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Abstract: Bacteriophages, which are tremendously important to the ecology and evolution of bacteria,
play a key role in the development of genetic engineering. Bacteriophage virion proteins are essential
materials of the infectious viral particles and in charge of several of biological functions. The correct
identification of bacteriophage virion proteins is of great importance for understanding both life
at the molecular level and genetic evolution. However, few computational methods are available
for identifying bacteriophage virion proteins. In this paper, we proposed a new method to predict
bacteriophage virion proteins using a Multinomial Naïve Bayes classification model based on discrete
feature generated from the g-gap feature tree. The accuracy of the proposed model reaches 98.37%
with MCC of 96.27% in 10-fold cross-validation. This result suggests that the proposed method can
be a useful approach in identifying bacteriophage virion proteins from sequence information. For the
convenience of experimental scientists, a web server (PhagePred) that implements the proposed
predictor is available, which can be freely accessed on the Internet.

Keywords: bacteriophage virion proteins; g-gap peptides; ANOVA; Multinomial Naïve Bayes

1. Introduction

A bacteriophage is a virus that is inhabited in bacteria and consists of DNA, RNA, viral
proteins, and packaging proteins. Bacteriophages infect bacteria and then result in its lysis [1].
One bacteriophage could infect one or more species of bacteria [2] and almost 20% of bacteria are lysed
through bacteriophages infection each day. Bacteriophages have been shown to encode a range of
functional proteins that influence their bacterial cells or even the host in which the bacterium lives [3].
Bacteriophages actually play an important role in host bacteria genome evolution.

Bacteriophages also play an important role in the research of bacterial infections, especially
bacterial drug resistant infections [4–6]. Bacteriophages infect bacteria by binding to the specific
receptors on the surface of the bacterial cell. The specific receptors needed in the interactions protect
the unrelated pathogens and infect the target accurately. As fundamental materials of the infectious
viral particles, bacteriophage proteins have important biological functions in the interaction between
bacteriophage and host bacterial cell. Bacteriophage proteins include structural (virion) proteins and
non-structural (non-virion) proteins. The bacteriophage virion proteins participate directly in the
evolutionary contest between themselves and their hosts. Bacteriophage non-virion proteins, also play
important roles in bacteriophage replication, transcription and polyprotein processing. Since 1959,
at least 5568 bacteriophages have been discovered [7]. New bacteriophages are continually found
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because of the unremitting efforts of scientists. Due to the rapid advances in genomic and proteomic
research in recent years, tremendous amounts of DNA and protein sequences have accumulated in
databases. The traditional techniques for protein research, such as Mass spectrometry, have been
proved correct but inefficient. Hence, it is highly desirable for computational biologists to develop a
practical approach that efficiently extracts relevant biological information from sequences to identify
the bacteriophage virion proteins.

Li et al. developed a system called SynFPS [8] to perform gene function prediction over completed
genomes. SynFPS clustered the genomes by their resemblance in gene distribution, and then, for each
individual group, the data is extracted and used to train a Support Vector Machine for gene function
predictions. In the work of Seguritan et al. [9], the frequency of amino acids extracted from the
protein sequence was used as input to train the Artificial Neural Networks (ANN) and subsequently,
protein isoelectric points were fed into ANNs to classify specialized families of proteins. Their aim
was to predict bacteriophage structural protein sequences by ANNs. Feng et al. proposed a Naïve
Bayes based method to identify bacteriophage virion proteins which achieved an overall accuracy of
79.15% in jackknife cross-validation [10]. Subsequently, they used the analysis of variance (ANOVA)
as the feature importance criterion to select the g-gap dipeptide as the important feature for the
bacteriophage prediction and then applied support vector machine (SVM) classifier to identify
bacteriophage virion proteins [11]. A list of 160 feature set was used to encode each protein sequence
of which they obtained an accuracy of 85.02% in jackknife cross-validation. Zhang et al. used an
ensemble method for bacteriophage virion protein prediction from bacteriophage protein sequences
which was put forward with hybrid feature spaces incorporating CTD, bi-profile Bayes, PseAAC and
PSSM [12]. Their method achieved an accuracy of 85.30% with 10-fold cross-validation. Shin et al. [13]
described an SVM-based PVP predictor called PVP-SVM which was trained with the same data.
The randomforest algorithm was employed to select the optimal features from a large set that
included amino acid composition, dipeptide composition, atomic composition, physicochemical
properties, and chain-transition-distribution. PVP-SVM achieved an accuracy of 86.97% in jackknife
cross-validation. The bacteriophage prediction is worthy of further investigating because the prediction
performance is still far from satisfactory.

In previous work, a g-gap dipeptide composition describing the long-range correlations
between two residues was proposed and had demonstrated its effectiveness in the realm of protein
identifications [14–16]. However, in most cases, the functional motifs of proteins are often constituted
with more than two discontinuous residues. Such useful information unfortunately could not be
successfully extracted by the g-gap dipeptide composition. To overcome this limitation, we proposed a
novel method to identify bacteriophage proteins using Multinomial Naïve Bayes (MNB) with g-gap
feature tree. A summary of the computational framework of our method is illustrated in Figure 1.
We firstly constructed a g-gap feature tree to pick out a number of informative features from protein
sequence information. We then used the discretization techniques to transform the top K optimal
features into qualitative data, obtained by ANOVA. The protein sequence of each sample in the
bacteriophage dataset was then transformed into a K-dimensional discrete feature vector. Finally,
we performed Multinomial Naïve Bayes classification on the discrete feature vectors of all samples to
establish the prediction model. Results from 10-fold cross-validation test demonstrate that the proposed
model achieves a remarkable improvement in overall accuracy. Based on this prediction model, a free
online server called PhagePred was built to provide a useful tool for identifying bacteriophage proteins.
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2. Results

2.1. Comparison of Discrete Feature Vector in Different Dimensions

For very high dimensional data (49,220 dimensions in this paper), using dimensionality reduction
techniques like Principal Component Analysis (PCA), Latent Dirichlet Allocation (LDA) or Probabilistic
Latent Semantic Analysis (PLSA), not only alter the original representation of the variables but they
are also computationally expensive [17]. A less expensive approach to dimensionality reduction is
feature selection, which reduces the number of features by selecting a subset from the original feature
set based on some chosen criteria. In particular, feature selection by ANOVA selects the top features
that have the highest differences between the means of two groups to remove redundant or irrelevant
features and improve classifiers’ accuracy. In order to find a minimum set of features that achieves
maximum classification performance (for a given set of classifiers and classification performance
metrics), the incremental feature selection was used to determine the optimal feature set. The accuracy
of the data reached its peak (98.37%) when the top ranked 6900 features were used. Figure 2 shows a
10-fold cross-validation accuracy with different numbers of features.
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2.2. Comparison of g-Gap Features with Others

Liu et al. [18] generated various feature vectors from the protein sequence that can be grouped
into three categories. The first category is the occurrence frequencies of k neighboring amino acids
(k-mer). The second category is autocorrelation, reflecting three different manners (auto covariance,
cross covariance, auto-cross covariance) in counting the correlations along a protein chain via amino
acid physicochemical properties. The third category is pseudo amino acid composition (PseAAC) for
incorporating the global or long-range sequence order information of protein sequences into feature
vectors via the physicochemical properties of constituent amino acids. Using the proposed model
with the feature mentioned above, the performance was depicted as shown in Figure 3. From Figure 3,
the best recorded accuracy of the combined-feature is 83.39% which is lower than our method.
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2.3. Comparison with Different Classifiers

Here we investigate whether or not the Multinomial Naïve Bayes classifier with discrete features
can significantly improve the performance of bacteriophage virion protein prediction compared with
other classifiers. The proposed method was compared with several state-of-the-art classifiers such as
xgboost, Random Forest, Adaboost classifier over Classification and Regression Trees (CART) and SVM.
The performance comparison of these different classifiers was obtained by 10-fold cross-validation
(as shown in Table 1). We compared the performance of Multinomial Naïve Bayes classifier with the
other classifiers using the same feature subset of size 6900. All models were tested on the dataset
containing 99 positive and 208 negative sequences.

Table 1. Comparison of PhagePred with other classifiers.

Classifier Sn (%) Sp (%) Acc (%) MCC (%)

xgboost 52.52 81.25 71.98 46.05
Random Forest 25.25 97.60 74.26 38.67

Adaboost + CART 52.53 88.94 77.20 41.03
SVM 73.74 90.87 85.34 65.92

PhagePred 96.97 99.04 98.37 96.27

Acc: accuracy, Sn: sensitivity, Sp: specificity, MCC: Matthew’s correlation coefficient, CART: Classification and
Regression Trees.
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As shown in Table 1, our method outperforms all other four classifiers in terms of all the specified
performance measures. Compared with Random Forest, the Sp value of MNB is improved from 97.60%
to 99.04%. The accuracy of MNB is raised by 13.03% compared with SVM. In order to compare the
performance of our model with other models more intuitively, we present the ROC curves for all five
models in Figure 4. The ROC Curves Chart in Figure 4 presents the true positive and false positive rate
on the test data at different thresholds for the classifiers using the top 6900 features. The area under
receiver operating characteristic curve (AUC) for PhagePred is 0.99 and the other classifiers are 0.91,
0.89, 0.82 and 0.88, respectively. The AUC for PhagePred is greater than the others, suggesting that
PhagePred may provide a better predictive method for bacteriophage virion proteins.
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2.4. Comparison with Existing Methods

In general, if a prediction model is developed using a training dataset that contains highly
homologous sequences, it may overestimate the prediction accuracy. In this regard, a lower homology
(<40% sequence identity) sequence dataset was used to develop prediction models in [10,11,13].
Zhang et al. developed their model using a highly homologous sequence dataset (<80% sequence
identity) [12]. In this paper, we compared the performance of our method with Naïve Bayes [10],
SVM [11], and PVP-SVM [13].

In previous work, Feng et al. used Naïve Bayes as classifier to predict bacteriophage virion
proteins [10]. A method named PseAAC was proposed to represent the protein sequences and
correlation-based feature selection combined with best-first search strategy was adopted to remove
irrelevant features. Feng et al.’s method achieved an accuracy of 79.15% in the jackknife test. With g-gap
dipeptide compositions as the features, ANOVA as the feature selection method and SVM as the classifier,
Ding et al. produced a maximum accuracy of 85.02% in jackknife cross-validation [11]. PVP-SVM in [13]
achieved an accuracy of 86.97% during jackknife cross-validation. By selecting the top 6900 F-score features
as the input to our model, we achieve a 98.05% accuracy score in the jackknife test. The performances
of the methods mentioned above are shown in Table 2. As shown in Table 2, the accuracy of our model
increased nearly 7% from the best method with the highest Acc, besides, the values of Sn and Sp were
increased by 20% and 5%, respectively. Although we use a larger feature set, due to the simplicity of the
Naïve Bayes model, the execution time of the method is within an acceptable range. When the size of
feature set is 160 (the same as [11]), the Acc of PhagePred is 86.97%, the Sn and Sp is 89.89% and 85.58%,
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respectively. It shows that PhagePred outperforms the existing methods even if a low dimensional feature
vector is used. The experimental results mentioned above demonstrate that our model outperforms all
other previous models on this dataset.

Table 2. Comparison of state-of-the-art methods with PhagePred.

Classifier Sn (%) Sp (%) Acc (%) MCC (%)

Naïve bayes 75.76 80.77 79.15 54.59
SVM 75.76 89.42 85.02 65.53

PVP-SVM 73.73 93.27 86.97 69.50
PhagePred 96.97 98.56 98.05 96.27

Acc: accuracy, Sn: sensitivity, Sp: specificity, MCC: Matthew’s correlation coefficient.

3. Discussion

Even though a number of computational methods have been used to predict bacteriophage virion
proteins, the performance of previous prediction models can still be enhanced. The functional motifs
are the signature of some protein family and are often constituted with two or three discontinuous
residues. In this work, we consider many more features according to the patterns extracted from
the g-gap tree. The maximum depth of g-gap feature tree is actually limited by the memory and
the processing time of the computer. The g-gap feature tree stops expanding when all the patterns
generated in the leaf nodes contain more than three amino acids residues or three gaps. After we
rule out all the sequence patterns that either begin or end with a gap, we obtain 10 patterns from
the tree, which corresponds to a big set of around 49,220 features. In comparison with other feature
extraction methods, the big set of features we extracted turn out to have a better discriminative
capability according to the result of the experiment (see Figure 2).

The Multinomial Naïve Bayes classifier assumes that the conditional probabilities of the
independent variables are statistically independent. In this work, the Multinomial Naïve Bayes
classifier is applied to predict the bacteriophage virion proteins, and it is capable of dealing with a
large amount of these features without causing the problem of overfitting. From Table 1, we can see
that the performance of our model outperforms all other classifiers.

4. Materials and Methods

4.1. Benchmark Dataset

The original dataset, described by [10], was collected from the UniProt [19]. To guarantee the
quality of the benchmark dataset, they excluded the protein sequence which contained ambiguous
residues (such as ‘X’, ‘B’ and ‘Z’). Secondly, if a sequence was a fragment of other proteins, it was
excluded from the dataset. Thirdly, to avoid any similarity bias which would result in an overestimation
of predicted results, the CD-HIT program [20] was used to remove highly similar sequences by setting
the cutoff of sequence identity at 40%. The remaining 99 bacteriophage virion proteins formed the
final positive dataset and 208 non-virion bacteriophage formed the negative dataset.

4.2. g-Gap Feature Tree

In this paper, we build a binary tree named g-gap feature tree to describe as many functional
motifs of proteins as possible. For each node of the g-gap feature tree, its value corresponds to a set of
g-gap features, which can be represented in the same form as a sequence pattern.

To define a sequence pattern, we use symbol ‘x’ to denote one of 20 amino acids (i.e., x ∈
{A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}), and symbol ‘−’ to denote one gap between
two discontinuous amino acids. The pattern xx denotes a set of all 20 × 20 = 400 dipeptides
(i.e., A, AC, . . . , YY), the pattern x − x denotes a set of all 20 × 20 = 400 one-gap dipeptides
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(i.e., A − A, A − C, . . . , Y − Y), and so on. To build the g-gap feature tree as depicted in Figure 5,
we start from a tree with only one node, which is both the root node and the leaf node. This single
node of the tree corresponds to a set of features that are in the form of pattern x. We repeat the
following process to expand the tree from every leaf node to its left and right until the patterns of all
leaf nodes contain more than three amino acids residues or three gaps. When a leaf node is expanded
to its left and right, the pattern of the new left child is the concatenation of the pattern of its parent
node with ‘x’, and the pattern of the new right child is the concatenation of the pattern of its parent
node with ′−′. After a leaf node expands to its left and right, it becomes an internal node of the
tree, and its two new children become new leaf nodes of the tree. The expanding process of the
tree terminates when all the leaf nodes stop expanding. We rule out all the sequence patterns that
either begin or end with a gap. So, all the patterns we generated from the g-gap feature tree are:
x, xx, xxx, x− x, x− xx, xx− x, x−−x, x−−xx, xx−−x, x− x− x.
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4.3. Discrete Feature Vector and Classifier

Based on protein sequence information, we first compute the frequency of every feature
corresponding to a node in the g-gap feature tree. In this way we transform the sequence into
quantitative features. Then, we calculate the F-score by ANOVA to evaluate the discriminative
capability of all the features in the tree. After that, we sort the features by ascending order of their
F-scores and choose the first K features as the result of feature reduction. For the chosen K features,
we discretize these continuous valued data into discrete data by the discretization process. In that
way, we can convert each sequence sample in the bacteriophage dataset into a K dimensional discrete
feature vector (DFV), and later feed the discrete feature vectors of all the samples into the Multinomial
Naïve Bayes classifier for identifying the bacteriophage virion protein.

4.3.1. Transformation

The density of every feature corresponding to a node in the g-gap feature tree was used to
transform the protein sequences into quantitative features. For convenience of discussion, we denote a
query protein sequence with L amino acid residues as

p = s1s2s3 . . . sL (1)

where s1 represents the residue at position 1, s2 represents the residue at position 2, and so forth. In the
sequence p, each residue si (1 ≤ i ≤ L) belongs to a set of 20 different amino acids. We compute the
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density [21] of feature f (jth feature in the feature set) based on local protein chain description [22] of p
(ith sample in the dataset) as follows:

fi,j = densityp, fi,j
=

1
L′

L′

∑
k=1

I(pk)) (2)

where fi,j is the frequency of ith feature of the jth sample; L′ denotes the total number of the sliding
subsequence concerned; pk is the kth sliding subsequence in sequence p, and

I(pk) =

{
0, i f pk == the f eature concerned.
1, otherwise.

(3)

4.3.2. ANOVA

The one-way ANOVA test is based on F statistic. The higher the F ratio value, the better the
discriminative capability of the feature [23]. F ratio is calculated for each of the feature f (jth in the
feature set) in this study as follows:

Fj =
MSbetween
MSwithin

=
SSbetween
d fbetween

/
SSwithin
d fwithin

=
∑M

µ=1 nµ( f (µ)− f )2

M− 1
/

∑M
µ=1 ∑N

i=1 ( fi,j(µ)− f (µ))
2

N −M
(4)

where M and N denotes the number of classes and the total number of samples, respectively. f (µ) is
the mean of considered feature for the µth class, f is the grand mean of feature f considering all classes
in all samples, fi,j(µ) represents the value of feature f of the ith sample of the jth feature on the µth class
and nµ is the number of samples for the µth class.

4.3.3. Discretization

Discretization is a process that transforms quantitative data into qualitative data. A many to one
mapping function is created so that each value of the original quantitative attribute is mapped onto
a value of the new qualitative attribute. Discretization is considered as a data reduction mechanism
since it diminishes data from a large domain of continuous data values to a subset of categorical
values. Compared with continuous attributes, discretization is easy to handle and closer to knowledge
level representation [24]. In this paper, an unsupervised discretization method was used to regroup
the density of amino acids into three classes. Namely, class 0 represents low concentration of amino
acids, 1 and 2 denote the mid and high concentration respectively. In order to split the continuous
data into the non-overlapping domain, we first sort the data by either descending or ascending order,
and then find the optimal cut-off point for the specific feature. Precisely, the cut-off points for each
attribute must be considered respectively. Next, we explain these discretize processes in detail. For the
discretization of feature f = fi,j, we first sort the continuous values of the feature f by ascending order
and then evaluate a cut-off point for splitting. The samples whose density was 0 were mapped into the
symbol 0, and those were excluded from the samples we used to find the cut out point. The median
(m) of non-zero samples’ value was used as the optimal cut-off point, through which we obtain the
two intervals for the feature f : (0, m] and (m, ∞]. We then, split the continuous values to the discrete
symbol in accordance with the divided intervals. For example, if fi,j ∈ (0, m], the jth feature of ith
sample is labeled with symbol 1; if fi,j ∈ (m, ∞], the jth feature of ith sample is labeled with symbol 2.
In this way, the original features’ value will be mapped into the discrete value 0, 1, 2 as expected.

4.3.4. Multinomial Naïve Bayes

The Naïve Bayes Classifier [25] technique is based on the so-called Bayesian theorem and is
particularly suited when the dimensionality of the inputs is high. In order to reduce the complexity
of this high dimensionality, the Naïve Bayes classifier assumes that the conditional probabilities
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of the independent variables are statistically independent. Despite its simplicity, Naïve Bayes
often outperforms some more sophisticated classification methods [26]. To demonstrate the Naïve
Bayes Classification, for example, consider the ith example p which composed of n features
( fi,1, fi,2, . . . , fi,n), fi,j ∈ {0, 1, 2}, j = 1, 2, 3, . . . , n, the Naïve Bayes algorithm predicts the class of
p (denoted by ŷ) as that

ŷ = argmaxµ(P(y = µ|X)) = argmaxµ

(
P(X|y = µ)P(y = µ)

P(X)

)
∝ argmaxµ(P(X|y = µ)P(y = µ))

(5)
Multinomial Naïve Bayes assumes that each P(x|y = µ) is a multinomial distribution, so that

P(X|y = µ) =
n

∏
i=1

P(xi|y = µ) =
n

∏
i=1

nj(µ) + α

nj + nα
(6)

where nj(µ) denotes the sample number of the jth feature in the µth class.

4.4. Evaluation Measurements

To test the robustness of our method, we repeat the process of random selection of the training
and test sets, model-building and model-evaluating on four parameters: overall prediction accuracy
(Acc), sensitivity (Sn), specificity (Sp), Matthew’s correlation coefficient (MCC) [27–33] which would
help us in determining how well the model would be generalized to new datasets. These parameters
are defined as follows:

Sn =
TP

TP + FN
× 100%

Sp =
TN

TN + FP
× 100%

Acc =
TP + TN

TP + FN + TN + FP
× 100%

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
× 100%

(7)

where TP, TN, FP and FN represent true positive, true negative, false positive and false negative,
respectively. In our experiment, the Acc is the proportion of true results (the percentage of correctly
identified bacteriophage virion and non-virion protein) among the total number of samples. The Sn
is the proportion of bacteriophage virion protein that were correctly identified. The Sp measures the
proportion of non-virion bacteriophage protein that was correctly identified. The MCC is a more
stringent measure of taking into account true and false positives and negatives. In addition, it is a
correlation coefficient between the observed and predicted binary classifications. The MCC returns a
value in [−1, +1]. A coefficient of −1 indicates the disagreement between prediction and real facts,
0 is nearly random prediction, and +1 represents a perfect prediction. To depict the tradeoff between
sensitivity and specificity (any increase in sensitivity will be accompanied by a decrease in specificity),
the receiver operating characteristic (ROC) curves are also provided. The area under the curve is
a measure of discrimination, that is, the ability of the test to correctly classify the bacteriophage
virion proteins.

5. Web Server

User-friendly and publicly accessible web-servers [34–44] or databases [45–47] represent the
future direction for developing practically more useful tools. Thus, a user-friendly web server called
PhagePred was constructed for our work. Users may access the web server at http://bigroup.uestc.
edu.cn/bacteriophage. The input of the web server is a set of protein sequences, which can either be
uploaded as a single file or copied/pasted into the input box. Note that the input protein sequence

http://bigroup.uestc.edu.cn/bacteriophage
http://bigroup.uestc.edu.cn/bacteriophage
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should be in the FASTA format. The FASTA format sequence consists of a single initial line beginning
with a greater-than symbol (“>”), followed by lines of amino acid sequence. After submitting the
protein sequences and clicking the submit button, the predicted results will be shown in a new interface.
For example, if you use the query sequences in the Example window as the input, you will see the
following outcome on the screen: the 1st query example is identified as “bacteriophage virion” with
probability 1; the 2nd query sample is identified as “bacteriophage non-virion” with probability 1.
All these results are fully consistent with the experimental observations.

6. Conclusions

The application of bacteriophage virion proteins has wide medical and commercial value,
which explains the interest in the identification of novel bacteriophage virion proteins. In fact, prediction
of bacteriophage virion proteins does not only help in the discovery of many still unknown functions
of bacteriophage but also in facilitating the design of new commercial and medical applications.
Though some researchers have focused on this problem, the accuracy of prediction is still not
satisfied. In this study, a Multinomial Naïve Bayes based approach was applied to the prediction
of bacteriophage virion proteins by using sequence derived properties. The features generated from the
g-gap feature tree contain more functional motifs than other methods, and they could better characterize
the properties of bacteriophage virion proteins. Multinomial Naïve Bayes often outperforms some
more sophisticated classification methods since it can effectively solve the problem of overfitting
according to the experimental results. The high prediction accuracy on the training and testing datasets
show that PhagePred is potentially a useful tool for predicting bacteriophage virion proteins from
primary sequence. Because of its simplicity, this approach can easily be extended to recognizing other
specific functional properties and should be a useful tool for high-throughput and large-scale analysis
of proteomic and genomic data. Map-reduce techniques may be considered in future works [48].
The PhagePred program and dataset is available at http://bigroup.uestc.edu.cn/bacteriophage.
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