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Atlas of breast cancer infiltrated B-lymphocytes
revealed by paired single-cell RNA-sequencing and
antigen receptor profiling
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Linlin Gao1, Zhiyi Jing1, Jiawen Wang1, Tao Cai 1 & Yu Zhang 1,2,4✉

To gain mechanistic insights into the functions and developmental dynamics of tumor-

infiltrated immune cells, especially B-lymphocytes, here we combine single-cell

RNA-sequencing and antigen receptor lineage analysis to characterize a large number of

triple-negative breast cancer infiltrated immune cells and report a comprehensive atlas of

tumor-infiltrated B-lymphocytes. The single-cell transcriptional profiles reveal significant

heterogeneity in tumor-infiltrated B-cell subgroups. The single-cell antigen receptor analyses

demonstrate that compared with those in peripheral blood, tumor-infiltrated B-cells have

more mature and memory B-cell characteristics, higher clonality, more class switching

recombination and somatic hypermutations. Combined analyses suggest local differentiation

of infiltrated memory B-cells within breast tumors. The B-cell signatures based on the single-

cell RNA-sequencing results are significantly associated with improved survival in breast

tumor patients. Functional analyses of tumor-infiltrated B-cell populations suggest that

mechanistically, B-cell subgroups may contribute to immunosurveillance through various

pathways. Further dissection of tumor-infiltrated B-cell populations will provide valuable clues

for tumor immunotherapy.
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A lthough the roles of the immune system in tumor devel-
opment and therapy were proposed long ago, they have
only been recognized and mechanistically investigated

recently1,2. Both the innate immune system (macrophages, neu-
trophils, mast cells, myeloid cells, dendritic cells, and natural
killer (NK) cells) and adaptive immune system (T and B lym-
phocytes) contribute to the establishment of an immunosup-
pressive tumor microenvironment, which is one of the hallmarks
of cancer3. More specifically, the adaptive immune system creates
immunological memory after an initial response to a specific
antigen (e.g., tumor antigen) and leads to an enhanced response
during subsequent encounters with that antigen to provide long-
lasting protection. Therefore, it plays essential roles during tumor
development in the cancer immunosurveillance hypothesis and
immunoediting hypothesis4.

While it is well acknowledged that T lymphocyte-mediated
adaptive cellular immunity has critical functions in the immune
response for tumors5, the roles of B lymphocytes in tumor
development and therapy, both positive and negative, have only
been proposed very recently and are still mostly controversial6–13.
B cells may participate in tumor immunology through antibody
production, antigen presentation, cytokine and chemokine pro-
duction, and other immunoregulatory mechanisms14–17. For
example, regulatory B (Breg) cells may play important roles in
maintaining immune homeostasis by secreting cytokines (e.g., IL-
10) and/or interacting with target cells6,7,18,19. Interestingly, three
recent studies20–22 demonstrated that B cells and tertiary lym-
phoid structures (TLSs) could be associated with better outcomes
when individuals undergo immunotherapy, although the detailed
cellular and molecular mechanisms still need to be defined.

Tumor-infiltrating T (TIL-T) cells have recently been char-
acterized in several human cancer types by single-cell RNA
sequencing (RNA-seq)23–30. However, a comprehensive atlas of
tumor-infiltrating B (TIL-B) cells is still missing. B cells recognize
antigens through B cell receptors (BCRs). The diversity of BCRs is
generated by V(D)J recombination, somatic hypermutation
(SHM), and class switch recombination (CSR) during B cell
development and differentiation31,32. Antigen receptor repertoire
analysis provides direct developmental lineage information32,33.
To gain mechanistic insights into the functions and develop-
mental dynamics of infiltrating immune cell, especially B cell,
subgroups in breast cancer, we combined antigen receptor clonal
lineage analysis and single-cell RNA-seq analysis to present an
atlas of the BCR repertoire, clonal lineage, and transcriptional
characteristics of TIL-B cells, which will serve as a foundation for
studies of B cell tumor immunology.

Results
Human breast cancer is a heterogeneous disease and contains
several histologically different subtypes34,35. We analyzed infil-
trated hCD45+ immune cells in freshly isolated breast cancer
samples by flow cytometry and found that the presence of
infiltrated hCD19+/20+ B cells was significantly higher in triple-
negative breast cancer (TNBC) than in other breast cancer sub-
types (Supplementary Fig. 1). To characterize infiltrated immune
cells, especially B cells in human breast cancer, we purified
hCD45+ cells from surgically isolated breast cancer tissues and
corresponding peripheral blood mononuclear cell (PBMC) sam-
ples from six TNBC (TNBC1–6 and PBMC1–6), three luminal A
breast cancer (LABC7–9 and PBMC7–9), and one HER2-positive
breast cancer (HER2BC10 and PBMC10) treatment-naive
patients (Fig. 1a). Among the samples from these ten patients,
nine pairs (TNBC2–6, LABC7–9, HER2BC10, and PBMC2–10)
were used to prepare 5′ single-cell RNA-seq libraries by droplet-
based (10× Genomics) technology26,36, while one pair (TNBC1

and PBMC1) was used for 3′ library construction (Supplementary
Tables 1 and 2). In addition, single-cell immune repertoire
information, including both BCRs and T cell receptors (TCRs),
was also obtained for all 5′ libraries (Supplementary Table 3 and
Supplementary Data 1).

Histological analysis, immunohistochemistry (IHC), and
fluorescence in situ hybridization (FISH) were used to confirm
the subtypes of breast cancer samples (Fig. 1a). Tumor-infiltrating
lymphocytes (TILs) in the tumor stroma were assessed as per-
centages of occupied stromal areas according to the guidelines of
the International TIL Working Group37,38 (Fig. 1a).

After quality control and removing potential cell doublets39, we
obtained whole-genome RNA-seq data for 44,497 single cells with
1573 median genes per cell from ten tumor samples and
68,441 single cells with 1651 median genes per cell from
the corresponding peripheral blood samples (Supplementary
Table 2). Unsupervised clustering40 at low resolution for these
112,938 single cells from all sequenced samples revealed four
major cellular clusters, including T cells (marked by CD3D
expression), B cells (CD20), NK cells (NKG7), and macrophages/
monocytes/neutrophils (CD14) (Fig. 1b and Supplementary
Fig. 2a). Cells from different samples contributed similarly to
each cluster, suggesting a lack of sample batch effect (Supple-
mentary Fig. 2b–d and Supplementary Table 4). The distributions
of different infiltrated lymphocyte clusters in each tumor were
heterogeneous across patients (Fig. 1c). For example, the per-
centages of B cells in tumor samples varied between 4.6% and
50.5%, with an average of 22.1%. T and NK cells constituted
21.4–73.7% (average 46.2%) and 0.5–5% (average 2.6%),
respectively.

With the 10× Genomics 5′ V(D)J and gene expression chro-
mium platform, we identified the rearrangement status of antigen
receptor loci in each B and T cells. After quality control, we
assembled rearranged BCRs (IGH) and TCRs (TCR α-β pair) for
26,401 single B cells and 44,621 single T cells, respectively, in all
samples except TNBC1/PBMC1 (Supplementary Fig. 3 and
Supplementary Table 3). Among them, there were 5951 and
16,485 single B cells containing a single productive IGH allele for
BC and PBMC samples, respectively (Supplementary Fig. 3). As
TNBC tumors have significantly more infiltrated B cells (Sup-
plementary Fig. 1b), in the rest of the analysis, we focused mainly
on B cells from the five TNBC patients (TNBC2–6 and
PBMC2–6). Analysis of the single productive IGH rearrange-
ments from 3695 infiltrated B cells in TNBCs and 8037 B cells
from their corresponding PBMCs did not reveal significantly
different VH, DH, or JH gene usage between the tumor and
PBMC samples (Supplementary Fig. 4a). However, B cells infil-
trated in TNBC contained a higher percentage of IGG-positive
cells and a lower percentage of IGM- and IGD-positive cells than
those in peripheral blood (Fig. 2a and Supplementary Fig. 4b). In
agreement with this finding, the percentages of B cells with
germline productive IGH alleles were significantly lower in TNBC
tumors (Fig. 2a), suggesting that most of the B cells infiltrated in
TNBC had encountered antigens and experienced BCR activa-
tion. SHM analysis41,42 demonstrated that overall, TNBC-
infiltrated B cells had significantly more IGH mutations than
PBMCs (Fig. 2b). Interestingly, this difference was not only due to
lower percentages of germline IGH-containing cells in tumor-
infiltrated B cells. The SHM rates in non-germline and non-
switched (IGM- and IGD-positive) B cells were also significantly
higher in tumors than in PBMCs (Fig. 2b). Overall, there was no
significant difference between TNBC and PBMC samples for IGH
mutation types except G > T (Supplementary Fig. 4c–d).

We could identify individual B cells containing the same
rearranged and mutated IGH alleles and B cell clones within
which all B cells shared the same germline IGH (Supplementary
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Fig. 4e)33. As shown in Fig. 2c, TNBC-infiltrated B cells contained
significantly higher percentages of B cell clones (19% vs. 7%),
which were also larger and more complex than the clones in
PBMCs (Fig. 2c and Supplementary Fig. 4f). The SHM rates in
clones from TNBC samples were higher than those in clones from
PBMC samples (Fig. 2d). Different tumor samples did not share
common B cell clones.

Public clones were clonotypes shared by different cohorts43,44.
When matching the clonotypes of TNBC patients to the dataset
from Briney et al.45, public clones were detected in both PBMC
and TNBC samples, with 2.50% (193) in PBMCs and 2.23% (72)
in TNBC, and the difference was not significant between TNBC
and PBMCs (p= 0.45) (Supplementary Fig. 4g).

As in TNBC tumors, the infiltrated B cells in LABC and
HER2BC tumors also showed similar BCR (IGH) phenotypes
(Supplementary Fig. 5).

To further dissect the cellular diversity of infiltrated B cells in
TNBC, we analyzed 2526 and 6106 single B cells that have both
RNA-seq data and a single assembled productive IGH allele in tumor
and peripheral blood samples, respectively. Unsupervised clustering
of the combined samples (TNBC2–6 and PBMC2–6) at low reso-
lution revealed four clusters with distinct transcriptional signatures
(Fig. 3a, b, Supplementary Figs. 6–8, Supplementary Table 5 and
Supplementary Data 2). Cells from different tumor and blood
samples contributed to each cluster, suggesting a lack of sample
batch effects and conserved differentiation processes (Supplementary
Fig. 7c, d and Supplementary Table 5). These four clusters included
naive B cells (IGM+ and IGD+), memory B cells (CD27+), plasma
cells (CD38+), and CD14+ atypical B cells (CD14+). In agreement
with the BCR results above, B cells infiltrated in TNBC samples were
mostly memory B cells, whereas PBMC samples contained more
naive B cells (Fig. 3c). The IGH SHM rates of memory B cells and

Fig. 1 Heterogeneity of immune cells in human breast cancer patients. a Clinical information of breast cancer patients involved in the current study. b The
t-distributed stochastic neighbor embedding (t-SNE) projection of the immune cell atlas constructed from all patient samples. Each dot represents a cell,
and major cell types are marked according to Supplementary Fig. 2a. c Distribution of major infiltrated immune cell types in each breast cancer sample.
Source data are provided as a source data file.
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plasma B cells were significantly higher than those of naive B cells
(Supplementary Fig. 9a, b). Overall, the SHM rates of different B cell
groups in TNBC were higher than those in PBMCs, except that
plasma cells had higher SHM rates in PBMCs than in TNBCs
(Supplementary Fig. 9c, d).

With the precise IGH V(D)J and SHM information for each
single B cell, we were able to trace the proliferation and differ-
entiation of B cells in tumors. After normalization, in a heat map
to demonstrate the intra- and intercluster distribution of B cell
clones with the same IGH germline (Fig. 3d), we found that in
TNBC infiltrated B cells, memory B cells had the most clones
which share the same inferred IGH germline, and plasma cells
had the most clones with the same detected IGH sequence.

At higher resolution, unsupervised clustering further separated
8632 single B cells into thirteen clusters with distinct

transcriptional signatures (Fig. 4a, b, Supplementary Fig. 8b,
Supplementary Fig. 10a–d, Supplementary Table 6, and Supple-
mentary Data 3). By combinatorically analyzing the expression of
known B cell marker genes46–48 and productive IGH sequences,
we annotated these 13 subgroups. They included naive B cells (C1
and C2), IGM+CD27+ memory B cells (C3, C4, C6, and C7),
IGM+CD27− atypical memory B cells (C5), class-switched
memory B cells (C8–C10), plasma cells (C11), germinal center
B cells (C12), and CD14+ atypical B cells (C13). The composition
of those B cell clusters was different between tumor and PBMC
samples (Fig. 4c and Supplementary Fig. 11).

The presence of germinal center B cells (C12), CD1CHigh

memory B cells (marginal zone B cells, C6)49, and various class-
switched memory B cell subgroups (C8–C10) in TNBC tumors
suggested locally ongoing CSR and SHM in potential TLSs50,51

Fig. 2 Single-cell IGH analysis of B cells in tumor and peripheral blood samples from TNBC patients. a Distributions of IGH isotypes and germline IGH in
B cells from triple-negative breast cancer (TNBC) and peripheral blood mononuclear cell (PBMC) samples. The p values were calculated by two-tailed
paired Student’s t test. b Comparisons of IGH class switching recombination (CSR) and somatic hypermutation (SHM) between B cells from TNBC and
PBMC samples. The left bar plot presents the percentages of cells that have germline or non-germline and class-switched or non-switched IGH alleles. The
violin plots from left to right show the comparisons of SHM rates for all B cells, for non-germline and class-switched B cells, and for non-germline and non-
switched B cells. The p values were calculated by two-tailed Student’s t test. c TNBC tumors contained significantly more and larger B cell clones. The
percentages of clonal B cells in all B cells are presented by the upper pie charts, and the p value was calculated by two-sided Fisher’s exact test using SPSS
software. The size distribution of B cell clones shows that TNBC samples have larger B cell clones than PBMC samples. The p value was calculated by two-
tailed Student’s t test. d TNBC clones have higher IGH mutation frequencies than PBMC clones. The average IGH mutation frequencies of each clone are
plotted versus the percent of clones with that mutation frequency. The p value was calculated by the two-sided Kolmogorov–Smirnov test. Source data are
provided as a source data file.
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Fig. 3 Single-cell transcriptome analysis and IGH lineage analysis of B cells from TNBC patients at low resolution. a The t-SNE projection of 8632 B cells
from TNBC patients shows four major cellular clusters. b Selected marker genes to define each B cell cluster. c The distributions of four clusters in each
patient sample. The p values were calculated by two-tailed paired Student’s t test. d Heat maps show the distribution of the same IGH germline events
(upper panel) and the same IGH sequence events (lower panel) among the four B cell clusters for TNBC and PBMC samples. The same germline events
were calculated using clonally related B cells, and the same IGH sequence events were calculated using B cells with the same observed IGH sequences.
Then, the event numbers were normalized by the cell numbers of related B cell clusters and plotted in the heatmap. See “Paired BCR and single-cell
RNA-seq data analyses” in the “Methods” section for details. Source data are provided as a source data file.
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Fig. 4 Single-cell transcriptome analysis and IGH lineage analysis of B cells from TNBC patients at a higher resolution. a The t-SNE projection of 8632 B
cells from TNBC patients shows 13 major cellular clusters at a higher resolution. b Selected marker genes to define each B cell cluster. c The distributions of
13 clusters in each patient sample (upper panel: PBMC; lower panel: TNBC). X represents B cell clusters, and Y represents the cell percentage in each
sample. Each dot represents one sample, and error bars represent the mean ± standard deviation (SD) of the five samples. d Heat maps show the
distribution of the same germline event number (upper panel) and the same IGH sequence event number (lower panel) among the 13 B cell clusters for
TNBC and PBMC samples. The same germline events were calculated using clonally related B cells, and the same V(D)J sequence events were calculated
using B cells with the same observed IGH sequences. Then, the event numbers were normalized by the cell numbers of related B cell clusters and plotted in
the heatmap. See “Paired BCR and single-cell RNA-seq data analyses” in the Methods section for details. Source data are provided as a source data file.
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within tumors. We identified T follicular helper (Tfh) cells in the
T cell clusters (Supplementary Results). Moreover, germinal
center (C12) B cells expressed high levels of activation-induced
cytidine deaminase (AICDA) and MKI67, and demonstrated a
strong proliferation gene signature (Supplementary Fig. 10e). We
also confirmed TLS structures in TNBC samples by immuno-
histochemical staining for CD20, CD3, CD21, Ki-67, and PNAd
(Supplementary Fig. 12a) and multiplex immunofluorescence
staining for CD20, CD3, and CD21 (Supplementary Fig. 12b). By
multiplex immunofluorescence staining for CD20, CD3, and Ki-
67, we also identified the putative proliferating germinal center B
cells in TNBC samples (Supplementary Fig. 12c). All these results
suggested the existence of functionally active germinal centers in
TNBC tumor tissues52.

We also tried to identify the potential Breg cells in TNBC.
Although IL-10 expression could be well detected in monocytes
and macrophages, we could not identify a specific IL-10-expres-
sing B cell population (Supplementary Fig. 13a, b). This was
similar for granzyme B (GZMB) and PDCD1 expression, two
other Breg marker genes (Supplementary Fig. 13c–f).

As in TNBC, the TIL-B subgroup distributions in LABC and
HER2BC were similar. The memory B cell subgroup was the
dominant B cell subgroup in cancer, and the percentage of
memory B cells was significantly higher than that in PBMCs,
while the percentage of naive B cells was significantly lower than
that in PBMCs (Supplementary Fig. 14).

To test whether the TIL-B subgroup distribution is cancer type-
specific, we mapped TIL-B cell data from colon cancer (n= 2),
lung cancer (n= 2), and renal cancer (n= 3)53 to the 4 subgroups
or 13 subgroups of B cells. The memory B cell subgroup was the
main TIL-B subgroup in all of the above cancer types, and the
percentage distribution of the 4 B cell subgroups was similar
among different cancer types (Supplementary Fig. 15a). For the
percentage distribution of the 13 B cell subgroups, samples from
the same cancer type tended to be clustered together with each
other in the subject clustering analysis, though more samples for
each cancer type were needed to further confirm this clustering
result (Supplementary Fig. 15b, c).

In TNBC samples, mainly non-switched memory B clusters
(C4–C7) were significantly involved in IGH BCR clonal trees
(Fig. 4d). In particular, the CD27− atypical memory B cells (C5)
had the highest intracluster diversity, suggesting more SHMs
within this cluster. In TNBC, CD27− atypical memory B cells also
shared the same germline significantly with IGM+CD27+ mem-
ory B cells (C4), CD1CHigh memory B cells (C6), and CD24High

memory B cells (C7).
In the heat map for the same IGH sequences within and

between different B cell clusters (Fig. 4d), plasma cells (C11) had
the highest percentages of cells with the same IGH allele within
clusters in both TNBC and PBMC samples, suggesting their
clonal expansion. However, these plasma cells (C11) had the
lowest proliferation score (Supplementary Fig. 10e). Interestingly,
in TNBC, CD1CHigh memory B cells (marginal zone B cells, C6)
also showed significantly higher clonal expansion than the other
clusters. In addition, CD1CHigh memory B cells shared significant
amounts of the same IGH with other B cell clusters, such as
CD99High memory B cells (C10), plasma cells (C11), and non-
switched memory B clusters (C4–C7).

Recently, a subpopulation of T cells, which is associated with
active proliferation and tumor reactivity, has been revealed by
single-cell analysis of infiltrated T cells in human melanoma25. In
our TNBC samples, some infiltrated T cells also showed sig-
nificant ongoing proliferation, as evaluated by both cell pro-
liferation and cell cycle signatures (Supplementary Fig. 16a, c). In
contrast, most TNBC-infiltrated B cells, except germinal center B
cells (Supplementary Fig. 16), were not actively proliferating.

The roles of B lymphocyte infiltration in breast cancer and
other types of cancers remain controversial9,10. In most studies,
the presence of infiltrated B lymphocytes was determined by IHC
of pan-B cell markers such as CD20. We hypothesized that dis-
tinct infiltrated B cell clusters might have diverse functions in
tumor immunology and that the combinational transcriptional
signature based on all the differentially expressed marker genes
(Supplementary Table 7) of individual B cell clusters might be a
better indication of their presence in tumors. Indeed, using the
expression data and clinical information of TNBC patients from
the METABRIC consortium, we found that the transcription
signatures of naive B cells and memory B cells were significantly
associated with improved overall survival and disease-free survi-
val in TNBC patients (Fig. 5a). More importantly, compared with
classic single B cell marker CD20, those B cell signatures showed
much stronger hazard ratios (HRs) in both univariable and
multivariable analyses for TNBC patients (Fig. 5b and Supple-
mentary Fig. 17), suggesting that they provided better prog-
nostication than CD20 alone.

TNBC tumor samples had a higher expression of naive and
memory B cell signatures than the other subtypes of breast can-
cers (Supplementary Fig. 18). These two B cell signatures were
not associated with better overall survival and disease-free sur-
vival in non-TNBC patients (Supplementary Data 4). We further
analyzed the expression levels of the naive and memory B cell
signatures in various cancer types in The Cancer Genome Atlas
(TCGA) consortium (https://www.cancer.gov/tcga). As shown in
Supplementary Fig. 19, both B cell signatures showed variable
expression levels in different kinds of cancer types. Interestingly,
these B cell transcription signatures could be associated with
prognosis in distinct tumor types. For example, the memory B cell
signature demonstrated a significant association with better
overall survival and stronger HRs in patients with cervical
squamous cell carcinoma and endocervical adenocarci-
noma (CESC), sarcoma (SARC), skin cutaneous melanoma
(SKCM), and uterine corpus endometrial carcinoma (UCEC)
(Supplementary Fig. 20 and Supplementary Data 5).

Discussion
The immune microenvironment plays essential roles in tumor
development and therapy1,2,54. While T cells have been extensively
studied and therapeutically targeted in tumor immunology, the
roles of B cells have only been noticed recently6–10. TIL-B cells have
been identified and are associated with better or worse prognosis in
various human tumors10, such as ovarian cancer55,56, breast
cancer57,58, lung cancer59,60, colorectal cancer61, and renal cell
cancer62. In particular, the association of TIL-B cells with the
prognosis of human breast cancers has been very controversial9,
which might be due to the heterogeneity of both breast cancer
patients and B cell subtypes13,63–65. We focused on TNBC, the
most immunogenic breast cancer subtype, and dissected the tumor-
infiltrated B cell populations by paired single-cell antigen receptor
repertoire and whole-transcriptome sequencing. We presented a
comprehensive single-cell analysis of TNBC-infiltrated B cells and
found that TNBC-infiltrated B cells showed more mature and
memory B cell characteristics. These TNBC-infiltrated memory B
cells had higher clonality and extensive IGH CSR and SHMs, which
likely happened within tumors and experienced tumor antigen
recognition. Our results also confirmed the existence of functionally
active germinal centers in TNBC tumors. On the other hand, we
could not detect obvious regulatory B cell populations characterized
by IL-10 expression in TNBC. The TIL-B gene transcription sig-
natures based on single-cell RNA-seq results could be associated
with the improved survival of TNBC patients and provided better
prognostication than classic B cell marker (CD20).
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B cells could positively participate in tumor immunology
through various immunoregulatory mechanisms6–8,17. Ther-
apeutic tumor-reactive antibodies mediate tumor lysis by
Fc-driven innate immune effector function. Moreover, recent
evidence suggests that tumor antigen-specific antibodies could
also drive therapeutic T cell responses15. A tumor antigen-specific
antibody was necessary for maximal antitumor efficacy in com-
binational immunotherapy that engaged both innate and adaptive
immune responses16,66. In animal models, the adoptive transfer
of tumor-reactive B cells could lead to tumor regression by
secreting antibodies and activating T cell immunity14,67. Acti-
vated B cells could also work efficiently as antigen-presenting
cells (APCs) to stimulate the tumor antigen-specific T cell

response68,69. On the other hand, whether depleting endogenous
B cells could suppress or enhance tumor immunology is still
controversial17,70,71. We found that TNBC plasma cells had sig-
nificantly higher expression levels of immunoglobulin (IG) genes
than PBMC plasma cells (Supplementary Fig. 21). Gene set
enrichment analysis (GSEA) also revealed that both genes
involved in antigen processing and presentation and interferon-
alpha response genes showed significantly higher expression in
TNBC B cells than in PBMC B cells (Supplementary Fig. 22).
Interestingly, the relative expression levels of those two gene sets
were significantly correlated among various B cell subgroups.
Finally, in the METABRIC TNBC dataset, the expression levels of
naive and memory B cell signatures could be highly correlated
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Fig. 5 The B cell signatures based on the single-cell RNA-seq results are significantly associated with improved survival in TNBC patients and provide
better prognostication than classic single B cell markers. a Kaplan–Meier survival curves for the overall survival (left panels) and disease-free survival
(right panels) of METABRIC TNBC patients according to single gene expression (CD20) or combined gene transcription signatures (naive B cells and
memory B cells). The 279 TNBC patients were sorted according to the expression levels of the gene or gene signatures, and the top 33% (n= 92) vs.
bottom 33% (n= 92) of patients were used to generate survival curves (“Methods”). The p values were calculated by the two-sided log-rank test. b
Prognostic effect of CD20, naive B signature, and memory B signature in METABRIC TNBC patients. Forest plot shows HRs (the center blue squares) and
95% confidence intervals (horizontal ranges) derived from Cox regression survival analyses of disease-free survival in multivariable analyses adjusted for
lymph node status, tumor size, age at diagnosis, and histological grade. Data were presented as HR and 95% confidence intervals.
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with the expression of general T cell marker genes (such as CD3G
and CD8A) and gene signatures of various T cell groups (such as
Tfh and tissue-resident memory T (Trm) cells) (Supplementary
Fig. 23 and Supplementary Table 8). Similar results were also
observed in breast and ovarian cancer patients in TCGA57, sug-
gesting that TIL-B cells may cooperate with TIL-T cells in tumor
immunology.

Breg cells were originally defined as IL-10-expressing B cells,
which can regulate the functions of other immune cells, especially
T cells18,19,72. Although Breg cells have been identified in various
human cancers, including breast cancer19,73–75, we could not
clearly define Breg cell populations by IL-10 expression. By ana-
lyzing macrophages and monocytes that also expressed IL-10
(Supplementary Fig. 13), we ruled out the possibility that the
technical limitations of single-cell sequencing might lead to the
inefficient detection of IL-10 expression in B cells. In addition, a
few IL-10-expressing B cells could not form distinct clusters from
the rest of the B cells. Moreover, we could not find a negative
association between the gene expression signatures of any B cell
subgroups and the prognosis of TNBC patients. These results
suggest the absence of Breg cells in TNBC patients. Interestingly,
Breg cells were also not detected in recent TNBC mouse models17.

The identification of the origin and development dynamics of
those TIL-B cells in TNBC will be the next important question.
Here, we demonstrated that TIL-B cells in TNBC showed various
significant differences from peripheral circulating B cells. In
particular, infiltrated memory B cells share some characteristics
with recently defined mouse lung resident memory B (BRM)
cells76. For example, they had clonal BCRs that did not sig-
nificantly overlap with those of circulating B cells in peripheral
blood. They also had higher BCR clonality. BCR lineage analysis
of the clonal trees consisting of both PBMC and TNBC B cells
revealed that PBMC B cells dominantly occupied upstream of
TNBC-infiltrated memory B cells (Supplementary Fig. 24). These
results suggested that TNBC-infiltrated B memory cells might
have developed and differentiated within tumors. However, to
completely confirm that they are indeed BRM cells, in contrast to
circulating memory B cells, further work is needed. For example,
the identification of the potential tumor antigens for these
dominant BCR clones77 will be the next urgent step to under-
stand the origin of those tumor-infiltrated B cells in TNBC.

Dissecting the heterogeneity of tumor-infiltrated B cell sub-
groups provided essential information to functionally reveal their
roles in the development and treatment of cancers. Further stu-
dies are needed to explore the mechanisms leading to the clear
association of tumor-infiltrated B cells with better survival in
TNBC patients. Pathways that regulate the infiltration, expansion,
and differentiation of TIL-B cells could be used as new targets for
TNBC immunotherapy78,79.

Although we thoroughly analyzed only TNBC-infiltrated B cells
here, we also obtained single-cell transcriptional data for 88,254
other immune cell types and single-cell TCR results for 58,095
T cells (HRA000477). These data will be invaluable to understand
the overall tumor immune environment and potential interactions
between different immune cell types, as well as to identify new
immunotherapy targets. Further studies on the characterization of
all infiltrated immune cell types in TNBC and the mechanisms by
which TNBC escapes immunosurveillance in human patients will
provide essential guidance for the immunotherapy of TNBC. Our
analysis and experimental strategies could also be widely applied to
B cell analysis in other tumor types.

Methods
Reagents and antibodies. The fluorescence-activated cell sorting (FACS) anti-
bodies used in this study included PE anti-human CD45 (BioLegend, Cat# 304008)
(1:100 dilution), APC anti-human CD3 (BioLegend, Cat# 300312) (1:100 dilution),

FITC anti-human CD20 (BioLegend, Cat# 302304) (1:100 dilution), and FITC anti-
human CD19 (BioLegend, Cat# 302206) (1:100 dilution). The IHC and multiplex
immunofluorescence antibodies used in this study included CD3 (Celnovte, CCM-
0332) (ready to use, no dilution), CD20 (Celnovte, CCM-0461) (ready to use, no
dilution), CD21 (Celnovte, CCR-0471) (ready to use, no dilution), PNAd (BD,
553863) (1:25 dilution), and Ki-67 (Celnovte, CKM-0032) (ready to use, no
dilution).

Patient samples. This study was approved by the human research ethics com-
mittee of the Xinxiang Central Hospital (Xinxiang, P.R. China). All participating
patients provided written informed consent. Breast cancer tissues were collected
during surgery from patients who had not undergone any chemotherapy or other
treatments. Peripheral blood samples were collected from the same patients.

PBMCs were isolated using LymphoprepTM (Sigma-Aldrich) solution according
to the manufacturer’s instructions. Fresh breast tumor samples were cut into small
pieces and gently triturated with a 5-ml syringe plunger on a 70 μm Cell-Strainer
(BD) in RPMI-1640 medium (Invitrogen) with 2% fetal bovine serum (FBS) on ice
until uniform cell suspensions were obtained. The cells were subsequently passed
through cell strainers and centrifuged at 400×g for 10 min. The cell pellets were
resuspended in 6 ml of RPMI-1640 medium supplemented with 2% FBS. The next
steps were the same as those for peripheral blood sample preparation.

Patient diagnosis. Breast cancer patients were diagnosed by disease history and
mammogram in Xinxiang Central Hospital, Henan, China. Then, tissues were
collected from patients undergoing surgery and subjected to histological and
immunohistochemical analysis for HER2, ER, PR, and Ki67. The FISH analysis was
conducted to confirm the HER2 status when the IHC result was two-plus (++).
The breast cancer subtypes were defined by the IHC and FISH results as TNBC
(HER2−, ER−, PR−), HER2BC (HER2+, ER−, PR−), LABC (HER2−, ER+, and/or
PR+, Ki67low), and luminal B breast cancer (LBBC) (HER2+/−, ER+ and/or PR+,
Ki67high).

The sample exclusion criteria were as follows: (1) patients treated with any
chemotherapy before surgery were excluded; (2) samples with a small number of B
cells by FACS analysis were excluded; and (3) samples that failed the quality
control during single-cell RNA-seq library construction were excluded from further
analysis. More information on the patients is shown in Supplementary Table 1.

Histological analysis. Histological and immunohistochemical analyses of the
tumor samples were performed by central labs at Xinxiang Central Hospital.
Images were acquired by Olympus VS120. TILs in the tumor stroma were assessed
as percentages of occupied stromal areas according to guidelines of the Interna-
tional TIL Working Group37.

Immunofluorescence staining. A tyramide system amplification (TSA) was used
for the CD3/CD20/CD21 and CD3/CD20/Ki-67 three-plex staining. The incuba-
tion with TSA reagent was performed after the incubation of the horseradish
peroxidase-conjugated polymer and was followed by antibody stripping at 97 °C for
10 min. This protocol was repeated for the second and third primary antibodies
and corresponding polymer incubations. The dilutions used for the TSA are 1:300
for CY3-TSA, 1:500 for FITC-TSA, and 1:500 for CY5-TSA. For all the fluorescent
stainings, the nuclei were stained with DAPI solution at 2 μg/ml for 10 min. The
slides were scanned with a Pannoramic Scanner (Pannoramic P250; 3D
HISTECH).

FACS analysis and sorting. Lymphocytes prepared by LymphoprepTM (Sigma-
Aldrich) solution were resuspended in FACS sorting buffer (phosphate-buffered
saline supplemented with 2% FBS) and stained with the indicated FACS antibodies.
The DAPI-negative and hCD45-positive cells within the singlet-gated subpopula-
tion were sorted by BD FACSAria II. Data were acquired and analyzed by FlowJo
(version10).

Single-cell RNA-seq and TCR/BCR library construction. The FACS-sorted
viable hCD45+ cells were resuspended at 5 × 105–1 × 106 cells/ml with final via-
bility of >85%. Single-cell library preparation was carried out using the 3′ library v2
or 5′ V(D)J and gene expression platform as per the 10× Genomics protocol (10×
Genomics, Pleasanton, CA, USA). Cell suspensions were loaded onto a Chromium
Single-Cell Chip along with the reverse transcription master mix and single-cell gel
beads, aiming for 2000–10,000 cells per channel. Following the generation of
single-cell gel bead-in-emulsions (GEMs), reverse transcription, and amplification
were performed. Then, amplified cDNAs were purified and sheared. Sequencing
libraries were generated with a unique sample index for each sample. Libraries were
sequenced by Illumina HiSeq ×10 or NovaSeq.

Quality control and filtering of single-cell RNA-seq data. The 10× Cell Ranger
package (version 2.1.1, 10× Genomics) was used to demultiplex cellular barcodes,
map reads to the hg38 reference assembly (v1.2.0, 10× Genomics), and generate a
feature-barcode matrix (the number of unique molecular identifiers (UMIs)
associated with a feature (row) and a barcode (column)). The 20 single-cell RNA-
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seq libraries were sequenced to average 74,161 (40,341–191,921) paired-end reads
per cell with 88.3% (80.2–94.7%) sequencing saturation (Supplementary Table 2).
To remove multiple captures, which is a major concern in microdroplet-based
experiments, we excluded the top X cells with the highest pANN score calculated
by DoubletFinder (version 1.0.0)39 for each library separately, where X was inferred
as formula (1): X= (0.000879*N+ 0.702)*0.01*N with linear fitting using the 10×
platform data from Supplementary Fig. 1a 36, where N represents the cell number
detected by Cell Ranger. Cells with numbers of detected genes <200 or >5000 and
cells with >50% of the UMI counts belonging to mitochondrial genes were also
omitted. Finally, 112,938 cells from a total of 20 libraries were retained for
downstream analysis, with 4811 median UMIs and 1600 median genes per cell.

Canonical correlation analysis (CCA), dimensionality reduction, and cluster-
ing. After quality control and filtering, the feature-barcode matrices of each library
were processed by Seurat (version 2.3.4)40 for normalization, dimension reduction,
batch effect removal, graph-based clustering, cluster-specific marker gene detec-
tion, and visualization. Library-size normalization to each cell was performed by
NormalizeData. The variability of the numbers of UMIs was regressed out by
ScaleData. The variable genes were calculated by FindVariableGenes. Then, all 20
libraries were combined together using diagonal CCA by RunMultiCCA. The genes
used for correlation component (CC) calculation were the combination of the top
2000 dispersed genes for each library (a total of 3175 genes appeared in at least two
samples). The cells were then aligned with AlignSubspace using 10 CC dimensions.
The CC number was determined by inspecting the results of DimHeatmap. Using
CalcVarExpRatio to calculate the percentage of variance explained by the 10 CCs
for each cell, there were 95.68% cells with 50% or more variance explained.
FindClusters was used to cluster cells using the 10 aligned CCs at a resolution of 0.1
(total four clusters). A set of canonical markers (CD3D, CD20, CD14, and NKG7)
was expressed at high levels in distinct clusters (Supplementary Fig. 2a). The
clustering results were visualized with t-distributed stochastic neighbor embedding
(t-SNE) dimensionality reduction using RunTSNE (10 aligned CCs) and ggplot2 R
package.

BCR and TCR data quality control and analysis. The raw sequencing reads of the
BCR and TCR libraries were processed by Cell Ranger VDJ pipeline (version 2.1.1,
10× Genomics) with the default parameters to assemble contigs that represent the
best estimate of transcript sequences in each cell. The contigs of IGH, IGK, and IGL
were assembled from the BCR libraries. Here, we only used sequences of IGH
without considering IGK or IGL to include more B cells in further analyses80. Cells
with IGH contigs were defined as BCR-positive cells.

The annotation results of IMGT/HighV-QUEST (V1.5.7.1) for those B cells
were processed by Change-O (V0.3.12)41 and custom scripts to select cells with a
single productive IGH. Productive IGHs were selected using ParseDb.py with
parameters -f FUNCTIONAL -u T. If there were more than one productive IGH
detected within one cell, the most abundant IGH sequence was kept when the UMI
counts of the most abundant IGH sequence were more than 10-fold of the second
most abundant IGH sequence. Finally, there were 22,436 (86%) B cells with a single
productive IGH and 3736 (14%) B cells with multiple productive IGHs. The B cells
with multiple productive IGHs were removed before further analysis, as they had
significantly more UMIs than single productive IGH B cells, suggesting that they
were B cell doublets (Supplementary Fig. 3a, b). We obtained 11,732 cells with a
single productive IGH and 8632 cells with both transcriptome and IGH sequence
data for TNBC2–6 and PBMC2–6 samples (Supplementary Table 3 and
Supplementary Data 1). The assembled contigs (filtered_contig.fasta files from Cell
Ranger) were processed by IMGT/HighV-QUEST42 to assign V(D)J germline
segments to each contig using the default settings for the human IGH allele.
Clonally related B cells were defined as those sharing the same germline sequences,
which means B cells within the same clone have the same V, D, J usage and the
same length of junctions for their IGH sequences. The SHM number and frequency
were calculated using only V and J regions (the D region and junctions were not
included). Lineage trees were inferred using PHYLIP version 3.6981.

In the TCR libraries, cells with both TRA and TRB contigs assembled were
defined as TCR-positive cells. Cells with BCR and TCR double positivity were
detected (1195 cells, 4.5% of BCR-positive cells or 2.7% of TCR-positive cells). They
were removed before B cell subgrouping analysis, as they had significantly more
UMIs than BCR single-positive cells, TCR single-positive cells, and BCR/TCR
double-negative cells, suggesting that they were doublets (Supplementary Fig. 3a, c).
After filtration, there were 26,172 BCR-positive, TCR-negative B cells.

Public B cell clone analysis. Public B cell clones were defined as clonotypes shared
by different cohorts. We downloaded the dataset from Briney et al. (https://github.
com/briney/grp_paper), which includes more than one hundred million clonotypes
from ten blood samples, and a B cell clonotype was defined as a collection of
sequences using the same V and J genes and encoding an identical CDRH3 amino
acid sequence45. The percentage of public clones was defined as the total number of
unique clonotypes shared between the current study and the dataset from Briney
et al. divided by the number of unique clonotypes in the current study. Chi-square
tests were performed using the chisq.test function in R for the number of public
clones and the number of nonpublic clones.

B cell clustering analysis for TNBC2–6 patients. After the quality control and
filtering of single-cell RNA-seq data, B cells with a single productive IGH in BCR
libraries and TCR negativity in TCR libraries were selected for B cell subgrouping
analysis (8632 cells for TNBC2–TNBC6 patients). For those B cells in each library,
library-size normalization to each cell was performed by NormalizeData. The
variability of the numbers of UMIs was regressed out by ScaleData. The variable
genes were calculated by FindVariableGenes. RunMultiCCA was used to combine
the B cells from all libraries, and 10 CC dimensions were used for AlignSubspace.
FindClusters was used to cluster cells using the 10 aligned CCs at a resolution of 0.1
for low-resolution grouping (Fig. 3) and at a resolution of 1.0 for high-resolution
grouping (Fig. 4). The CC number was determined by inspecting the results of
DimHeatmap. Using CalcVarExpRatio to calculate the percentage of variance
expressed by the 10 CCs for each cell, there were 94.24% cells with 50% or more
variance explained. The clustering results were visualized with t-SNE dimension-
ality reduction using RunTSNE (10 aligned CCs) and ggplot2 R package. Canonical
markers (CD19, CD20, CD27, CD38, IGHD, IGHM, and CD14) were expressed at
high levels in distinct clusters (Supplementary Fig. 6a). The marker genes of each
cluster were detected by the FindAllMarkers function with the default parameters,
except min.pct was set to 0.25. The genes were ranked by their fold-change (from
largest to smallest), and the top 10 marker genes of each cluster are shown in the
heatmap in Supplementary Fig. 8. T cell clustering analysis for TNBC2–6 patients
was described in Supplementary Results, Supplementary Data 6, and Supplemen-
tary Table 9.

We defined the signature genes of each cell group for survival analysis24. Cells
from TNBC tumor samples were used to identify signature genes defined by
DECENT (version 1.0.0)82 using the default parameters without spike-ins. The
cutoff for signature genes was fold-change > 2 and false discovery rate (FDR)
(Benjamini–Hochberg adjusted p value) <0.01. As the cells in each group came
from different samples, we corrected possible batch effects by including a dummy
batch variable in the model for the combined data.

Heatmaps of relative gene expression and signature scores for each cluster.
To calculate the average expression levels of AICDA and MKI67, and the average
proliferation scores for each cluster (Supplementary Fig. 10e), a z-score of the
normalized expression value was first obtained for every single cell. Then, we
calculated the mean z-scores for individual cells in the same cluster and drew them
in the heatmap.

To draw the heatmap in Supplementary Fig. 21a and Supplementary Fig. 22b,
the average expression levels were calculated for IG genes, IGH genes, IGK genes,
IGL genes (Supplementary Fig. 21a), genes in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) antigen processing and presentation gene set, and genes in the
hallmark interferon-alpha response gene set (Supplementary Fig. 22b) for each
single B cell. Then, a z-score of the value was obtained for every cell. The mean z-
scores for individual cells in the same cluster in TNBC or PBMC are shown in the
heatmap.

Gene set enrichment analysis. GSEA was performed using GSEA (version 4.0.3)
to identify enriched signatures obtained from the Molecular Signatures Database
(MSigDB), including hallmark gene sets, C1 positional gene sets, C2 curated gene
sets, C3 motif gene sets, C4 computational gene sets, C5 GO gene sets, C6 onco-
genic gene sets, and C7 immunologic gene sets. KEGG gene sets from C2 curated
gene sets were selected for GSEA. The complete results are included in Supple-
mentary Data 7.

LABC and HER2BC B cell annotation. Scmap (version 1.4.1) was used to map
each LABC and HER2BC B cell to annotate TNBC B cell clusters based on
expression profiling similarity83. Each TNBC patient’s B cell feature-barcode
matrix, the reference data, was normalized by library size and log2 transformed by
the SingleCellExperiment package. Then, the feature genes most relevant to the
underlying biological differences of each B cell cluster in the reference data were
defined as the top 2000 residuals of the linear model based on the log(expression)
vs. log(dropout) distribution by selectFeatures. The centroid of the 2000 selected
genes was calculated for each B cell cluster in the reference data using indexCluster
with the default parameters. Finally, the mapping of each B cell expression dataset
from LABC and HER2BC to the reference library was carried out by scmapCluster
with the default parameters.

Analysis of TIL-B single-cell RNA-seq data from Wu et al.53. The processed
single-cell RNA-seq data and metadata containing cell type information were
downloaded from the Gene Expression Omnibus (GEO) database under accession
number GSE139555 (File GSE139555_RAW.tar and GSE139555_cd45_nont_me-
tadata.txt.gz). The TIL-B cell numbers were 648 and 904 for the two colon cancer
samples; 1421 and 359 for the two lung cancer samples; and 55, 172, and 1832 for
the three renal cancer samples. Scmap (version 1.4.1) was used to map those B cells
to annotated TNBC B cell clusters based on expression profiling similarity83, the
same method used for the cell type annotation of LABC and HER2BC B cells. The
unassigned cell percentages were 0.6% and 3.7% when mapping to the 4 B cell
subgroups and 13 B cell subgroups, respectively.
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For the subject clustering analysis, the percentage of the B cell subgroup in each
sample was calculated first, and then the percentage was scaled across subjects by
removing the mean and dividing by the standard deviation. Unassigned B cells
from the above scmap analysis were excluded before the percentage calculation.
Clustering was conducted by the pheatmap R package using correlation similarity
and complete linkage.

Survival analyses. RNA-Seq gene expression profiles (Level 3) and clinical data
for all tumor types were downloaded from the TCGA data portal (https://gdc-
portal.nci.nih.gov/). The METABRIC gene expression profiles and clinical data
were downloaded from the cBioPortal website (http://www.cbioportal.org/
study?id=brca_metabric#summary). The TNBC samples were defined by IHC
results as HER2−, ER−, and PR−, and samples with the normal subtype by
PAM50 were removed (n= 279). The HER2BC, LABC, and LBBC subtypes
were from the PAM50 molecular subtype classifier. The TNBC samples were
sorted according to the expression levels of the gene or gene set, and the top
33% (n= 92) versus bottom 33% (n= 92) of samples were used to generate
survival curves. Multivariable analyses were adjusted by lymph node status,
tumor size, age at diagnosis, and histological grade. The same samples were
used for HR calculation in the Cox regression models, with gene/signature used
as categorical variable based on the top 0.33 and bottom 0.33 cut off. For
survival analysis and HR calculation, the R package survival (version 2.42–6)84

was used.

Paired BCR and single-cell RNA-seq data analyses. To trace the proliferation
and differentiation of different B cell clusters, we counted the same IGH germline
events and the same IGH sequence events within and between each B cell cluster.
The same germline event was counted when two cells were in the same clonal B cell
tree, and the same IGH sequence event was counted when two cells had the same
observed IGH sequences. The same germline events and the same IGH sequence
events could be grouped into PBMCs (when two cells were both from PBMC
samples), TNBCs (when two cells were both from TNBC samples), or PBMCs/
TNBCs (when one cell was from a TNBC sample and the other cell was from a
PBMC sample). To compare the levels of the same germline event and the same
IGH sequence event among different B cell clusters, they were normalized by the
formula (2): Nnormalized ¼ N

NA
´ N

NB
´ 10; 000 in the heatmap (Fig. 3d, Fig. 4d).

Nnormalized is the normalized value shown in Fig. 3d and Fig. 4d. N is the same
germline event number or the same IGH sequence event number. NA and NB

are the cell numbers of the two B cell clusters where the two cells of the same
germline or the same IGH sequences were from. Then, heatmaps of the same
germline or the same IGH sequence were generated for PBMCs, TNBCs, or
PBMCs/TNBCs using the normalized values.

Cell cycle analysis. Cell cycle scores were calculated as the percentages of cell cycle
genes’ UMIs out of the total UMIs in a cell25. We also used the CellCycleScoring
function of the Seurat package40 to calculate the S phase score and G2/M score.
The cells were considered to be in the S phase when the S phase score was >0.1 and
> the G2/M score. The cells were considered to be in the G2/M phase when the G2/
M phase score was >0.1 and > the S phase score.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw sequence data reported in this paper have been deposited in the Genome
Sequence Archive in BIG Data Center, Beijing Institute of Genomics (BIG), Chinese
Academy of Sciences, under accession numbers HRA000477 that can be accessed at
https://bigd.big.ac.cn/gsa-human/browse/HRA000477. RNA-Seq gene expression profiles
(Level 3) and clinical data for all tumor types were downloaded from the TCGA data
portal (https://gdc-portal.nci.nih.gov/). The METABRIC gene expression profiles and
clinical data were downloaded from the cBioPortal website (http://www.cbioportal.org/
study?id=brca_metabric#summary). TIL-B single-cell RNA-seq data from Wu et al.53

was downloaded from the Gene Expression Omnibus (GEO) database under accession
number GSE139555 (File GSE139555_RAW.tar and GSE139555_cd45_nont_
metadata.txt.gz). Data for public B cell clone analysis was downloaded from https://
github.com/briney/grp_paper. All other data are available in the main text or
the Supplementary Information. Source data are provided with this paper.

Code availability
Custom code used in this study is available at https://github.com/huqingtao2018/B-cells-
scRNAseq-in-BC.
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