
 

599

 

J. Exp. Med. 

 

 

 

The Rockefeller University Press • 0022-1007/99/02/599/06 $2.00
Volume 189, Number 3, February 1, 1999 599–604
http://www.jem.org

 

Brief Definitive Report

 

C-reactive Protein: A Physiological Activator of Interleukin 6 
Receptor Shedding

 

By Simon A. Jones,

 

*

 

 Daniela Novick,

 

§

 

 Sankichi Horiuchi,

 

i

 

Naoki Yamamoto,

 

i

 

 Alexander J. Szalai,

 

‡

 

 and Gerald M. Fuller

 

*

 

From the 

 

*

 

Department of Cell Biology and the 

 

‡

 

Department of Medicine, Division of Clinical 
Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama 
35294; the 

 

§

 

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, 
Israel; the 

 

i

 

Department of Microbiology, Tokyo Medical and Dental University, Tokyo 113, Japan

 

Summary

 

The soluble interleukin 6 receptor (sIL-6R) circulates at elevated levels in various diseases. This
suggests that inflammatory mediators control sIL-6R release. Through examination of human
neutrophils, it was found that the acute phase reactant C-reactive protein (CRP) activates a
threefold increase in sIL-6R production. Maximal release occurred after 30–60 min exposure
to CRP (50 

 

m

 

g/ml), and was mimicked by peptides corresponding to amino acid residues 174–
185 and 201–206 of native CRP. A third peptide fragment (77–82) had no effect. Differential
mRNA splicing did not account for the CRP-mediated release of sIL-6R, since this isoform
was not detected in conditioned media. Furthermore, stimulation of neutrophils with CRP or
with peptides 174–185 or 201–206 promoted a loss of membrane-bound IL-6R, suggesting re-
lease by proteolytic shedding. The metalloprotease inhibitor TAPI had only a marginal effect
on CRP-mediated sIL-6R release, suggesting that shedding occurs via a mechanism distinct
from that previously reported. It well established that IL-6 stimulates the acute phase expression
of CRP. Our current findings demonstrate a novel relationship between these two mediators,
since CRP may affect IL-6–mediated inflammatory events by enabling formation of the sIL-
6R/IL-6 complex.
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T

 

he receptor complex that mediates the biological ac-
tivities of IL-6 consists of two distinct membrane-

bound glycoproteins, an 80-kD cognate receptor subunit
(IL-6R, CD126) and a 130-kD signal transducing element
(gp130) (1). Although IL-6R expression is confined to se-
lect cell types, IL-6 can activate cells lacking the cognate
receptor via a soluble IL-6 receptor (sIL-6R) (2). Once
bound to IL-6, the resulting sIL-6R/IL-6 complex acts as
an agonist that is capable of activating cells through mem-
brane-bound gp130. Since expression of gp130 is essen-
tially ubiquitous, the sIL-6R/IL-6 complex has the poten-
tial to stimulate cell types that are not inherently responsive
to IL-6 alone. Recent studies show that the sIL-6R/IL-6
complex can induce myocardial hypertrophy (3), cellular
proliferation (4, 5), and osteoclast formation (6). In addi-
tion, the active complex has been reported to regulate leu-
kocyte recruitment (7), and to promote the proinflamma-
tory stimulation of endothelial cells (7, 8). These latter
findings appear to contrast with the antiinflammatory prop-
erties assigned by some to IL-6 (9, 10), and suggest that the
sIL-6R/IL-6 complex not only potentiates IL-6 signaling,
but may also modify its biological activities.

Two distinct isoforms of sIL-6R have been identified.
The first is shed from the cell surface via proteolytic cleav-
age of the membrane-bound IL-6R (PC–sIL-6R [11, 12]),
whereas the second is secreted as the product of differential
mRNA splicing (DS–sIL-6R [13, 14]). The sIL-6R is
present in the plasma of healthy individuals (

 

z

 

25–35 ng/
ml), and these levels are significantly elevated in diseases
such as rheumatoid arthritis, multiple myeloma, and T cell
abnormalities such as AIDS and adult T cell leukemia (15–
17). The increased concentration of sIL-6R in these disease
states suggests that some inflammatory event either stimu-
lates release of PC–sIL-6R, or increases the expression of
DS–sIL-6R. Since the inflammatory potential of IL-6 is
modulated through binding the sIL-6R, identifying physi-
ological mediators of sIL-6R generation is of central im-
portance to understanding the significance of this soluble
receptor in disease.

Bacterial pore-forming toxins (18) and FMLP (8) are
known to activate generation of PC–sIL-6R, whereas on-
costatin-M was recently shown to stimulate the release of
DS–sIL-6R from a human hepatoma cell line (19). How-
ever, to date no endogenously produced activator of PC–
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sIL-6R shedding has been identified. In the present study,
C-reactive protein (CRP), at concentrations likely to be
encountered during an acute phase response, was found to
provoke release of the membrane-bound IL-6R from hu-
man neutrophils. Thus, CRP has the potential to influence
the inflammatory properties of IL-6 through facilitating
formation of the sIL-6R/IL-6 complex.

 

Materials and Methods

 

Materials.

 

Culture reagents were obtained from GIBCO
BRL, and purified human CRP from Calbiochem-Novabio-
chem Corp. Peptides corresponding to CRP amino acid residues
77–82 (VGGSEI), 174–185 (IYLGGPFSPNVL), and 201–206
(KPQLWP) were from Sigma Chemical Co. Biotinylated anti–
human IL-6R antibody (BAF-227) was from R&D Systems.
Anti-DS–sIL-6R mAb (2F3) was generated as described pre-
viously (20). Dr. R.A. Black (Immunex Corp.) provided the
TNF-

 

a

 

–protease inhibitor, TAPI. Lymphoprep was from Ny-
comed Pharma, and ImmunoPure 3,3

 

9

 

, 5,5

 

9

 

-tetramethylben-
zidine (TMB) from Pierce Chemical Co.

 

Isolation of Human Neutrophils.

 

Venous blood (20 ml) was ob-
tained by antecubital venipuncture from nonsmoking healthy in-
dividuals (aged 26–54), mixed with an equal volume of 2% (wt/
vol) dextran/0.8% (wt/vol) trisodium citrate in PBS (pH 7.4),
and erythrocytes were allowed to sediment. Plasma was collected,
underlayered with Lymphoprep (2:1 [vol/vol] plasma/Lympho-
prep), and centrifuged at 4

 

8

 

C for 20 min at 800 

 

g

 

. The neutrophil-
containing pellet was collected, and contaminating erythrocytes
were removed by hypotonic lysis. Neutrophil preparations were
found to be 

 

.

 

95% pure as assessed by differential Wright stain-
ing. Before use, neutrophils were resuspended in serum-free
RPMI 1640 containing 2 mM 

 

l

 

-glutamine, 100 U/ml penicillin,
and 100 

 

m

 

g/ml streptomycin.

 

Determination of sIL-6R Production.

 

Neutrophils (2 

 

3 

 

10

 

6

 

cells) were treated as described in the figure legends. Culture me-
dium was harvested and stored at 

 

2

 

80

 

8

 

C until required. Concen-
tration of sIL-6R was determined using an ELISA procedure.
Microtiter 96-well plates were coated with 10 

 

m

 

g/ml anti–
human IL-6R mAb (mAb 17.1; reference 21) and blocked at 4

 

8

 

C
with 0.5% BSA. sIL-6R standards and unknowns were added and
incubated at room temperature for 2 h. To detect bound sIL-6R,
biotinylated anti–human IL-6R antibody (50 ng/ml BAF-227)
was added for 2 h at room temperature, followed by a 20-min in-
cubation with horseradish peroxidase–conjugated streptavidin.
Plates were washed between each step with PBS containing 0.1%
Tween 20. Peroxidase activity was determined using TMB as a
substrate. The reaction was stopped with 1.8 M H

 

2

 

SO

 

4

 

, and ab-
sorbance was measured at 450 nm. To detect DS–sIL-6R, the
capture antibody was replaced with 20 

 

m

 

g/ml anti-DS–sIL-6R
antibody (mAb 2F3), and ELISA was performed as described us-
ing baculovirus-expressed DS–sIL-6R as a standard (20). The
lower limit of detection for sIL-6R and DS–sIL-6R was 10 and
50 pg/ml, respectively.

 

Flow Cytometry.

 

Loss of IL-6R expression from the neutro-
phil cell surface after stimulation was monitored by cytofluorom-
etry (FACScan

 

®

 

; Becton Dickinson) as described (20). Values are
expressed as the percent reduction in mean fluorescence units
(MFU) from nonstimulated control cells: MFU

 

 5 

 

(FU

 

experimental 

 

2

 

FU

 

autofluorescence

 

)/(FU

 

control

 

 

 

2 

 

FU

 

autofluorescence

 

).

 

Statistical Analysis.

 

Statistical analysis was performed using
Student’s 

 

t

 

 test incorporated into the SigmaPlot (version 2.01)

graphics program. A

 

 P 

 

, 

 

0.05 indicated a statistically significant
difference.

 

Results

 

C-reactive Protein Stimulates Production of sIL-6R by Human
Neutrophils.

 

Examination of human neutrophils obtained
from 10 independent donors showed that CRP activates
sIL-6R production (Fig. 1). In each case, basal sIL-6R re-
lease was significantly increased (

 

P

 

 , 

 

0.0001) after expo-
sure to 50 

 

m

 

g/ml CRP, with the extent of sIL-6R produc-
tion ranging between 86 and 234 pg/ml after CRP
stimulation compared with 21–84 pg/ml for controls. On
average, CRP resulted in a 3.06 

 

6 

 

1.03–fold induction of
sIL-6R levels (Fig. 1 B). In contrast, activation of human
neutrophils with IL-4 or IL-10 had no effect on sIL-6R
generation (data not shown). As shown in Fig. 2 A, pro-
duction of sIL-6R increased rapidly, with optimal release
occurring between 30 and 60 min after CRP addition.
Generation of sIL-6R was also dose-dependent, with 50

 

m

 

g/ml CRP inducing a maximal response (Fig. 2 B). Re-
lease of the sIL-6R in response to a single exposure to
CRP was transient, since levels returned to baseline within
4–5 h after stimulation. Addition of a second CRP dose 2 h
after the initial CRP stimulation did not further enhance
production (data not shown).

 

Peptides Derived from CRP Activate sIL-6R Production.

 

Neutrophil stimulation has been shown to activate the cleav-
age of native CRP into biologically active peptide fragments

Figure 1. Production of sIL-6R by CRP-activated human neutrophils.
(A) Human neutrophils (2 3 106 cells) from 10 independent donors were
stimulated at 378C, 5% CO2 with 50 mg/ml CRP for 30 min, and the
concentration of sIL-6R in culture medium was determined by ELISA.
Horizontal bars represent the mean sIL-6R concentration for control (43
pg/ml) and CRP-activated (129 pg/ml) neutrophils. The CRP-induced
release of sIL-6R was statistically significant (P , 0.0001) as determined
by Student’s t test. (B) The magnitude of CRP-induced sIL-6R produc-
tion is shown for each donor. For controls, the mean concentration of 43
pg/ml was set to 1 and compared with the nonstimulated release for each
donor. Values are expressed as mean fold induction 6 SD (n 5 10).
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(22). In particular, peptides corresponding to amino acid res-
idues 77–82, 174–185, and 201–206 profoundly influence
neutrophil responses (23, 24). Accordingly, human neutro-
phils were incubated with each of these peptides and their
capacity to augment sIL-6R production was determined. As
shown in Fig. 3, (174–185)CRP and (201–206)CRP stimu-
lated sIL-6R production in a dose-dependent manner,
whereas peptide (77–82)CRP had little or no effect.

 

CRP-activated Release of sIL-6R Occurs via Loss of the Cognate
IL-6R.

 

The sIL-6R can be released through proteolytic
shedding of the cognate IL-6R or secreted as the product of
differential IL-6R mRNA splicing (11–14). Flow cytometry
using neutrophils from three separate donors showed that a
30-min exposure to 100 

 

m

 

g/ml native CRP resulted in a
44 

 

6 

 

2.5% loss of the cognate IL-6R. Similarly, 100 

 

m

 

g/ml
(174–185)CRP and (201–206)CRP stimulated a 33 

 

6

 

 6.2%
and 24 

 

6

 

 0.3% reduction in the surface expression of IL-6R,
respectively, whereas peptide (77–82)CRP had little effect
(data not shown). This indicates a role for CRP in the activa-
tion of IL-6R shedding. To verify this conclusion, the con-
centration of DS–sIL-6R was determined in conditioned
media from CRP-activated neutrophils, using an antibody
specific for the unique COOH-terminal amino acid sequence
(GSRRRGSCGL) of DS–sIL-6R (20). As shown in Table I,
no detectable level of DS–sIL-6R could be identified either
before or after CRP stimulation. Interestingly, no correlation
could be established between elevated systemic CRP concen-
trations and DS–sIL-6R levels in patients suffering from
various clinical disorders (Horiuchi, S., and N. Yamamoto,
unpublished data).

 

Partial Inhibition of sIL-6R Production by TAPI.

 

Hydro-
xamic acid–based metalloprotease inhibitors such as TAPI
are known to prevent shedding of various cell surface pro-
teins (25–27), including the IL-6R (12, 20). Surprisingly,
the CRP-induced release of sIL-6R by neutrophils was
only partially blocked by TAPI (

 

z

 

20–25%; Fig. 4). Consis-
tent with previous reports (12, 20), TAPI inhibited 70–
75% of the phorbol ester–stimulated sIL-6R production by
monocytic THP-1 cells (data not shown). Thus, the mech-
anism responsible for CRP-induced release of the cognate
IL-6R from human neutrophils may be distinct from that
described for monocytic cells.

 

Discussion

 

Elevated levels of the sIL-6R have been associated with
the pathology of several disease states. This implies that
production of the sIL-6R is increased as part of the inflam-

Figure 2. Dose- and time-
dependent release of the sIL-6R
in response to CRP. Neutrophils
(2 3 106 cells) were stimulated at
378C, 5% CO2 with either (A)
the indicated concentration of
CRP for 45 min, or (B) for the
indicated time period with
(1CRP) and without (2CRP)
50 mg/ml CRP. After appropri-
ate incubation, culture medium
was harvested and sIL-6R con-
centrations were determined.
Values represent the mean pro-
duction 6 SD (n 5 3).

Figure 3. Peptides derived from CRP ac-
tivate sIL-6R production by human neutro-
phils. Neutrophils (2 3 106 cells) were stim-
ulated for 45 min at 378C, 5% CO2 with
peptide (77–82)CRP, (174–185)CRP, or
(201–206)CRP. sIL-6R concentrations are
expressed as the mean 6 SD (n 5 3). Re-
lease of sIL-6R in response to 50 mg/ml
CRP was 177.4 6 6.5 pg/ml.
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matory response. However, little is known regarding the
factors that might regulate sIL-6R generation. In this study,
physiological concentrations of native CRP and biologi-
cally relevant CRP-derived peptides were found to stimu-
late sIL-6R production by human neutrophils. Release of
this soluble receptor was rapidly induced after CRP treat-
ment and occurred via shedding of the cognate IL-6R from
the cell surface. C-reactive protein represents the first
known endogenous activator of this process. The observa-
tion that release of sIL-6R is only partially prevented by the
hydroxamic acid–based metalloprotease inhibitor TAPI is
of particular interest, since IL-6R shedding in response to
phorbol esters and ionomycin has been shown to be pre-
vented by this agent (12, 20). Thus, in neutrophils, shed-
ding of the IL-6R presumably occurs through a unique
proteolytic mechanism. Indeed, under certain experimental
conditions the phorbol ester–induced shedding of L-selec-
tin (CD62L) from human neutrophils has also been found
to be only partially susceptible to a TAPI homologue (27).

In general, plasma CRP levels correlate with severity of
inflammatory diseases. During the onset of inflammation or
tissue injury, plasma concentrations of CRP are dramati-
cally elevated from 

 

z

 

1 

 

m

 

g/ml in healthy individuals to as
much as 500 

 

m

 

g/ml during the acute phase response (28).

In vitro studies have shown that control of this response is
primarily regulated by IL-6 (29). More recently, human
CRP-transgenic mice were used to verify in vivo that IL-6
is absolutely required for the induced expression of CRP
during an inflammatory acute phase response (30). Our
current findings show that this relationship between IL-6
and CRP is more complex than previously thought, since
IL-6R shedding in response to CRP likely contributes to
formation of the agonistic sIL-6R/IL-6 complex. Thus,
CRP acts not only as an acute phase reactant, but it may
have a profound effect on distal IL-6–mediated events that
occur during the inflammatory process. Indeed, CRP levels
in several diseases have been found to correlate with those
of sIL-6R (31–33).

It is now recognized that CRP plays a significant role in
host defense against pathogens (34). C-reactive protein also
binds to specific receptors on human neutrophils and di-
minishes neutrophil responses, such as chemotaxis (35)
and the activation of superoxide generation and degranula-
tion by chemoattractants (36). In addition, CRP prevents
neutrophil adhesion to endothelial cells via induction of
L-selectin (CD62L) shedding (37). Consistent with these
findings, in vivo studies have shown that CRP abates neu-
trophil recruitment in models of inflammation (38, 39).
Taken together, these data indicate that CRP also performs
an antiinflammatory function. It is therefore noteworthy that
the sIL-6R/IL-6 complex has been shown to regulate proin-
flammatory activation of endothelial cells and to promote
neutrophil recruitment (7, 8). In agreement with these find-
ings, it has been observed that the extent of neutrophil infil-
tration into arthritic joints correlates with elevated sIL-6R
levels in synovial fluid (40). It is conceivable that CRP may
perform a pivotal role during inflammation by modulating
the rate of neutrophil recruitment. It is also highly likely that
CRP represents only one endogenous activator of IL-6R
shedding, whereas release of DS–sIL-6R may also contribute
to the overall properties of sIL-6R (13, 14, 18).

Previous studies have shown that peptides spanning resi-
dues 77–82 and 201–206 of the native CRP molecule
block neutrophil superoxide generation and chemotaxis
(23, 24), whereas peptide fragment 177–182 enhances cy-
tokine/chemokine production and the tumoricidal activity
of monocytic cells (41). Structure/function investigations
of native CRP (for a review, see reference 34) reveal that
amino acids 77–82 reside within the phosphocholine
(PCh)-binding site of the CRP molecule, whereas residues
174–185 and 201–206 form parts of the walls of a deep
cleft on the opposite face of the CRP protomer. The shal-
low end of this cleft represents the C1q-binding site of
CRP (34), whereas residues 175–179 are important for
Fc

 

g

 

-R1 binding (42). Interestingly, in the present study,
CRP peptides 174–185 and 201–206 effectively aug-
mented sIL-6R production by human neutrophils. How-
ever, release was not observed in response to residues 77–
82. Similarly, CRP peptides 174–185 and 201–206, but
not 77–82, were found to mediate L-selectin shedding
(37). These data argue that the ability of CRP to stimulate
IL-6R and L-selectin shedding from neutrophils involves

 

Table I.

 

sIL-6R Derived from Differential mRNA Splicing Does 
Not Account for the CRP-induced Release of sIL-6R

 

CRP DS–sIL-6R Total sIL-6R

 

m

 

g/ml pg/ml pg/ml

 

0

 

,

 

LD 90.0 

 

6

 

 10.6
1

 

,

 

LD 96.8 

 

6 

 

9.0

 

*

 

10

 

,

 

LD 118.5 

 

6

 

 13.4

 

‡

 

25

 

,

 

LD 178.0 

 

6

 

 5.9

 

‡

 

50

 

,

 

LD 234.0 

 

6

 

 17.4

 

‡

 

Neutrophils (2 

 

3

 

 10

 

6

 

 cells) were stimulated with CRP for 45 min, and
levels of total sIL-6R and DS–sIL-6R in conditioned medium were
quantified (see Materials and Methods). Values represent the mean 

 

6

 

SD (

 

n

 

 5 3). In the case of DS–sIL-6R, levels were below the limit of
detection for the ELISA (,LD). *P , 0.05; ‡P ,0.01 vs. nonstimu-
lated control.

Figure 4. CRP-mediated sIL-6R
production is partially inhibited by
TAPI. Neutrophils (2 3 106 cells) were
pretreated for 10 min with either 100
mM TAPI (black bars) or vehicle alone
(white bars) at 378C, 5% CO2. Cells
were stimulated for a further 40 min
with 50 mg/ml CRP. Values are repre-
sentative of three experiments and show
mean sIL-6R production 6 SD (n 5 3).
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interaction via the C1q/Fcg-R1 binding motif of CRP,
and does not involve the PCh-binding site. Support for this
concept is derived from the fact that disruption of the
Ca21-dependent interaction of PCh with CRP (34)
through the addition of EDTA had no effect on the CRP-
induced release of sIL-6R (data not shown).

Although neutrophils express relatively high levels of the
cognate IL-6R, IL-6 signaling in these cells is poorly de-

fined and appears to evoke only weak biological activities
(43, 44). However, shedding of the IL-6R from human
neutrophils has been shown to activate endothelial cells (8).
As a result, expression of the IL-6R on neutrophils may
primarily serve as an inducible source of sIL-6R. Thus, the
activated shedding of the IL-6R from neutrophils may in-
directly propagate the inflammatory response via stimula-
tion of resident tissue cells by the sIL-6R/IL-6 complex.
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