response against the tumor, which may play a crucial role in
controlling tumor progression. Specifically, activated CD8 T cells are
essential for targeting and eliminating malignant cells, while CM CD4
T cells can facilitate robust immune responses through their ability to
generate a pool of effector T cells. The higher abundance of EM CD8
T cells further suggests an ongoing adaptive immune response that
might enhance anti-tumor activity. Furthermore, we discovered that
the nine risk genes in the risk model were strongly associated with
immune cells. C1orf74 showed a positive correlation with M1 macro-
phages, and CFAP36 and SHF were negatively correlated with M1
macrophages; ERO1A had a negative correlation with CD8 T cells
[Fig. 7(e)]. Pearson’s correlation analysis using the Mantel test revealed
that immune cell types were substantially connected with risk score
[Fig. 7(f)], including type 1T helper cell, activated B cell, activated
CD4 T cell, CM CD4 T cell, EM CD8 T cell, and activated dendritic
cell.

Immunotherapy response of the risk model

The anticancer immune cycle was analyzed in risk groups.
Patients with high and low risks demonstrated different steps of the
anticancer immune cycle [supplementary material Fig. 4(a)]. In step 4,
the low-risk group had a more remarkable ability for CD8 T cell
recruitment [supplementary material Fig. 4(b)], indicating that there
was a greater anticancer therapeutic response in the low-risk group.
Higher immune checkpoint expression has been linked to a greater
response to ICI therapy.37–39 Thus, we examined the expression levels
of immune checkpoints between risk groups. The immune check-
points, such as CD27, PDCD1, LAG3, and TNFRSF18, were highly
expressed in the low-risk group [supplementary material Fig. 4(c)]. To
further validate our findings, we examined IPSs in risk groups. A better
response to ICI treatment is predicted by higher IPSs. The low-risk
group reacted more favorably to anti-PD-1 therapy than the high-risk
group, with IPSs considerably higher for both CTLA4�/PD1� and
CTLA4�/PD1þ therapies [supplementary material Fig. 4(d)].
Notably, the low-risk group exhibited a better OS in immunotherapy
response in the IMvigor210 validation cohort [supplementary material
Fig. 4(e)]. The group with low risk had a notably greater occurrence of
individuals with progressing disease/stable disease (PD/SD) [supple-
mentary material Fig. 4(f)] and a higher proportion of complete
response/partial response (CR/PR) [supplementary material Fig. 4(g)].
In addition, low-risk patients of stage I/stage II and stage III/stage IV
groups also showed better OS prediction [supplementary material
Figs. 4(h) and 4(i)]. Furthermore, patients with melanomas in the
GSE78220 cohort were also included for validation, and the low-risk
patients exhibited better OS [supplementary material Fig. 4(j)], and
patients of PR/CR were related to lower risk scores [supplementary
material Figs. 4(k) and 4 (l)]. Therefore, immunotherapy may provide
greater benefits to individuals classified as low-risk.

Identification of risk score in single-cell level

Cells of scRNA-seq data were regrouped into high- or low-risk
groups based on hub gene expression [supplementary material Fig. 5
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FIG. 6. Enrichment analysis of risk score and hub genes. (a) Ridge plot showing the GO terms in the low-risk group. (b) GSEA analysis of the high-risk group. (c) Hallmark
pathway activities between risk groups. (d) Correlations between the risk score and pathway activities. (e) and (f) Heatmap showing the correlation between hub genes and
related pathways.
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FIG. 7. The immune features associated with risk score and hub genes in CC. (a) Immune-related pathway in risk groups. (b) Heatmap showing the correlation between hub
genes and stromal score, immune score, and ESTIMATE score. (c) Landscape of immune cells in high- and low-risk groups. (d) The correlation between hub genes and
immune scores. (e) Heatmap showing the correlation between hub genes and TICs. (f) Mantel test of correlation between risk score and TICs. �P< 0.05, ��P< 0.05,
���P< 0.001, ns, not significant.
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(a)]. Within the risk groups, the distribution of cell types was examined
[supplementary material Fig. 5(b)], revealing a higher abundance of T
cells in the low-risk group. The distribution of the nine risk genes is
illustrated in the supplementary material, Fig. 5(c), and we found that
the high-risk cells had significant amounts of MCAM and LDHA.
Enrichment analysis demonstrated that the cholesterol homeostasis,
hypoxia, and p53 pathway were correlated with the high-risk cells
[supplementary material Fig. 5(d)]. The DEGs of high- and low-risk
cells were enriched in fluid shear stress and atherosclerosis, focal adhe-
sion, and proteoglycans in cancer [supplementary material Fig. 5(e)].
Then, we combined the risk score, ICD score, and top DEGs of the
high- and low-risk cells to illustrate their correlations in the scRNA-
seq analysis [supplementary material Fig. 5(f)]. ERO1A was elevated in
the high-risk cells, mainly in epithelial cells of the tumor group.
Subsequently, we distinguished tumor epithelial cells with high and
low risk levels and examined their interactions with other kinds of cells
(supplementary material, Fig. 6). We examined the interaction
between high-risk epithelial cells and fibroblasts, NK cells, and T cells.
The results showed that the high-risk epithelial cells communicate
with the three cell types through various pathways and ligand pairs,
including MIF, APP, and MDK signaling pathways [supplementary
material Fig. 5(g)].

Drug sensitivity analysis and hub gene validation

Based on the risk score, we found that bosutinib and bexarotene
were sensitive to the high-risk patients; Etoposide and tipifarnib were
sensitive to the low-risk patients [supplementary material Fig. 7(a)].
Furthermore, we validated the nine hub genes within HaCaT, HeLa,
and SiHa. We found that SHF and PEAR1 were significantly downre-
gulated in the SiHa cells, and CFAP36 were significantly downregu-
lated, whereas CENPM, C1orf74, and ERO1A were significantly
upregulated in the HeLa cells [supplementary material Fig. 7(b)].
Finally, we performed IHC of IL6, IFNGR1, and ERO1A in CC sam-
ples. We found that IL6 and IFNGR1 were mainly distributed in the
stromal component of CC tissue. Besides, the ERO1A was found upre-
gulated compared to normal tissue and distributed in the epithelium
and glands [supplementary material Fig. 7(c)].

DISCUSSION

Based on scRNA-seq, specific subclusters of CAFs and the mech-
anism of CAFs contributing to tumor progress in cervical cancer have
been identified. However, the tumorigenic effect of ICD-modified CAF
clusters remains elusive. In this work, we used the NMF approach to
conduct multi-omics investigations on the variety of CAFs based on
ICD-related genes. The significant advantage of our CAF classification
is that we screened out the specific CAF clusters affected by the ICD
patterns and identified cell interactions in the TME. CAFs significantly
influence tumor progression and immune modulation, making them
vital targets for therapeutic strategies aimed at enhancing anti-tumor
immunity. This unique and innovative perspective has allowed us to
comprehend the impact of CAF clusters, which are influenced by
ICD-related alterations in the TME, on the prognosis of individual CC
patients.

The study found that the IL6þCAF and IFNGR1þCAF led to
worse prognoses in CC patients. CAFs have been implicated in chemo-
therapy resistance and metastasis by releasing factors into the TME.
We further analyzed the characteristics of IL6þCAF and

IFNGR1þCAF clusters in metabolic pathways, TF networks, and the
communication between other cell types of CC. The IL6þCAF exhib-
ited high NFKB regulator activity, which was found related to CC pro-
gression.40 The activation of NFKB influences the innate and adaptive
immune responses of CC progression.41 NFKB becomes inherently
engaged throughout the progression of high-grade intraepithelial neo-
plasia and CC, and inhibiting the NFKB signaling pathway effectively
limits cervical tumor cell development.42 NFKB may induce transcrip-
tion of proliferation-regulating genes, metastasis-related genes, and
telomerase-mediated cell immortality.43 The IFNGR1þCAF showed
aberrant lipid metabolism pathway, and the lipid metabolism is a criti-
cal characteristic of cancer cells.44 During the proliferation process,
lipid synthesis supplies a crucial substrate for energy metabolism as
well as components for cell membrane building, implying that lipid
metabolism pathways play an important role in the genesis and pro-
gression of cancer.45,46 The prognostic IFNGR1þCAF’s regulation of
lipid metabolism may provide a reference for selecting treatment strat-
egies in CC patients.

The crosstalk between CAF and cancer cells modulates cancer
metastasis and therapeutic resistance.47 From cell chat analysis, the
IL6þCAF and IFNGR1þCAF exhibited the most potent interaction
with the epithelial cells and extreme outgoing patterns distinct from
other cell types. Furthermore, we found the MK signaling network of
the CAF clusters that strongly interacted with tumor epithelial cells in
CC. The MK pathway was recognized as an emerging oncoprotein and
mesenchymal transition (EMT) inducer48 and was found elevated in
CC.49 The activation of EMT led to tumor progression, metastasis, and
recurrence of CC. Therapeutic strategies focused on EMT suppression
ameliorate cervical cancer pathogenesis.50 Hu et al. found that MK
and SDC1 correlate with the malignant progression.51 In our study,
the MK–SDC1 pair also demonstrated high interactions from
IL6þCAF and IFNGR1þCAF to epithelial cells in tumor, further
proving their role in tumor formation.

Molecular biomarkers and signatures benefit preclinical and clini-
cal cancer therapies. We created a ICD-related CAF-based risk model
with nine hub genes. The risk scores that link the immunology and
prognosis of CC were identified. A nomogram was created, and the area
under ROC curves for OS prediction of one, three, and five years was
more than 0.7, demonstrating the risk model’s exceptional prediction
capacity in CC.

To understand the biological pathways underpinning the risk
model, we used multi-omics methods. We discovered that hypoxia
and TGF were concentrated in high-risk patients, and a high score of
hypoxia/TGF correlates with a worse OS. Low tumorous oxygenation
raises the probability of local invasion, metastasis, and treatment fail-
ure in the etiology of CC.52 A hypoxic tumor stroma may promote
tumor cell stemness and accelerate tumor development by increasing
CAF secretion. Hypoxia induces the activation of NFKB pathway in
CC and facilitates tumor migration and invasion.53 The positive corre-
lation of the risk score and hypoxia activity may contribute to CC
pathology. Li et al. found the blockade of TGFb enhances chemother-
apy,54 which also gives a strategy for anticancer therapy.

Furthermore, the risk score showed a more vital independent
prognostic ability than other clinicopathologic features. The low-risk
group exhibited increased immune checkpoints, indicating that
immune checkpoint inhibitors may be a viable alternative for low-risk
individuals. Furthermore, our findings demonstrated that the CAF-
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based risk model might predict response to anti-PD-L1 immunother-
apy. Aside from immunotherapy, we also investigated the IC50 of
medication sensitivity, and the sensitive drugs for patients of high risk
were identified. Combining immunogenic therapy and innovative
immunotherapeutic regimens for treating CC shows considerable
potential. Taking the risk score into account may help with the person-
alized treatment of CC patients. Overall, these results provide potential
therapeutic options for CC.

We validated the ERO1A both in CC cells and tissues and found
it elevated in CC, consistent with previous studies.55,56 The ERO1A
has a role in tumor metastasis and EMT through Wnt, mTOR, and
VEGF pathways.55 Liu et al. found the ablation of ERO1A induces
ICD to activate anti-tumor immunity,57 and upregulation of ERO1A
may arise in the recruitment of immune-suppressive cells, resulting in
an immune-suppressive TME.58 Thus, targeting ERO1A may offer
alternative therapeutic strategies for CC.

Nonetheless, several shortcomings should be addressed. First, this
is a retrospective data analysis, and it must be validated in multi-center
CC cohorts. Second, we mainly investigated the CAF-based risk mod-
el’s potential predictive relevance; consequently, to confirm the under-
lying processes of the risk model in CC, further research is necessary.

CONCLUSION

Table I outlines the main findings and emphasizes the signifi-
cance of CAF subtypes and the developed risk model in understanding
cancer progression and guiding treatment. The results indicate that
tumor fibroblasts exhibit higher ICD scores than normal ones, with
significant CAF subtypes (e.g., IFNGR1þCAF, IL6þCAF, and
ILR1þCAF) identified as key players in tumor progression.
Pseudotime analysis revealed less differentiated CAFs such as
IL6þCAF and ILR1þCAF, positioned at the start of the developmen-
tal process. IFNGR1þCAF and IL6þCAF were associated with worse
OS, and enrichment analysis highlighted their involvement in immune
signaling pathways. Cell–cell interaction analysis underscored path-
ways like MDK-SDC1 between CAFs and epithelial cells, signifying
active tumor–environment communication. A nine-gene risk model
was constructed, showing its prognostic independence and correlation
with worse OS and increased immune checkpoint expression in low-
risk patients. High-risk groups displayed enrichment in EMT, hypoxia,
and angiogenesis, while low-risk patients had better immune responses
and higher immune cell infiltration, suggesting improved responses to
ICIs. This risk model may serve as an independent predictor of prog-
nosis and help with treatment strategies.

METHODS
Data processing

RNA sequencing files (fragments per kilobase of exon model per
million mapped fragments, FPKM) for the TCGA-CESC cohort were
obtained. Clinical information was extracted. Patients who lacked clin-
ical information were eliminated from further analysis. The GSE44001
cohort with gene expression and survival data of 300 CC patients were
obtained from the Gene Expression Omnibus (GEO) database.
Additionally, we acquired the CC scRNA-seq dataset E-MTAB-12350
from the ArrayExpress database. For predicting immune response, the
IMvigor210 cohort59 with patients receiving atezolizumab and the
GSE78220 cohort of pretreatment melanomas undergoing checkpoint
inhibition therapy were retrieved. From previously published research,

32 ICD-related genes (supplementary material, Table I) were
determined.60,61

Single-cell RNA-seq analysis and CAF cluster
identification

With the “Seurat” package,62 cells with mitochondrial genes
less than 15% were collected. The top 2000 highly variable genes
were identified for the data scale. The data from the seven samples
were cleaned of batch effects using the “Harmony” package.63 Cell
clusters were identified using the “FindClusters” and
“FindNeighbors” functions. The cell types were first recognized
using the “SingleR” package64 and then annotated manually with
marker genes from the CellMarker database65 and previous paper.19

The FindAllMarkers tool was used to detect marker genes in each
cell cluster that exhibited a log fold change more than 0.35, a mini-
mum percentage greater than 0.35, and an adjusted p-value less
than 0.05. The non-negative matrix factorization (NMF) in R was
used to identify clusters of CAFs related to ICD. To display the top
gene expression levels in each NMF cluster, the Dotplot tool was
used.

Identification of risk genes correlated with the
prognostic CAF clusters

DEGs were screened with FDR< 0.001 and logFC> 1. Then,
using p< 0.001 and cor> 0.4, prognostic DEGs correlated with prog-
nostic CAF clusters were examined. Then, LASSO analysis was used
for hub gene selection. We created a risk model after the multivariate
Cox calculation: risk score¼ bi EXP) (EXP: expression level; bi reflects
the coefficient in the multivariate Cox model). After zero-mean nor-
malization, the patients were separated into high- and low-risk groups.
To assess the prediction performance of the risk model, the
“timeROC” package was used. In the validation cohort, the same stud-
ies were carried out.

Pseudotime trajectory analysis of ICD-related genes
for CAF clusters

To study the pseudotime trajectories of CAF clusters, the
“cytoTRACE” and “Monocle2” package was used.66 The DDRTree
technique was used for the purpose of reducing dimensionality. Next,
we used the “plot_pseudotime_heatmap” method to generate heat-
maps that depict the changing expression patterns of genes associated
with ICD in the pseudotime trajectories.

Cell communication analysis for CAF clusters

The “CellChat” package offers ligand–receptor interaction data-
bases to examine intercellular communication networks within cell
clusters.67 Initially, we used CellChatDB.human to evaluate the pri-
mary signaling inputs and outputs in all CAF clusters. Subsequently,
we constructed cell–cell communication networks connecting the tar-
get cell cluster with the CAF clusters. The netVisual bubble function
creates bubble charts that illustrate important interactions between cell
clusters including ligands and receptors.
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Functional enrichment analysis for CAF clusters

The R package “clusterProfiler” was used to identify the Kyoto
Encyclopedia of Genes and Genomes (KEGG). The ssGSEA score was
used to identify prospective paths for risk modeling. We calculated the
GSVA ratings for 50 significant pathways. The c5.go.v7.5.1.symbols.
gmt file was used in the GSEA analysis to determine enrichment.

SCENIC analysis for ICD-related CAF clusters

Co-expression and DNA motif analysis were used to construct
the gene regulatory network by the “SCENIC” package.68 Key

transcription factors (TFs) were identified. The gene-motif ranking,
namely, the hg19-tss-centered-10kb and hg19-500 bp-upstream, were
used as references.

Survival analysis and nomogram construction

The “survminer” package was used for the OS, progression-free
survival (PFS), and disease-specific survival (DSS) analyses between
risk groups. To discover whether the risk score was a reliable predictor
of CC patients’ survival, univariate and multivariate Cox regression
analyses were conducted. A nomogram that incorporated the risk
score and T stages was established for survival prediction. Finally, the

TABLE I. Summary of key results from the analysis.

Analysis type Subheading Key findings

Identification and
characterization

Cell types and ICD scores 11 major cell types identified, including T cells, monocytes/macro-
phages, fibroblasts, NK cells; higher ICD scores in T cells, mono-

cytes/macrophages, and mast cells.
Tumor vs. normal fibroblasts Elevated ICD scores in fibroblasts in tumor samples compared to

normal.
CAF subclusters Five clusters identified: Non-ICD-CAF-C1, IFNGR1þCAF-C2,

Non-ICD-CAF-C3, ILR1þCAF-C4, IL6þCAF-C5.
Key ICD genes IFNGR1, ILR1, IL6 identified as key genes.

Pseudotime trajectory
analysis

CytoTRACE and monocle analysis IL6þCAF and ILR1þCAF show higher CytoTRACE scores (less
differentiated); monocle analysis shows IL6þCAF and ILR1þCAF

at starting point.
Gene activation ENTPD1, TLR4, MYD88 active early; NT5E, P2RX7 active later.

Prognostic and functional
analysis

Survival analysis IFNGR1þCAF and IL6þCAF linked to worse survival.

Functional characteristics IL6þCAF linked to iCAF; IL1R1þCAF to dCAF/pCAF.
Pathway associations IL6þCAF associated with TNFA_SIGNALING_VIA_NFKB;

IFNGR1þCAF associated with energy production pathways.
Cell–cell interaction
analysis

Interaction networks IFNGR1þCAF and IL6þCAF have strong interactions with epi-
thelial cells.

Key pathways Enrichment in COLLAGEN, PTN, MK signaling.
Ligand–receptor Pair MDK-SDC1 pair enriched in CAF–epithelial cell interaction.

Risk model and validation Prognostic DEGs and model 675 CAF-associated DEGs identified, 23 linked to OS; LASSO-Cox
model with 9 hub genes.

Risk group outcomes High-risk group had poorer OS and DSS; validated with ROC
AUC> 0.70 in TCGA dataset, 0.57–0.65 in GEO dataset.

Clinical relevance Independent prognostic factors Risk score shown as independent prognostic factor (HR> 1,
p< 0.001).

Tumor stage correlation High-risk group predominantly in T3 and T4 stages.
Nomogram development Strong predictive accuracy and calibration with clinical outcomes.

Enrichment and immune
characteristics

GSEA and immune pathways High-risk group enriched in EMT, hypoxia, angiogenesis; higher
immune pathway activity.

Immune cell correlations High-risk group linked to activated CD8 T cells, EM CD8 T cells,
etc.

Immunotherapy response Immune cycle and checkpoints Low-risk group had better CD8 T cell recruitment; higher expres-
sion of CD27, PDCD1, LAG3, TNFRSF18.

IPSs Higher IPSs in low-risk group, predicting better ICI therapy
response.

APL Bioengineering ARTICLE pubs.aip.org/aip/apb

APL Bioeng. 8, 046114 (2024); doi: 10.1063/5.0240772 8, 046114-13

VC Author(s) 2024

pubs.aip.org/aip/apb


nomogram’s precision was assessed using calibration curves and deci-
sion curve analysis (DCA).

Immune characteristics of the risk model

We used “CIBERSORT” package to quantify immune cell infil-
trating and the ESTIMATE algorithm to examine the association
between risk score and immune cell infiltration. For TCGA-CESC
samples, we used the Tracking Tumor Immunophenotype platform to
get activity scores for each of the seven anticancer immune processes.
The Immunophenotypescore (IPS) corresponds with tumor immuno-
genicity as an ICI response predictor; a high IPS suggests an effective
response to ICI treatment. The CESC cohort’s IPS was obtained from
The Cancer Immunome Atlas database.

Drug sensitivity analysis

We used the “pRRophetic” package to compare the half-maximal
inhibitory concentration (IC50) of medicines across risk groups, using
a p-value of less than 0.05 for the Wilcoxon test.

Quantitative real-time polymerase chain reaction
(qRT-PCR)

Total RNA was isolated from two CC cell lines, namely, HeLa
and SiHa, as well as human keratinocytes of HaCaT cells as control.
Total RNA extractions were performed using Trizol reagent. Total
RNA was reverse transcribed using the M-MLV-RT system (Promega,
USA). qPCR was conducted using SYBR PCR mix reagent (RR430A,
Takara, China) according to instructions. The primers used are dem-
onstrated in the supplementary material, Table II.

Immunohistochemistry

Immunohistochemistry (IHC) was used to validate key genes in
CC tissue collected from the Second Hospital of Jilin University. The
ethics council of the Second Hospital of Jilin University accepted the
study (NO: 2022029). The paraffin-embedded CC tissues were IHC
stained after dewaxing and rehydration. The slices were subjected to
overnight treatment at a temperature of 4 �C with primary antibodies,
including IL6 (1:100, Abclonal, A0286, China), IFNGR1 (1:100,
Abclonal, A21912, China), and ERO1A (1:200, Abcam, ab177156,
USA) followed by biotinylated goat anti-rabbit IgG secondary antibody
and were visualized using diaminobenzidine tetrachloride (DAB)
staining.

Statistical analysis

To examine the variations in clinical features between the risk
groups, the chi-squared test was employed. Correlation between the
risk score and immune cell infiltration was investigated using
Pearson’s correlation analysis. ANOVA was used to examine the qRT-
PCR data. Statistical significance was set at p< 0.05.

SUPPLEMENTARY MATERIAL

See the supplementary material for the following: Supplementary
Table I for details on primers used for hub gene validation;
Supplementary Table II for details on ICD-related genes;
Supplementary Table III for details on marker genes of CAF clusters;
Supplementary Fig. 1 for illustration of scRNA-seq analysis of CC

dataset—PCA plot before (a) and after (b) harmony, (c) 26 clusters
demonstrated by tSNE, (d) ICD score of normal and tumor samples,
(e) top 5 marker genes of the five CAF clusters, and (f) UMAP plot of
the expression of IFNGR1, IL1R1, and IL6 in scRNA-seq dataset;
Supplementary FIG. 2 for illustration of hub gene selection and risk
model construction—(a) volcano plot of DEGs in TCGA-CESC
cohort, (b) prognostic DEGs identification, (c) distribution of variable
lambda, (d) plots showing coefficient distributions, (e) the coefficients
for each risk gene in the model, KM curves for OS in TCGA cohort (f),
for DFS in GSE44001 cohort (g), and for DSS in TCGA cohort (h),
ROC curves of the TCGA cohort (i) and GSE44001 cohort (j);
Supplementary Fig. 3 for illustration of clinical features in the risk
model—(a) comparison of risk score between patients of T1-2 and T3-
4 and (b) C-index analysis; Supplementary Fig. 4 for illustration of
immunotherapy prediction of the risk model—(a) immunity cycle
activity of risk groups, (b) radar plot showing different recruited
immune cells, (c) immune checkpoint detection, (d) the IPS between
risk groups, (e) OS prediction of IMvigor210 cohort, (f) risk scores of
immunotherapy responses in the IMvigor210 cohort, (g) the predic-
tion of CR/PR or SD/PD of the IMvigor210 cohort, prediction of OS
in patients at an early stage (h) and advanced stage (i) in the
IMvigor210 cohort, (j) OS prediction of the GSE78220 cohort, the pre-
diction of immunotherapy responses (k) and evaluation of tumor ther-
apy (l) in the GSE78220 cohort, �P< 0.05, ��P< 0.05, ���P< 0.001,
����P < 0.0001; Supplementary Fig. 5 for illustration of the correla-
tion of risk score with single-cell characteristics—(a) the distribution
of high- and low-risk cells, (b) the distribution of cell types among dif-
ferent risk categories, (c) tSNE plot of hub gene distribution, GSEA
analysis (d) and KEGG analysis (e) of the risk cells, (f) heatmap show-
ing hub genes in different cell types, risk groups, and ICD score groups,
and (g) the ligand–receptor interactions networks; Supplementary Fig.
6 for illustration of the communication of high- and low-risk epithelial
cells in scRNA-seq dataset; and Supplementary Fig. 7 for illustration of
the association between risk score and drug sensitivity and gene valida-
tion—(a) sensitive drugs for high- and low-risk patients, (b) validation
of the expression of the nine hub genes by qRT-PCR, (c) IHC of IL6,
IFNGR1, and ERO1A in CC tissues, �P < 0.05, ���P < 0.001, ns, not
significant.
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NOMENCLATURE

AUC Area under the curve
CAFs Cancer-associated fibroblasts
CC Cervical cancer

EMT Epithelial-mesenchymal transition
ERO1A Endoplasmic reticulum oxidoreductase 1 alpha

HPV Human papillomavirus
ICD Immunogenic cell death

iCAFs Inflammatory cancer-associated fibroblasts
IFNGR1 Interferon gamma receptor 1

IL6 Interleukin 6
mTOR mechanistic target of rapamycin

myCAFs Pro-tumorigenic cancer-associated myofibroblasts
NFKB Nuclear Factor Kappa-Light-Chain-Enhancer of

Activated B Cells
OS Overall survival

SDC1 Syndecan 1
TGF Transforming growth factor
TME Tumor microenvironment
VEGF Vascular endothelial growth factor
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