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Artificial intelligence (AI) is an emerging field in which computerized systems
are used to carry out complex tasks in place of humans. Medical AI algorithms
have been developed for disease diagnosis and prediction and treatment recom-
mendation across various clinical data types, e.g., chest X-rays, electrocardio-
grams, and other radiological images.1 In ophthalmology, particularly, great prog-
ress has been made in AI systems over the past decade. Color fundus
photography (CFP) and optical coherence tomography (OCT), which are readily
available in routine clinical practice, are bothmainstreamand useful retinal imag-
ing modalities in ophthalmology. In September 2023, the 2023 Lasker-Debakey
Clinical Medical Research Award was awarded to three scientists for their
work on OCT for accurate retinal disease detection.

However, the majority of AI models in the medical imaging field are calibrated
with a large number of images with high-quality annotations, demanding inten-
sive labor from specialists. Consequently, the large-scale production of medical
datasets with advanced clinical labels is deemed impossible. Additionally, exist-
ingmodels usually have limited generalizability to distinct clinical tasks since they
are useful for specific applications. In light of the above limitations, Y. Zhou et al.
constructed a self-supervised learning (SSL)-based foundation model for retinal
images (RETFound).2 This model was trained on large volumes of unannotated
data at scale to complete a variety of downstream tasks (Figure 1). By deriving
supervisory signals directly from data, SSL performs well in alleviating data inef-
ficiency and avoiding the use of expert knowledge to label images in the ‘‘pretrain-
then-fine-tune”workflow. The SSL approach, used inRETFound for learning from
unannotated retinal images, involves a predictive task. In this task, some parts of
the image are masked out. The model is subsequently trained to predict these
masked parts and enforced to understand and encode the underlying structure
of retinal features. After learning frommassive datasets, a rich representation is
built that can be fine-tuned to recognize various patterns with minimal labeled
data. Therefore, the model can achieve generalizable disease detection from
retinal images.2

Two separate RETFound models were developed using CFP and OCT images
from a natural image dataset (ImageNet-1k), theMoorfields diabetic image data-
set (MEH-MIDAS), and public data (a total of 904,170 CFPs and 736,442 OCTs).
The RETFound tool was adapted for complicated detection and prediction tasks,
including ocular disease diagnosis (e.g., diabetic retinopathy and glaucoma),
prognosis (e.g., wet-age-related macular degeneration), and predicting systemic
diseases from oculomic challenges (e.g., cardiovascular diseases and neurode-
generative diseases).

As a result, the RETFound model performs well in terms of stability and label
accuracy in contrast to those of three published comparison models, SL-
ImageNet, SSL-ImageNet, and SSL-Retinal. For example, when used for identi-
fying and further classifying diabetic retinopathy, RETFound achieved area under
the receiver operating characteristic curves (AUROCs) of 0.943, 0.822, and 0.884
on the Kaggle APTOS-2019, IDRiD, and MESSIDOR-2 datasets, respectively, indi-
cating that RETFound achieved significantly higher data quality than did SL-
ImageNet (all p < 0.001). For predicting the 1 year prognosis of fellow eyes pro-
ceeding wet-age-relatedmacular degeneration, RETFound exhibited satisfactory
performance (AUROC = 0.862) compared to those of the three comparison
groups (p < 0.001). Myocardial infarction, a cardiovascular disease, was pre-
dicted from CFP images using the RETFound model, and the AUROC was
0.737. Moreover, qualitative results and variable-controlling experiments were
ll
used to evaluate the ability of RETFound to detect disease, revealing that dis-
ease-related areas were identified and inferred by this model. Surprisingly,
although aging and disease progression for aging-associated systemic diseases
result in clinical anatomical structure alterations, RETF identified such alterations
well and exhibited stable performance for predicting systemic diseases, even
when the age difference decreased.
The adapted RETFound model achieved good performance and generaliz-

ability in the diagnosis and prognosis of common ocular diseases, as well as
in the prediction of complicated systemic disorders with fewer labeled images,
leading to a wider range of clinical AI applications from retinal imaging. This
achievement also highlights the strength of the correlation between systemic
diseases and the information contained in various imaging modalities.
Nevertheless, RETFound showed a significant decrease in performance when

tested against newcohorts that differ in demographic profile and imaging device.
The current study cohorts were based in the UK and may not represent all pop-
ulations worldwide. Therefore, introducing a larger dataset with retinal images
worldwide is recommended to enhance the generalizability of this model. Since
clinical information such as demographic and visual acuity data may influence
ocular and oculomic studies, the relevant characteristics and multimodal
information fusion between CFP and OCT should be further considered in the
RETFound model. In addition, utilizing domain adaptation techniques to
augment the training data enables diverse image types to be obtained. Therefore,
training the model on such datasets promotes more generalizable features and
enhances the model performance on unseen data.
Apart fromSSLmodels, conventional supervised deep learningmodels are still

worthy of consideration in the future. All the training images are labeled via super-
vised learning, and the model is directly optimized using image-label pairs. For
instance, supervised contrastive learning was adopted in a vision transformer
to decode elements of intraoperative surgical activity from videos, which might
provide surgeons with feedback on their operating skills.3 The EfficientNet-b2
network was employed to detect Alzheimer’s disease dementia from retinal pho-
tographs. By integrating features from these photographs, researchers devel-
oped supervised deep learning models and equipped the network with unsuper-
vised domain adaptation techniques to address dataset discrepancies among
different studies.4 HyperDenseNet was constructed for brain tissue segmenta-
tion in multimodal magnetic resonance (MR) images to address challenging
medical image segmentation problems involving multimodal volumetric data.5

Analogous to most existing foundation models, RETFound is pretrained on a
large corpus of unlabeled data and is designed to be adapted to a wide range of
downstream tasks, whereas conventional supervised models are typically
trained on labeled datasets and are usually optimized for specific tasks. More-
over, by adopting an SSL strategy, RETFound performs well in understanding
the underlying structure and patterns within data, which is essential for general-
izing across various medical imaging tasks. However, conventional supervised
models, which depend on explicit signals from labeled data, may fail to capture
subtle or complex patterns.
Great efforts still need to be made before applying AI systems from bench to

bedside. Since AI studies aremainly based on fixed datasets and stable environ-
ments in the short term, their performance may be dominated and restricted by
the development time background. In reality, however, the evolutionary world rai-
ses the requirement of a strong ability for AI models to learn over a lifetime and
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Figure 1. Schematic of RETFound model and future improvements Stage one constructs RETFound model using CFP and OCT images from three datasets by means of self-
supervised technique. Stage two adapts RETFound to downstream tasks including ocular disease diagnosis and prognosis as well as prediction of systemic disease. Future im-
provements of AI models include continuous learning framework and image enhancement for preprocessing low-quality images aswell asmonitoring disease progression, evaluating
therapeutic effect, and developing personalized treatment.
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steadily evolve to thrive in dynamic learning settings. Therefore, to solve the prob-
lem of model outdating, a continuous learning framework should be imple-
mented. This framework involves periodic model retraining on newly acquired
medical data, enabling the system to adapt to evolving clinical knowledge and
imaging techniques. Furthermore, a mechanism for automatic version control
and model management should be utilized to ensure that the AI system is
able to reflect the latest advancements in medical science and AI.

Additionally, the performance of AI systems is strongly dependent on high-
quality images, whereas doctors make clinical decisions that are insusceptible
to low-quality images, which are inevitable in real-world practice. Therefore, devel-
oping novel approaches to enhancing the stability and robustness of AI systems
in low-quality images is also essential in clinical applications. A robust model for
filtering out outliers should be integrated into the algorithm. In addition, prepro-
cessing techniques, such as image enhancement, can be applied to improve
the quality of input data prior to its introduction to an AI system. Furthermore,
active learning strategies can also be employed to enhance the performance
of AI models with a minimal set of precise human annotations.

Apart from current diagnostic and predictive tasks, AI methods may also be
conducive to monitoring disease progression, evaluating therapeutic effects,
and developing personalized treatments. For instance, a series of retinal images
from a patient with diabetic retinopathy can be processed by AI models andmay
assist ophthalmologists in accurately evaluating whether the treatment is effica-
cious for this patient during follow-up visits. If retinopathy is mitigated, then the
treatment is considered effective. Otherwise, the therapeutic schedulemay need
to be adjusted. Research exploring the value of AI models in monitoring disease
progression during treatment is encouraged. Future improvements for AImodels
are illustrated in Figure 1.
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Although the field of AI is still in its infancy, we hope that AI systemswill have a
profound impact onmaking healthcaremore accurate, more efficient, and easier
to access, especially in regions lacking clinicians and experts.
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