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Abstract: Bartonella henselae (B. henselae) is a gram-negative bacterium that causes cat scratch disease,
bacteremia, and endocarditis, as well as other clinical presentations. B. henselae has been shown to
form a biofilm in vitro that likely plays a role in the establishment and persistence of the bacterium in
the host. Biofilms are also known to form in the cat flea vector; hence, the ability of this bacterium to
form a biofilm has broad biological significance. The release of B. henselae from a biofilm niche appears
to be important in disease persistence and relapse in the vertebrate host but also in transmission by
the cat flea vector. It has been shown that the BadA adhesin of B. henselae is critical for adherence
and biofilm formation. Thus, the upregulation of badA is important in initiating biofilm formation,
and down-regulation is important in the release of the bacterium from the biofilm. We summarize
the current knowledge of biofilm formation in Bartonella species and the role of BadA in biofilm
formation. We discuss the evidence that defines possible mechanisms for the regulation of the genes
required for biofilm formation. We further describe the regulation of those genes in the conditions
that mimic both the arthropod vector and the mammalian host for B. henselae. The treatment for
persistent B. henselae infection remains a challenge; hence, a better understanding of the mechanisms
by which this bacterium persists in its host is critical to inform future efforts to develop drugs to treat
such infections.

Keywords: Bartonella henselae; cat flea; sRNA; biofilm formation; gene regulation; transcription
terminator; transcription factor; trimeric auto transporter adhesin

1. Introduction

Since the first report of microbial biofilms nearly 40 years ago, two decades passed
before interest began to grow in studies that examined the clinical significance of biofilm
formation [1]. Studies that elucidate the complexity and dynamics of bacterial biofilms
have continued to grow in recent years. As a result, increased data has become available
establishing the intricate relationship between gene regulation, biofilm formation, and
disease progression.

The genus Bartonella consists of numerous species, some of which are known to cause
Trench fever, Carrion’s disease, and cat scratch disease (CSD) [2]. Trench fever, originally
described more than 100 years ago as infecting nearly one million troops during World
War I, is caused by B. quintana [3]. Evidence of Carrion’s disease can be traced back to
pre-Inca cultures, but the illness was not attributed to infection with B. bacilliformis until
the early 1900s [4]. CSD caused by B. henselae remains one of the most common infections
caused by bacteria in the genus Bartonella. The Centers for Disease Control and Prevention
(CDC) estimates more than 12,500 diagnosed cases of CSD annually in the US, although the
disease is prevalent worldwide [5–8]. Recently, Bartonella species have been isolated from a
wide array of species ranging from terrestrial animals to sea inhabitants, demonstrating
the ability of Bartonella to adapt and survive in a diverse range of hosts [9–11].
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Amongst the almost 50 defined or proposed Bartonella species, B. henselae is a gram-negative,
intracellular zoonotic bacterium that infects both cats and humans [12]. Cats, the natural
reservoir of B. henselae, generally do not show symptoms of infection. In several case
reports, however, B. henselae has been isolated in cats with a variety of clinical symptoms
including endocarditis, seizure disorders, ocular disease, and hyperglobulinaemia [13].
B. henselae infection occurs in humans when the bacterium is accidently transmitted through
the scratch or bite of a cat, but other modes of transmission such as red ant bites have been
reported [14]. Flea infestation on domestic animal reservoirs such as cats and dogs are of
rising concern, as resistance to flea control insecticides is increasing [15].

B. henselae is able to adhere to host cells and form a biofilm (Figure 1) [16–18]. The ability
of B. henselae or any microbe to form a biofilm has been linked to chronic diseases [19,20]. Upon
diagnosis with a systemic B. henselae infection such as endocarditis, patients may be treated
with ciprofloxacin or azithromycin depending on the severity of symptoms [21]. Treatment
failure in patients diagnosed with B. henselae endocarditis has been largely attributed
to the ability of B. henselae to form a biofilm and resist antibiotics. Recent in vitro data
suggests drug combination treatments are more effective in eliminating B. henselae chronic
infection, compared to current single drug treatments [22]. Despite the continued use of
antibiotics, systemic cases of B. henselae infection remain difficult to treat and often require
more invasive treatment courses [23]. Biofilm-associated antibiotic resistance or tolerance
is a major mechanism used by pathogenic bacteria located within the extracellular matrix
or extracellular polymeric substance (EPS). This EPS matrix has been shown to increase
antibiotic resistance or tolerance by several mechanisms including inhibiting antibiotic
penetration, secreting enzymes to degrade antibiotics, and activating signaling pathways
for adaptation and survival [24]. Biofilm regulation in B. henselae consists of a complex gene
regulatory system that allows the bacteria to survive in different phases of the lifecycle,
resist antibiotic treatment, and persist in the human host [19,25]. The ineffectiveness of
current antibiotic treatment for biofilm associated infections warrants further investigation
of the mechanism by which B. henselae regulates biofilm-associated genes.
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Figure 1. Scanning electron micrograph of a 48 h Bartonella henselae (B. henselae) biofilm growing on a 3-dimensional
nanofibrous scaffold. Left, scaffold before bacterial growth. Middle, bacterial growth, adhesion, and aggregation around the
scaffold branches. Right, B. henselae biofilm covering the scaffold and eclipsing the bacterial cells. Biofilm was preserved by
the addition of the cationic dye, Alcian blue.

Given the history of the Bartonella genus, the increased prevalence of Bartonella in
a variety of species, and the poor treatment efficacy of systemic B. henselae infection, it
is necessary to determine how B. henselae survives and persists, specifically through the
formation of biofilms. Understanding such mechanism(s) will aid in the development
of more effective treatments for B. henselae infection. Therefore, this review focused on
the clinical significance, the prevalence of biofilms during the lifecycle, and the currently
known genes important for biofilm regulation of B. henselae.
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2. Clinical Importance

Three different Bartonella species—B. bacilliformis, B. quintana, and B. henselae—are
the species most commonly associated with acute or chronic infections in humans [26].
In general, the severity of clinical outcomes correlates with the patient’s immune status;
therefore, the more severe cases typically occur in immunocompromised individuals [27].
B. henselae is known to show several clinical manifestations, such as cat scratch disease (CSD), a
condition characterized by lymphadenopathy and mostly reported in children [28,29], chronic
lymphadenopathy [28,30], fever with persistent bacteremia [31], bacillary angiomatosis [32],
neurological conditions [33], peliosis hepatitis [34], and life-threatening infective endo-
carditis, which is usually reported as blood-culture-negative endocarditis [31,35,36].

Fleas are competent vectors for numerous microbial pathogens. Ctenocephalides felis
(C. felis), known as cat fleas, are an opportunistic blood feeder and the arthropod vector
for B. henselae; however, other vectors such as ticks have been proposed [37–42]. Cats are
reported to be the predominant host for B. henselae, but B. henselae has been isolated from
a variety of hosts [43–46]. Most cats are asymptomatic when infected, but the exceptions
usually develop a fever and local inflammation at the site of inoculum [46–48].

Bartonella infections begin with the inoculation of the bacteria, which is usually associ-
ated with the feeding of the arthropod vector on an infected cat. Bacterial load from the flea
gut is excreted in the flea fecal matter and subsequently onto the cat [49]. Human infections
occur through a cat scratch inoculating the host with bacteria from the flea fecal matter.

In the life cycle of B. henselae, biofilms are implicated in both the flea and the mam-
malian hosts. A previous report from our laboratory showed scanning electron micrographs
with bacteria in the gut and bacterial biofilm in the fecal matter of laboratory i-fected cat
fleas [19]. The ability of Bartonella to form biofilms in vertebrate hosts has been reported in
the literature [50–52]. A mouse model of B. tayolrii infection was shown to demonstrate
persistent bacteremia, liver lesions, and eventually death [51]. The masses observed in
the liver and kidney appeared embedded in an amorphous matrix, which can be defined
as a biofilm, providing an experimental model to study human disease progression in
an immunocompromised host. In Edouard et al. (2015) [50], a study with 106 patients
provided evidence of endocarditis by B. quintana and B. henselae. The above studies provide
evidence that Bartonella biofilm communities are indeed an integral part of the vegetative
mass associated with infective endocarditis [50–52]. B. henselae is a fastidious bacterium
with particular nutritional requirements; hence, it is challenging to isolate and culture the
bacterium from clinical samples [53]. Laboratory diagnosis is usually accomplished by one
or more of the following diagnostic techniques: PCR, serology, isolation with extended
incubation periods, or histopathology [54–57].

Bartonella species have a noteworthy ability to evade the host immune system and re-
sist antimicrobial agents. While some isolates are susceptible to minocycline and macrolide
antibiotics such as erythromycin, clarithromycin, azithromycin, and fluoroquinolone com-
pounds with relatively low minimal inhibitory concentrations (MICs) [58–60], clinical
experience has shown that Bartonella infection treatment failures are a major concern,
as most of these antimicrobial classes exhibit only bacteriostatic properties [60–62]. It is
expected that growth in biofilms allows Bartonella species to persist in the face of stress
including antimicrobial treatment and the host immune response. Multiple studies and
guidelines support 2 to 6 weeks of treatment for endocarditis using at least two antibiotics,
one of which is an aminoglycoside [58,63–65]. Considering the clinical manifestations
and antibiotic resistance of B. henselae, understanding the mechanisms by which B. hense-
lae initiates biofilm formation is critical to comprehend how it causes chronic disease
in humans.

3. Biofilm Formation, Composition, and Life Cycle

Bacteria grow as free-floating planktonic cells or as coordinated aggregates embedded
in a matrix, referred to as a biofilm [66]. Biofilms can be single or multispecies communities,
can thrive on most surfaces, and may be surface associated (agar, contact lens) or submerged
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under a static or shear flow condition (such as those formed in an artificial cardiac valve or
indwelling catheter) [67,68]. Because of the diversity of biofilm surfaces, the well-organized
structures of the colonies, and a characteristic anti-microbial resistance or tolerance, biofilms
have received significant attention and are currently investigated for their role in infectious
diseases [20,69]. Adhesion or aggregation is the first step of biofilm formation, virulence,
and host cell interactions in most bacteria [70]. Outer membrane adhesins facilitate bacterial
adhesion to a biotic or abiotic substrate and self-aggregation. Bacteria first adhere, then
aggregate to allow the chemical signaling and quorum sensing communication required
for the aggregates to secrete the proteins, polysaccharides, and extracellular DNA (eDNA)
required for the assembly of the biofilm [71]. The B. henselae biofilm has been shown to
contain proteins, polysaccharides, and eDNA, and both DNase and proteinase K have been
shown to result in biofilm destruction [16].

The growth of B. henselae as a biofilm was first reported by Kyme et al. [72] as an
auto-aggregative phase variation later linked to the expression of a surface adhesin called
BadA. In the Bartonella genus, the roles of BadA and Vomps proteins are well documented
for the adhesion steps in B. henselae and B. quintana, respectively. BadA is a trimeric auto
transporter (TAA), and the role of TAAs have been significantly documented in other
gram-negative bacteria [73–75]. A genetic deletion of badA in different strains of B. henselae
led to failure to adhere efficiently and form a biofilm [12,16,76].

In humans, it has been speculated that B. henselae infects erythrocytes and may persist
in these cells [77]. Evidence also supports persistence in endothelial progenitor cells,
which presents the possibility for host immune system evasion [78–80]. B. henselae is
speculated to form biofilms in the gut of the cat flea, which helps the bacteria persist
and replicate in the gut [81]. The bacterial load is excreted in the fecal matter, where it
forms a biofilm that protects the bacteria, which persists about 10–12 days in the flea fecal
matter before human inoculation through the cat claw [19,49]. We propose that the biofilm
represents an additional niche that provides the platform for seeding planktonic cells into
the bloodstream, causing host immune reactions, disease conditions, and persistence in the
face of antimicrobial treatments.

4. Genes Involved in Biofilm Regulation

Previously published data suggested that biofilm formation is regulated by cyclic
diguanosine-5′-monophosphate (c-di-GMP), small RNAs (sRNAs), and quorum sensing
(QS) in most bacterial species [82–84]. The role of both c-di-GMP and QS in biofilm
formation has been adequately described in other gram-negative bacteria [85–87] but
not in B. henselae. sRNAs have been associated with biofilm cellular regulation, such
as general stress response and virulence [88]. In E. coli., hundreds of sRNAs have been
documented [89,90]. sRNAs work by primarily binding specific targets such as protein,
RNA, or DNA, and a large portion of them require the Hfq protein to stabilize and facilitate
interaction with their target [91]. sRNAs regulate biofilm formation in S. typhimurium and
E. coli [92–94]. A high percentage of sRNA molecules within the bacterial genome are
transcribed as non-coding small RNA (ncRNA) [94]. ncRNA may function as trans-acting
antisense transcripts (asRNA) or as cis-acting RNA and the expression changes in response
to environmental conditions such as pH, nutrient availability, antimicrobial peptides, and
competition with other microbes, as reviewed in Ortega et al. (2014) [95].

In Bartonella, sRNAs have been acknowledged for playing a role in regulating genes
required for bacterial transmission between vector and host [19,96] and biofilm forma-
tion [19,76]. A multicopy family of nine unannotated, well conserved, highly transcribed
sRNAs termed Bartonella regulatory transcripts, Brts1-9, are implicated in B. henselae
biofilm regulation. Using bioinformatics tools, all nine sRNAs were predicted to form
a highly stable stem and loop structure at the end of the RNA, which is a characteristic
feature of riboswitches [76]. The Brt RNAs were the fourth highest transcribed RNAs,
which raises the question of why these multicopy sRNAs are transcribed at such levels.
About 15 nucleotides downstream of each brt gene is a gene that codes for DNA-binding
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proteins named transcription regulatory proteins (trps 1-9). The trps have a characteristic
helix-turn-helix xenobiotic response element (HTH-XRE) domain that is present in a subset
of DNA-binding proteins. However, the B. henselae trp genes were poorly transcribed and
did not seem to have a discernible native promoter region [76]. Xenobiotic response ele-
ments (XREs) are a family of transcriptional regulators shown to regulate biogenesis of type
IV pili, flagella, and biofilm formation in other gram-negative bacteria [97]. This unusual
arrangement of a stem-loop in the 3′ termini of the Brt RNAs and the apparent absence of a
separate promoter for the DNA-binding protein trp genes prompted speculation that the
Brt RNA may be a riboswitch or an RNA thermometer regulating the downstream trp genes
and that the brt-trp tandem gene pairs may be involved in regulating B. henselae cellular
processes. Riboswitches and RNA thermometers are regulatory cis-encoded sRNAs that
fold into intricate structures, typically a stem and loop hairpin, in response to metabolites
or environmental changes (pH, temperature) to modify the expression of a downstream
gene [98,99]. A deletion of just the 3′ region of the brt1 gene that forms the stem loop shows
a high transcription rate of trp1, confirming that in the absence of the 3′ end of the RNA,
the downstream trp1 becomes highly transcribed [19]. Thus, the 3′ end of Brt1 acts as a
transcriptional attenuator. Additionally, the resulting colonies from the 3′ deletion strain
demonstrated increased aggregation and biofilm formation, suggesting a role in biofilm
formation. Much like B. henselae, B. bacilliformis, the causative agent of Carrion’s disease, is
transmitted to the human host by the sand fly arthropod vector [100]. Recently published
data suggested that sRNAs in B. bacilliformis help with the adaptation of bacteria in differ-
ent environmental conditions, necessary for survival in the vector and host [96]. This is
achieved by differential expression of the sRNA depending on environmental conditions,
a phenomenon also observed in Borrelia burgdorferi [101]. A comparison of the different
B. henselae temperature and pH conditions mimicking both vector and host to determine the
condition(s) that may enhance/eliminate the formation of the stem loop in our laboratory
was not productive. Temperature ranges between 27 ◦C (arthropod vector) and 37 ◦C
(mammalian host), and pH values between 6.6 and 7.2 to coincide with vector and human
blood pH, respectively, did not show any significant differences in trp transcription or
biofilm formation [16,101–106].

In a different study, an over-expressing strain of trp1 showed increased biofilm forma-
tion, establishing that much like Brt1, the Trp1 protein is also involved in biofilm formation.
Trp1 is a transcription factor (TF) annotated as a HTH, and most TFs are identified by
the presence of a DNA-binding domain using sequence searches against protein family
databases like NCBI-BLAST [100] and PFam [107]. HTH-XRE proteins have been shown to
serve as a regulatory factor allowing adaptation between bacteria motility, adhesion, and
biofilm formation [97,108,109]. Studies to identify the function of Trp1 showed that Trp1
binds to the promoter region of the badA gene, a TAA required for adhesion of the bacterial
cell to the host cell and extracellular matrix proteins including fibronectin, for aggregation,
and for inducing a pro-angiogenic host response [17,110,111].

B. henselae has two major virulence factors that play a role in Bartonella pathogenesis,
VirB/T4SS [112] and BadA (Bartonella adhesin A). VirB/T4SS is a bacterial type IV secretion
system (T4SS) that translocates DNA and protein substrates to host cells and requires cell-to-
cell contact [113]. The VirB/T4SS system in B. henselae mediates invasion, proinflammatory
activation, and anti-apoptotic protection of endothelial cells [112]. The regulation of
badA is linked to the BatR/S two-component system, the general stress response system,
and the Bartonella regulatory transcript [76,114,115]. The expression level of badA has
been shown to correlate with robust biofilm formation [16,76,116]. Our group previously
confirmed that badA is required for optimum biofilm formation [16]. An in-frame deletion
of badA failed to form a stable biofilm, and a partial complementation of the gene partially
restored biofilm formation. Also, the expression level of both trp1 and badA were elevated
in cells that formed biofilms in comparison to planktonic cells. Bacterial cells that lack
the badA gene also failed to firmly adhere to a surface to form a stable biofilm. Other
TAAs have been shown to influence biofilm formation in a variety of gram-negative
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bacteria such as Salmonella enterica [117], Acinetobacter baumanii [75], and Burkholderia
species [118]. We also discovered that badA expression is significantly downregulated in the
lab, under environmental conditions (low temperature and pH) that favor the arthropod
lifecycle [16,101,102].

BadA is required for biofilm formation in B. henselae, and biofilms are a significant
virulence mechanism for bacteria [16]. Biofilms are characteristically a stable community
of bacterial cells involved in chronic infection and disease relapse. Biofilm cells exhibit
increased resistance to the host immune response and antibiotic treatment. Microbial
biofilms are associated with a range of disease conditions such as dental plaque, infections
on medical devices, pneumonia, and infective endocarditis [20]. Biofilms are implicated in
both the vector and host of B. henselae as well as persisting in the flea fecal matter, which is
the inoculum passed onto cats and humans [39,119,120]. In humans, B. henselae is known to
cause a range of diseases and/or symptoms (cat scratch disease, bacillary angiomatosis with
neovascularization) [28,121–124]), and most notably, persistent bacteremia and infective
endocarditis, two disease conditions that require B. henselae growth as a biofilm [125–129].

Investigation of biofilm formation in fleas and flea fecal matter shows that B. henselae
can survive in both flea and flea feces up to 10 days post inoculum. Cat fleas were fed with
cat blood infected with B. henselae. Florescent images show that the bacterial load persists
in the flea gut for up to 10 days, and scanning electron micrographs show that biofilm is
present in the fecal matter [19]. Gene expression levels in infected cat blood, in the fleas
after ingestion, and in flea feces show that the brt1 genes are highly expressed in the blood
and result in a low expression rate for both the trp1 and badA genes. Brt1 was only detected
in the fleas 3 days after infection, with low expression profiles for trp1 and badA genes,
suggesting that the genes are not responsible for biofilm formation in the flea. In the fecal
matter, brt1, trp1, and badA maintain the same expression profile for 2 days (high brt1 and
low trp1/badA), but from day 3, the fecal matter expression profile changes to decreased
brt1 and increased trp1/badA, a timeline that coincides with the formation of biofilms in
the fecal matter [19]. An obvious difference in environmental conditions for blood/cat
flea vs. feces is the presence of heme, a metabolite with concentrations that can go up to
toxic levels—about 5mM in the arthropod vector after a blood meal [130,131]. B. henselae
expresses hemin-binding protein C to protect from the toxic effect of the heme level [132].
An infection model for Yersinia pestis-infected fleas to study disease transmission to a host
suggests that bacterial biofilm aggregates cause a blockage in the flea foregut leading to
a regurgitation—a process by which the bacterial aggregate is transferred into the host
during a blood meal on the host [133]. In contrast, flea feces are made up of hydrolyzed
and partly digested blood, suggesting that heme toxicity is reduced in cat flea feces [134];
moreover, heme levels in humans are heavily sequestered and found at lower levels of
about 0.5µM in blood [130,131], suggesting both conditions present non-toxic heme levels.
trp1 transcription was not increased under pH and temperature conditions that represent
both arthropod- and mammal-like conditions, but data showed that as heme concentration
decreased, a gfp gene cloned downstream of brt1 fluoresced intensely, backing up cat
flea data that shows no trp1 transcription in the presence of high heme [19]. As most
riboswitches respond to metabolites, Brt1 responded to heme concentration, a condition
that differs between the cat flea and mammalian hosts. This suggests that Brt1 as a trp1
transcript attenuator may respond to heme concentration.

In addition to RNAs, which act as transcript terminators, most sRNA regulation occurs
by base-pairing their target mRNA, prohibiting the target from being translated [135]. A
few examples of sRNAs that can act as repressors and/or prompt translation of another
mRNA were reviewed by Medha et al. [136] and Caron et al. [137]. In gram-negative
bacteria, SgrS found in E. coli and Salmonella is the only well-characterized dual-function
sRNA, where it represses or promotes the translation of four different mRNAs [136,138].
Another dual sRNA regulator, Agr, decreases the expression of many proteins on the cell
surface and increases the expression of several virulence factors secreted, playing a central
role in the pathogenesis of S. aureus [139,140].
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Preliminary and unpublished RNA-seq data from our lab using biotinylated Brt1
RNA incubated with lysates of Bartonella biofilm cells and controlled with planktonic-
grown cell lysates show that Brt1 can interact with mRNAs coding for surface adhesins
and transporters including BadA mRNA, DNA binding proteins that included Trp7, heat
shock chaperones, and mRNAs involved in metabolic function. Brt1 and BadA are located
in different areas of the genome. This suggests that Brt1 may also regulate other distal
genes as a trans-acting RNA, which base-pairs mRNAs to promote or suppress translation.
Focusing on the relationship with the trps, especially with the tentative involvement of Brt1
with Trp7 mRNA, we observed that a brt1 deletion did not affect trp1 or badA transcription
or biofilm negatively, instead, an increase in trp1 expression and biofilm formation was
observed confirming our earlier publication citing Brt1 as a negative regulator of badA [76].
As previously mentioned, trp genes are not abundantly expressed, but an over-expressing
strain of the trp1 gene shows that in a biofilm cell, trp1 and trp3 were abundantly expressed
(Figure 2). Trp3 can bind upstream of the badA gene, as we confirmed by electrophoretic
mobility shift assay and proteomics, indicating that at least two of the multicopy brt/trp
genes may possess similar functions regulating badA expression.
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sRNAs that may influence bacterial survival under different environmental conditions. 

5. Conclusions 
The prevalence of flea-borne diseases such as CSD is consistently underestimated by 

health agencies [141,142]. Arthropod-borne viral or bacterial diseases are a constant 
source of public health concern and result in about 700,000 recorded deaths per year 
[143,144]. Advances in molecular genetics show that bacterial genomes may harbor mul-
tiple copies of their genes to help them adapt and survive in new niches–host–switching, 
signifying that there are regulatory circuits that recognize and coordinate expression of 
genes necessary for transition [95,145–147]. Biofilms are implicated in the infection process 

Figure 2. RT-qPCR showing expression of trps in B. henselae Houston-1/pNS2PTrc trp1 (overexpressing
trp1) with B. henselae Houston-1 pNS2PTrc as control. Upper left: Expression of trps 1, 2, and 4/9.
Upper right: Expression of trps 3, 6, and 7. Lower: Expression of trp 5. Relative copy number (RCN)
was compared to reference rplD mRNA. Bars represent means of three independent experiments, and
error bars represent standard errors. Statistical analysis using Student’s t-test was performed using
GraphPad Prism (GraphPad Software, San Diego, CA, USA), (*) with a p-value < 0.05 considered
statistically significant as indicated.

RT-qPCR data using an overexpressing trp1 strain (OE trp1, Bh/pNS2PTrc trp1) con-
structed by cloning trp1 upstream of the Trc promoter shows that both trp1 (p = 0.000014),
trp3 (p = 0.008293), and trp6 (p = 0.001020) expression is significantly upregulated in a
biofilm cell (Figure 2). Trps 1 and 3 have already been implicated in regulating badA tran-
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scription. Moving forward, these preliminary Brt RNA-seq target data could be confirmed
by RNA electrophoretic mobility shift assay (REMSA). We propose incubating Brt1 mRNA
with BadA and Trp7 mRNA implicated by the RNA seq data to confirm interaction(s)
identified by the RNA-seq. The result of this experiment may confirm whether Brt1 acts as
a trans-acting mRNA by regulating the BadA mRNA, while providing an insight into the
interaction between other Brts and Trps mRNA.

Hence, Brt1, Trp1, and BadA are all involved in biofilm formation and play a role in
mammalian infection. The Brt1 RNA under conditions that favor the arthropod vector is
highly expressed and forms a stem-loop that prevents downstream transcription of the trp1
gene. Once conditions that favor mammalian hosts are met, namely low heme, high tem-
perature, and neutral pH, the Brt1 loop yields for trp1 transcription. Trp1 in turn binds the
promoter region of the badA gene to facilitate adhesion, aggregation, and biofilm formation.
This description was the first to implicate an sRNA, a DNA binding protein/transcription
factor, and an adhesin in biofilm formation in B. henselae. This RNA and TFs may be present
in multicopy to compensate for the loss of function. Unpublished RNA-seq data from our
lab suggest that Brt1 can also bind Trp7, BadA, and other auto-transporters; however, these
findings have not been confirmed. Other research has continued to study sRNAs that may
influence bacterial survival under different environmental conditions.

5. Conclusions

The prevalence of flea-borne diseases such as CSD is consistently underestimated by
health agencies [141,142]. Arthropod-borne viral or bacterial diseases are a constant source
of public health concern and result in about 700,000 recorded deaths per year [143,144].
Advances in molecular genetics show that bacterial genomes may harbor multiple copies of
their genes to help them adapt and survive in new niches–host–switching, signifying that
there are regulatory circuits that recognize and coordinate expression of genes necessary
for transition [95,145–147]. Biofilms are implicated in the infection process both in the
vector and the host [19,148]. Biofilms are also considered the default mode of growth
for bacteria [149], recognized as an essential survival mechanism for most bacterial in-
fections [150]. Therefore, the regulatory mechanism of biofilm formation warrants study
to better understand chronic bacterial infections, persistent bacteremia, and antibiotic
resistance and tolerance.

In this review, we presented the clinical relevance of B. henselae biofilms, the dif-
ferent conditions required for biofilm formation, and the regulatory mechanism of the
brt1/trp1/badA genes, which contribute to biofilm formation leading to optimal survival and
fitness in the host environment. We discuss the absence of the brt/trp/badA in regulating the
biofilm formation in the C. felis arthropod vector, indicating that perhaps a different outer
membrane protein may serve as the adhesin for biofilm formation. We also discussed other
genes and sRNAs implicated in regulating biofilm, badA, and/or involved in host infection
and survival.
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