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ABSTRACT 
Ampelopsis delavayana Planchon. ex Franch 1886 is a plant with significant pharmacological effects and 
ornamental importance. This research unveiled the complete chloroplast (cp) genome sequence of 
A. delavayana. The study highlights that the cp genome of A. delavayana possesses a distinct tetra-
meric structure spanning 162,497 base pairs, comprising a small single-copy (SSC) region of 18,902 
base pairs, a large single-copy (LSC) region of 90,441 base pairs, and two inverted-repeat regions (IRs), 
each 26,577 base pairs in length. The GC content of the SSC, LSC, and IR regions of the genome was 
31.80%, 35.16%, and 42.82%, respectively, culminating in an overall GC content of 37.27%. The genome 
comprised 130 genes, which included eight rRNAs, 36 tRNAs, and 86 protein-coding genes. Through 
phylogenetic analysis utilizing the maximum-likelihood method, it was established that A. delavayana 
was closely related to Ampelopsis glandulosa var. brevipedunculata, positioning it as a sister species. 
This report not only provides a scientific reference for understanding the phylogeny of the family 
Vitaceae but also enriches our genetic information of Ampelopsis.
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Introduction

Ampelopsis delavayana Planchon. ex Franch 1886, a species 
of woody vines within the Ampelopsis genus in family 
Vitaceae, is predominantly found in southern China (Editorial 
Committee of Flora of China 2007). Its roots and root bark 
have been utilized in traditional Chinese medicine for their 
reputed abilities to clear heat, remove toxins, dispel wind, 
and activate collaterals (Chinese Pharmacopoeia Commission 
2005). Recent pharmacological research on A. delavayana has 
highlighted its richness in flavonoids, especially dihydromyri-
cetin, suggesting its potential efficacy in mitigating high-fat, 
high-sugar, and related diseases (Zhang et al. 2024).

In this study, we employed high-throughput sequencing 
technology to assemble and annotate the chloroplast (cp) gen-
ome of A. delavayana. Our investigation focused on analyzing 
the structural characteristics of its cp genome and predicting its 
affiliations with closely related species in family Vitaceae. The 
aim was to provide a theoretical foundation for its classification 
within the family and elucidate its evolutionary relationships.

Materials and methods

The fresh leaf samples of A. delavayana utilized in this study 
were gathered from Enshi, Hubei, China (109�290E, 30�170N, 

altitude: 433 m) (Figure 1). The plant collection was authorized 
by the College of Forestry and Horticulture at Hubei Minzu 
University. Specimens were preserved in the Key Laboratory 
Building of the College of Forestry and Horticulture at Hubei 
Minzu University (https://www.hbmzu.edu.cn/linxy/, contact 
person: Qun Hu, email: 2811316096@qq.com) with the voucher 
number 20230507001. After collection, total cp genome DNA 
from the fresh leaves of A. delavayana was extracted using the 
modified cetyltrimethylammonium bromide (CTAB) method 
(Spadoni et al. 2019). Subsequently, the cp genome was 
sequenced on the Illumina HiSeq 2500 platform (San Diego, 
CA), generating 3.40 GB of raw data. The Biological Project 
Accession number for the original sequence data, maintained 
by NCBI SRA, is SRR26076561. Following quality control, the ini-
tial 20,000,000 reads were utilized to assemble the A. dela-
vayana cp genome using the GetOrganelle software (Jin et al. 
2020). The raw data underwent mapping to the cp genome 
sequence using HSAT2 software, and the resulting depth of 
coverage was depicted in Supplemental Figure S1 (Kim et al. 
2019). The cp genome of Ampelopsis glandulosa (NC_072280.1) 
served as a reference to annotate the A. delavayana cp gen-
ome sequence. This annotation process was carried out using 
the online software CPGAVAS2 (http://47.96.249.172:16019/ 
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analyzer/home) as described by Shi et al. (2019). Subsequent to 
manual review and adjustments, the annotation results were 
submitted to NCBI GenBank (OR540411). To ascertain the 
phylogenetic position of A. delavayana within the family 
Vitaceae, cp genome sequences of 23 other species from family 
were chosen to construct a maximum-likelihood (ML) phylo-
genetic tree. Rosa cymosa (MT471268) and Berchemia berchemii-
folia (MG739656) were utilized as outgroups. The sequences for 
this analysis were obtained from NCBI GenBank. After multiple 
comparisons and alignments of 68 protein-coding gene 
sequences shared among the 26 sequences, sequence concat-
enation and optimization were carried out using MAFFT v7.313 
(Katoh et al. 2019). An ML-based phylogenetic tree was then 
constructed for the optimized 26 sequences using IQ-TREE 
v.1.6.8. The GTR þ F þ I þ G4 model was identified as the 
best fit by BIC (Ronquist and Huelsenbeck 2003; Nguyen et al. 
2015).

Results

The cp genome of A. delavayana spanned 162,497 bp and 
was segmented into four distinct regions: a small single-copy 
(SSC) region measuring 18,902 bp, a large single-copy (LSC) 
region spanning 90,441 bp, and two inverted-repeat regions 
(IRs), each 26,577 bp in length (IRA, IRB) (Figure 2). The GC 
content of the SSC, LSC, and IR regions was 31.80%, 35.16%, 
and 42.82%, respectively, resulting in an overall GC content 
of 37.27%. Within the genome were 130 genes, encompass-
ing eight rRNAs, 36 tRNAs, and 86 protein-coding genes. 
Both IR regions duplicated seven tRNAs (trnM-CAU, trnN-GUU, 
trnI-GAU, trnR-ACG, trnA-UGC, trnV-GAC, and trnL-CAA), four 
rRNAs (rrn16S, rrn23S, rrn5S, and rrn4.5S), and seven protein- 
coding genes (ycf15, ycf2, rps7, rps12, ndhB, rpl23, and rpl2). 
The genome contained introns in five tRNAs and 13 protein- 

coding genes, with the clpP, ycf3, and rps12 genes each con-
taining two introns (Supplemental Table S1). The structures 
of the 16 proteins encoding trans and cis spliced genes were 
depicted in Supplemental Figure S2, with rps12 being identi-
fied as the trans spliced gene. A total of 74 simple sequence 
repeats (SSRs) were detected in the cp genome of A. dela-
vayana, comprising 66 mononucleotides (T/A) and eight 
dinucleotides (TA/AT) (Supplemental Table S2). The ML tree 
results indicate the clustering of all six species of 
Ampelopsis (Figure 3). Within the genus Ampelopsis, A. dela-
vayana and A. glandulosa var. brevipedunculata are positioned 
on a single branch, implying a closer relationship between 
them.

Discussion and conclusions

The cp genome structure and GC content of A. delavayana 
closely align with those of other Ampelopsis species (Raman 
and Park 2016; Luo 2023). Notably, the LSC and IR regions of 
A. delavayana expanded, while the SSC region contracted 
compared to those in Vitis species (Guo 2021; Zhang et al. 
2022). This variation may contribute to the differences 
observed in genome lengths. The SSRs in cp genomes exhibit 
high polymorphism and genetic stability, establishing them 
as valuable markers for genetic studies to elucidate evolu-
tionary relationships among species (Cato and Richardson 
1996). These findings are crucial for species identification and 
the development of new cultivars.

The phylogenetic results indicate a closer relationship 
between the genera Ampelopsis and Nekemias, suggesting 
that they may be sister genera. Ampelopsis cordata and 
Nekemias arborea are the first branches of their respective 
genera, indicating that they may have an older evolutionary 
history compared to other species in their genera. These 

Figure 1. Species reference images of A. delavayana. (A) Morphological features of A. delavayana leaves. (B) Whole plant of A. delavayana. Core features: Terete 
branches, three-lobed leaves with elliptic-lanceolate leaflets, and dichasial cymes. This image, taken by Jiaqi Wu, is confirmed for our use with his permission.
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findings align with previous research (Luo 2023; Zhang et al. 
2024). This study partially reveals the evolutionary relation-
ships between A. delavayana and its closely related species. 
However, due to limitations in the available data, the phylo-
genetic relationships within the Ampelopsis genus could not 
be fully explored. Future research should focus on a more 
comprehensive integration of the cp genome of Ampelopsis 
genus to fully elucidate phylogenetic system.

In summary, this report offers a detailed analysis of the cp 
genome of A. delavayana and clarifies its phylogenetic pos-
ition, providing essential data for future phylogenetic and 
genetic studies.
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