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Abstract: Alzheimer’s disease (AD) is a gradually progres-
sive neurodegenerative disease with tremendous social and
economic burden. Therefore, early and accurate diagnosis
is imperative for effective treatment or prevention of the
disease. Cerebrospinal fluid and blood biomarkers emerge
as favorable diagnostic tools due to their relative accessi-
bility and potential for widespread clinical use. This review
focuses on the AT(N) biomarker system, which includes
biomarkers reflecting AD core pathologies, amyloid deposi-
tion, and pathological tau, as well as neurodegeneration.
Novel biomarkers associated with inflammation/immunity,
synaptic dysfunction, vascular pathology, and α-synuclein-
opathy, whichmight contribute to either the pathogenesis or
the clinical progression of AD, have also been discussed.
Other emerging candidates including non-coding RNAs,
metabolites, and extracellular vesicle-based markers have
also enriched the biofluid biomarker landscape for AD.
Moreover, the review discusses the current challenges of
biofluid biomarkers in AD diagnosis and offers insights into
the prospective future development.
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Introduction

Alzheimer’s disease (AD) is the most common neurodegen-
erative disease and the leading cause of dementia and
disability in the older population [1]. It is characterized by
chronic progressive cognitive impairment including
memory and decision-making problems, which eventually
lead to functional disability and death from complications
[2]. Currently, approximately 50 million people worldwide
living with dementia, with AD accounting for 60–80 % of
total dementia cases [2]. In China, there are 249.49 million
individuals aged 60 years or older, constituting 17.9 % of the
total population. The estimated prevalence was 6.0 % for
dementia and 3.9 % for AD in this population, indicating that
15.07 million people have dementia, among whom 9.83
million have AD in China [3]. Furthermore, estimates indi-
cate the prevalence of dementia ranges from 2.9 % in
individuals aged 60–69 years to as high as 31.9 % in those
aged 90 years or older [3], suggesting that the annual prev-
alence of dementia is expected to climb as life expectancy
continues to rise. Moreover, the total annual costs of
dementia are expected to reach $507.49 billion in 2030 in
China [4]. Without substantial advancements in AD pre-
vention and treatment, the prevalence of AD and the cost of
dementia is expected to surge, creating a substantial societal
and economic burden [4].

In the past, the diagnosis of AD primarily relied on
clinical criteria centered around the presentation of
dementia symptoms. Given the insidious onset and gradual
progression of AD, this approach can significantly increase
the risk of both misdiagnosis and underdiagnosis. Indeed,
evidence suggests amisdiagnosis rate of approximately 30 %
when compared with neuropathological assessments [5].
The average time from the appearance of symptoms to the
diagnosis of AD is around 2.8 years [6], with patients possibly
advancing to later disease stages by the time of diagnosis.
Furthermore, heterogeneity in the pathobiology of AD
may result in distinct clinical presentations and AD often
co-occurs with other neurodegenerative and vascular dis-
eases, which complicates the diagnosis of AD. Moreover,
disease-modifying treatments seem attainable for AD [7].
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These treatments are believed to be most useful in the
earlier stages of the disease and timely diagnosis of AD
holds significant importance. Consequently, there is an
imminent need for the development of objective early
diagnostic and differential diagnostic tools.

A biomarker is a measurable and quantifiable biolog-
ical parameter or characteristic that can be used to indicate
the risk, diagnosis, severity, or progression of a partic-
ular disease or physiological condition and the clinical
response to treatment (Figure 1). Biomarkers play a pivotal
role in the precise and early detection of AD, constituting an
essential prerequisite for the efficient management of the
disease. Biomarkers of AD include a wide range of sub-
stances, such as proteins, genes, metabolites, or other mol-
ecules found in tissues, cerebrospinal fluid (CSF), blood,
urine, or other biofluids, and specific imaging patterns. In
this review, we discuss the progress, challenges, and
prospects of research on biomarkers in biofluids, particu-
larly CSF and blood, for AD.

The historical development of AD
biomarkers

Figure 2 illustrates the main milestone in the historical
development of AD biomarkers. In 1906, Alois Alzheimer
made the pioneering discovery of AD, identifying the pres-
ence of abnormal protein deposits and tangled fibers in the
brain, later known as amyloid plaques and neurofibrillary

tangles (NFTs) [8]. The development of detection technology
in the 1980s led to significant progress in understanding
the neuropathology and clinical concepts of AD [9]. In 1986,
Wolozin et al. detected abnormally phosphorylated tau
proteins in homogenates of brain tissue using monoclonal
antibodies [10], which is a milestone in identifying in vivo
AD biomarkers. Obtaining pathological information from
individuals with AD through biopsy or post-mortem exami-
nation is impractical. Consequently, researchers have initi-
ated exploration into alternative methodologies for
acquiring pathology-related information.

CSF, being the sole fluid sample obtainable from the
central nervous system (CNS), is an ideal source for bio-
markers that might reflect alterations in the extracellular
space of the brain. In 1995, a series of publications discussing
enzyme-linked immunosorbent assays (ELISA) utilizing
monoclonal antibodies led to the development ofmodern AD
biomarkers. These assays were designed to measure CSF
levels of total tau (T-tau) and phosphorylated tau (P-tau), as
well as Aβ42. These publications revealed a significant
increase in CSF T-tau and P-tau, accompanied by a significant
decrease in Aβ42 in AD [11, 12]. Furthermore, the develop-
ment of positron emission tomography (PET) with radioac-
tive tracers enabled the visualization of protein deposition
in the brains of individuals with AD.

Early biomarkers primarily aimed to distinguish AD
from other forms of dementia but could only be detected in
advanced cognitive decline. As research evolved, it became
apparent that AD pathologies occur before clinical symp-
toms arise [13–15]. Research efforts have transitioned the

Figure 1: Role of a biomarker in diseases or
physiological conditions. A biomarker should
indicate at least one of the following: clinical
risk, disease diagnosis, disease prognosis, and
clinical outcomes for diseases or physiological
conditions.
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diagnosis of AD from the later dementia stages to the earlier
phases, opening up the possibility of pre-symptomatic
identification.

In 2007, the International Working Group (IWG) intro-
duced the significance of biomarkers in diagnostic criteria
[16]. Subsequently, the National Institute on Aging and the
National Institute on Alzheimer’s Association (NIA-AA)
released AD diagnostic guidelines in 2011, emphasizing the
role of biomarkers in diagnosing AD and assessing the risk
of disease progression [17–19]. In 2018, the NIA-AA proposed

a biological definition of AD as a research framework, which
includes amyloid deposition, pathologic tau, and neuro-
degeneration [AT(N)] biomarker classification system [20].
The AT(N) system subsequently evolved into the ATX(N)
system, where the X represents the incorporation of
emerging biomarkers [21]. The system is initially designed
for imaging and CSF. However, the high cost and unavail-
ability of imaging scans and the perceived invasiveness of
CSF sampling have limited their use in community settings
and early AD-risk populations.

Figure 2: Mainmilestones in the historical development of AD biofluid biomarkers. AD, Alzheimer’s disease; Aβ, amyloid-β; CSF, cerebrospinal fluid; ECL,
electrochemiluminescence; ELISA, enzyme-linked immunosorbent assays; IWG, International Working Group; NfL, neurofilament light chains; NIA-AA,
National Institute on Aging and the National Institute on Alzheimer’s Association; P-tau, phosphorylated tau; Simoa, single-molecule array.
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Blood samples are generally easier and less invasive to
obtain than CSF, and thus blood can be a valid source for
repeated measurements of biomarkers. Nonetheless, early
studies using first-generation blood-based biomarker as-
says yielded inconsistent findings in the context of AD [22],
partly because of lower abundance in plasma, considerable
peripheral expression, proteolytic degradation, and matrix
effects from plasma proteins [23–25]. Emerging ultrasensi-
tive technologies circumvent the limitations inherent to
conventional technologies and provide a 1,000-fold
improvement in sensitivity [26, 27]. This has led to
renewed enthusiasm for identifying blood-based bio-
markers for the diagnosis and prediction of AD in the last
decade. Three key developments have contributed to this
achievement, including electrochemiluminescence (ECL),
single-molecule array (Simoa), and mass spectrometry
(MS)-based assays [28] (Figure 3). ECL functions by substi-
tution of the enzyme label in the detection antibody with a
molecule that emits light during an electrochemical

reaction [29]. Simoa is a refinement of the traditional ELISA
technology, which involves compartmentalizing the
detection reaction within femtoliter-sized wells. This is
achieved by using magnetic beads to capture immuno-
complexes, thereby digitizing protein detection [26].
MS-based assays work by calculating the mass-to-charge
ratio of the molecules [30]. These technological advance-
ments collectively represent significant progress in
biomarker detection and quantification.

Moreover, significant advancements have substantially
deepened our comprehension of the pathogenesis and path-
ophysiology of AD. In addition to the well-established Aβ and
tau pathologies, AD is intricately linked to synaptic dysfunc-
tion, neuronal loss, neuroinflammation, oxidative stress, and
metabolic dysfunction [31]. Consequently, there is a growing
emphasis on the thorough investigation of biomarkers
involved in these multifaceted processes (Figure 4), which
may unravel the intricate molecular signatures that hold
promise for improved diagnostics and targeted interventions.

Figure 3: Ultrasensitive techniques for biomarker quantification. B, biotin; ECL, electrochemiluminescence; IP-MS, immunoprecipitation coupled with
mass spectrometry; LC-MS, liquid chromatography coupled with mass spectrometry; M, magnetic; SIMOA, single-molecule array; T, tag. Modified with
permission from ref [28]. Created with BioRender.com.
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ATX(N) system

The AT(N) biomarker framework for AD was initially
introduced by the NIA-AA in 2016 [32], with further refine-
ment in 2018 [20]. The framework was creatively proposed
by Jack et al. to classify the biomarkers of AD according
to pathophysiological characteristics [21] and staged AD at

the pathological level [33]. As shown in Figure 5, the initial
AT(N) system includes biomarkers for amyloid deposition
(A), pathological tau (T), and neurodegeneration or
neuronal injury (N), namely, cortical amyloid PET ligand
binding, low CSF Aβ42 or Aβ42/Aβ40 for A component;
elevated CSF P-tau or cortical tau PET ligand binding for T
component; and CSF T-tau, 18F-fluorodeoxyglucose (FDG)

Figure 4: Pathophysiology and related biomarker candidates for Alzheimer’s disease. Aβ, amyloid-β; CHI3L1, chitinase-3 like-protein-1; EVs, extracellular
vesicles; GAP43, growth-associated protein 43; GFAP, glial fibrillary acidic protein; MTBR tau, non-modified tau species that contain the microtubule-
binding region of tau; ncRNAs, non-coding RNAs; P-tau, phosphorylated tau; SNAP25, synaptosome-associated protein 25; sPDGFRβ, soluble platelet-
derived growth factor receptor β; sTREM2, soluble triggering receptor expressed on myeloid cells 2. Created with BioRender.com.
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PET hypometabolism, and atrophy observed on structural
MRI for N component. Binary classification of the three
components yields eight different biomarker profiles,
with A−T−(N)− being considered normal, A+T±(N)± being
considered Alzheimer’s continuum, and A−T+(N)± as well
as A−T−(N)+ being considered non-AD pathologic change
(Figure 6) [20]. The CSF-based AT(N) classification not only
allows monitoring of cognitive decline but also facilitates
the prediction of disease prognosis [34]. Imaging bio-
markers such as 18F-Florzolotau PET (T) and 18F-FDG PET
(N) exhibit limited specificity in diagnosing AD but can
effectively assess the severity of cognitive impairment [35].
Despite potential inconsistencies in results between CSF
and imaging markers [36], a multicenter study demon-
strated the highest concordance (96 %) between CSF bio-
markers and amyloid-PET in A+T+N+ cases, followed by
A−T−N− cases (89 %) [37]. Furthermore, the combination
of imaging markers and CSF biomarkers enhances the
diagnostic capability for AD. For instance, microstructure
imaging capturing neurodegeneration (N) may increase
the clinical sensitivity of CSF A and T biomarkers [38].

As research on the pathogenesis of AD advances, novel
potential biomarkers have emerged, including biomarkers
related to inflammation/immunity mechanism (I), brain
vascular injury (V), and α-synuclein (S). These collectively
termed “X” biomarkers have been incorporated into the
AT(N) framework to comprehensively represent the entire
pathological spectrum of AD and enhance our understand-
ing of its underlying mechanisms. Among them, amyloid
deposition and pathological tau-related biomarkers are

the core biomarkers of AD, while neurodegeneration and
inflammation/immunity are non-specific AD biomarkers
that can provide information in staging and prognosis.
Brain vascular injury biomarkers and α-synuclein bio-
markers, representing common non-AD co-pathologies,
play a potential role in differential diagnoses and compre-
hensive management of AD.

Existing frameworks still have certain limitations,
particularly when applied to large populations in the early
stages of cognitive decline, prompting the need for alterna-
tive, less invasive, and more cost-effective blood biomarkers
for widespread population screening [39]. Integrating blood
markers into the AT(N) framework not only enhances
diagnostic accuracy but also facilitates the repeated moni-
toring of biological changes, offering potential advantages
for the clinical application of biofluid biomarkers [33].
Researchers have undertaken extensive investigations to
identify promising representative markers in each category
and assess their diagnostic efficacy. Noteworthy blood-based
biomarkers identified include the Aβ42/Aβ40, P-tau, and
neurofilament light chains (NfL) [40].

Core biomarker

Aβ

Amyloid deposition is one of the hallmark pathologies of
AD [41]. The formation of Aβ amyloid plaques involves
cleavage of amyloid precursor protein (APP) by α, β, and γ
secretases [42]. Specifically, cleavage at sites Asp1 and Glu11

Figure 5: Pathophysiology and corresponding
biomarkers according to the AT(N) research
framework. Aβ, amyloid-β; CSF, cerebrospinal
fluid; FDG, fluorodeoxyglucose; PET, positron
emission tomography; P-tau, phosphorylated
tau.
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on the β region of APP occurs through the action of the β-site
APP cleaving enzyme 1(BACE1), resulting in the production
of a C-terminal membrane containing either 89 or 99 amino
acid fragments. Subsequent processing by γ-secretase
gives rise to various subtypes, including the soluble isoform
Aβ40 and the plaque-forming variant Aβ42, which contains
additional amino acids (isoleucine and alanine) [43]. The
alteration in the free quantity of Aβ accompanying Aβ
deposits has prompted extensive research into the utility of
Aβ in CSF as a biomarker for AD.

Aβ42 stands out as a specific indicator widely acknowl-
edged for diagnosing AD. As early as 1995, researchers
observed a substantial decline in CSF Aβ42 levels in in-
dividuals with AD, using an ELISA tailored for Aβ42
(Figure 1) [11]. Diminished Aβ42 concentrations in CSF also
emerged as a predictive factor for the progression to AD in
individuals with mild cognitive impairment (MCI) [44]. Aβ40
is considered the foundational element for total Aβ pro-
duction. Studies have demonstrated that using Aβ42/Aβ40,
which adjusts for inter-individual differences in Aβ pro-
cessing and potential preanalytical confounders, enhances
consistency with amyloid PET results [45]. Notably, CSF
Aβ42/Aβ40 exhibits superiority over CSF Aβ42 alone in dis-
tinguishing AD from other dementias [46].

Plasma Aβ42/Aβ40 also demonstrates excellent predic-
tive ability for brain amyloid deposition, which is compa-
rable to CSF Aβ42/Aβ40 and amyloid PET, and its accuracy
(area under the curve [AUC]=0.84–0.85) could be further
enhanced through incorporating apolipoprotein E (APOE)
genotypes (AUC=0.88–0.93) [47]. Moreover, plasma Aβ42/
Aβ40 predicted the risk of development and progression of
AD. In a cohort study involving 62 individuals with amnestic

MCI, 52.4 % of those with amnestic MCI and a low baseline
Aβ42/Aβ40 progressed to AD within 24 months, compared to
28.8 % of individuals with a high Aβ42/Aβ40 [48]. Addition-
ally, it was found that plasma Aβ42 concentration and Aβ42/
Aβ40 ratio were significantly reduced in individuals with AD
compared to those with normal cognition, subjective cogni-
tive decline (SCD), or MCI, while the change in plasma Aβ40
was less pronounced [49]. A head-to-head study reveals
that MS-based plasma Aβ42/Aβ40 shows the most accurate
diagnostic performance [50]. In 2020, Precivity AD™, an MS-
based plasma Aβ assay, received approval for the use of AD
diagnosis in the United States and Europe, which showed an
86 % agreement with amyloid PET (sensitivity: 92 %, speci-
ficity: 76 %) [51].

Plasma Aβ42/Aβ40 holds promise as a diagnostic
biomarker for AD. Nevertheless, the change amplitude of
plasma Aβ42/Aβ40 is relatively modest (the decrease of
plasma Aβ42/Aβ40 is only 10–15 %, while the amplitude of
changes in CSF is about 50 % between Aβ-positive and
negative individuals) [52], resulting in potentially unstable
results. The reason for this variability remains unclear,
whether attributed to biological variations or disparities in
analytical methods. Therefore, ongoing research is dedi-
cated to exploring oligomeric and misfolding forms of Aβ
[53–55] to improve its diagnostic and predictive perfor-
mance. Aβ oligomer is themost toxic and pathogenic form of
Aβ (Figure 7). An elevated CSF level of oligomeric Aβ has
been linked to cognitive decline in individuals with AD [56].
In plasma, it effectively distinguished AD from control,
showing a correlation with the severity of symptoms [57].
Furthermore, it has been demonstrated that the oligomeri-
zation of Aβ is triggered by a structural shift from

Figure 6: Biomarker profiles and categories
according to the AT(N) research framework.
Binary classification of the three AT(N)
biomarkers results in eight distinct biomarker
profiles. Individuals can be classified into one
of three biomarker categories based on these
profiles: those with normal AD biomarkers,
those within the Alzheimer’s continuum, or
those exhibiting non-AD pathological changes.
AD, Alzheimer’s disease.
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predominantly monomeric α-helical to a β-sheet-enriched
secondary structure [58]. Therefore, this misfolding Aβ,
detectable through an immuno-infrared sensor, also holds
promise for predicting the conversion to MCI and dementia
due to AD in cognitively unimpaired (CU) individuals when
considered alongside the Aβ42/Aβ40 ratio [54]. Given the
numerous biological and analytical challenges encountered
by plasma Aβ42/40 alone as a diagnostic biomarker for AD,
integrating both structure-based and concentration-based
Aβ holds the potential to improve the prognostic perfor-
mance of this biomarker.

Pathological tau

Tau is a protein found in neurons that interacts with mi-
crotubules, containing a domain facilitating the assembly
and stabilization of these structures, thereby maintaining
cytoskeletal integrity. Hyperphosphorylated tau loses its
affinity for microtubules, forming NFTs deposited in the
cytosol, compromising cellular structure maintenance.
Additionally, this deposition adversely affects normal
neuronal functions such as synaptic transmission, axon
transport, and signal transduction, leading to gradual neu-
rodegeneration [59].

Elevated levels of P-tau in CSFwere observed early in AD
[60]. Currently, there are mainly three subtypes of P-tau as
biomarkers: P-tau181, P-tau217, and P-tau231. Historically,
P-tau181was considered the predominant taumarker in CSF;
however, subsequent research revealed that CSF P-tau217
exhibits greater accuracy compared to CSF P-tau181 [61]. MS
studies found that individuals with AD displayed six times
higher levels of CSF P-tau217 compared to individuals with
other neurological disorders and CU individuals, whereas
the increase observed for CSF P-tau181 was only 1.3 times
[62]. These P-tau subtypes change as early as two decades
before the development of aggregated tau pathology and
fail to reflect the tau aggregation and NFTs [63]. Recently,
some novel tau protein subtypes have been discovered in
CSF, such as non-modified tau species that contain the
microtubule-binding region of tau (MTBR tau) and tau spe-
cies ending at amino acid 368 (tau368). They exist in NFTs

and are significantly correlated with tau PET signals [64–67],
indicating they might be directly related to tau aggregation
and NFTs. However, their corresponding biomarkers have
not yet been found in the blood.

In plasma, these P-tau subtypes have also received
extensive attention, with P-tau217 recognized for its superior
detection efficiency. A multicenter cohort study revealed
that plasma P-tau217 demonstrated a remarkable ability to
differentiate AD from non-AD, demonstrating a high accu-
racy (96 %) comparable to the established CSF or tau PET
biomarkers [68]. In addition, plasma P-tau217 is elevated in
the asymptomatic phase and changeswith the progression of
AD, thus it might contribute to the early prediction of AD,
disease surveillance, and evaluation of drug efficacy. Plasma
P-tau231 is also a biomarker indicating Aβ pathology at
very early stages [69, 70]. Plasma P-tau231 demonstrated
remarkable efficacy in distinguishing individuals with AD
with high accuracy (AUC=0.92–0.94) from Aβ-negative CU
individuals. It also distinguished individuals with AD from
thosewith other neurodegenerative diseases (AUC=0.93) and
those with Aβ-negative MCI (AUC=0.89) [70]. Regarding
plasma P-tau181, its elevation was observed in preclinical
AD, with a subsequent increase in both MCI and dementia
stages. Plasma P-tau181 emerges as an interchangeable
marker for evaluating Aβ status in MCI and AD with 18F-
Florbetapir PET imaging and 18F-Florzolotau PET imaging
[35]. It correlates with CSF P-tau181 and predicts positivity in
tau PET (AUC for different brain regions: 0.87–0.91) [71].
Plasma P-tau181 effectively discriminated AD dementia from
other neurodegenerative diseases with similar accuracy to
tau PET and CSF P-tau181 (AUC=0.94–0.98) [71]. Additionally,
plasma P-tau181 showed high diagnostic accuracy in dis-
tinguishing between Aβ-positive and Aβ-negative in-
dividuals of the Alzheimer’s continuum (AUC=0.77) [72].

In summary, plasma P-tau181, P-tau217, and P-tau231 are
all potential biomarkers for early diagnosis of AD. The
different metabolic characteristics of these biomarkers
also determine their unique diagnostic value. Particularly
noteworthy are the significant dynamic longitudinal
changes observed in plasma P-tau217, correlating with
alterations in multiple cognitive domains and cortical

Figure 7: Toxicity of different forms of Aβ. The
aggregation of Aβ peptides initiated from Aβ
monomers to eventual protofibrils and fibrils.
Oligomer is the most toxic form while
monomers and fibrils have lower cytotoxicity.
Aβ, amyloid-β.
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thickness in regions characteristic of AD. In contrast,
P-tau231 displays more pronounced cross-sectional changes
in response to early Aβ pathology but does not exhibit sig-
nificant longitudinal changes [73]. In comparison, P-tau217
outperforms P-tau181 in differentiating AD from fronto-
temporal lobar degeneration (FTLD) and demonstrates a
stronger correlation with tau PET signaling [74]. Neverthe-
less, these blood markers encounter challenges. Confound-
ing factors can alter plasma concentrations of P-tau217 and
P-tau181. Specifically, plasma levels of P-tau181 and P-tau217
exhibit an age-related increase between 65 and 70 years,
with the most notable elevation observed in Aβ-positive
individuals [75]. Furthermore, elevated plasma levels of
P-tau181 and P-tau217 are associated with the presence of
multiple comorbidities, such as chronic kidney disease, a
history of myocardial infarction, or stroke [76]. The research
on blood-based tau biomarkers is still in its early stages and
needs to be replicated and validated in more studies.

Non-specific biomarker

Non-specific biomarkers are biomarkers that are preva-
lent in other neurodegenerative diseases or pathological
states. Non-specific biomarkers of AD mainly include
neurodegeneration-related markers such as NfL, T-tau, and
synaptic-related markers, as well as markers related to
inflammation and immunity mechanisms. These proteins
are not specific to AD; therefore, they cannot be used alone
for the diagnosis of AD and are commonly used for disease
staging [77].

NfL

NfL is an important component of the axonal cytoskeleton.
When axons are damaged, NfL is released, leading to a
substantial increase in concentration in CSF and blood [78].
A range of pathological processes, including neuro-
degeneration, neuroinflammation, ischemia, and trauma,
can disrupt the cytoskeletal network, which may result in
neurofilament dysfunction, ultimately leading to neuronal
and axonal damage [79]. Consequently, the clinical correla-
tion between detecting NfL levels in CSF and blood holds
the potential to offer insights into the progression and
prognosis of neurological diseases.

CSF NfL is elevated across various neurological diseases,
making it a non-specific marker for neuronal and axonal
damage without indicating a specific disease pathology.
However, it demonstrates the ability to differentiate diseases
based on the extent of axonal damage and determine
whether cognitive decline is linked to neurodegeneration

[80]. Elevated CSF NfL levels are associated with an
increased risk of MCI [81]. Moreover, CSF NfL demonstrates
greater sensitivity in predicting clinical progression in CU
individuals compared to other proposed neurodegeneration
markers like neurogranin and T-tau [82]. CSF NfL serves as a
valuable indicator for monitoring disease progression and
assessing prognosis.

There is a high correlation between blood and CSF NfL
concentration, despite blood NfL levels being significantly
lower than CSF levels [80]. Studies indicate that plasma NfL,
similar to CSF NfL, is elevated in various neurological dis-
orders [79]. In sporadic AD, plasma concentrations of NfL
are elevated during the MCI stage and exhibit correlations
with cognitive, biochemical, and imaging characteristics of
the disease [83]. This elevation holds significance in pre-
dicting the progression of AD [49]. In familial AD, blood NfL
concentrations begin to increase approximately 10 years
before the anticipated onset, and the level of NfL is corre-
lated with the estimated years to symptom onset [84, 85].
The rate of change in serum NfL reached its peak in in-
dividuals converting from the pre-symptomatic to the
symptomatic stage, and this increase was correlated with
cortical thinning [86]. These findings imply the potential
utility of blood NfL in aiding disease staging and monitoring
progression.

A notable challenge in clinical practice arises due to a
significant correlation between NfL concentration and
age [87]. Serum NfL is influenced by the aging process, dis-
playing a nonlinear increase in concentration after the sixth
decade of life in individuals without neurological diseases
[88]. Furthermore, the neurodegenerative process from the
peripheral nervous system may also contribute to the
elevated blood levels of NfL [89]. Therefore, for older adults
potentially experiencing neurodegenerative conditions, it is
advisable to incorporate NfL alongside Aβ and P-tau for a
comprehensive assessment. While NfL may not be suitable
for direct diagnosis purposes in AD, it still holds potential
implications for enhancing diagnostic clarity, monitoring
diseases, evaluating treatment responses, and predicting
long-term prognosis. Moreover, NfL could serve as an indi-
cator of both amyloid-dependent and independent neuro-
degeneration, which is pertinent when considering the
involvement of mixed pathology in AD.

T-tau

There is still controversy over the classification of T-tau.
Both CSF and plasma T-tau change in the early stage of
familial AD [63] and exhibit a strong correlation with P-tau
[90], whichmakes it desirable to be a T biomarker. However,
a substantial increase in CSF levels of T-tau is also observed
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in various neurological diseases such as brain trauma [91],
stroke [92], and peripheral neuropathies [93], suggesting
that T-tau may fall into the N category. In 2018, the
NIA-AA research framework defined CSF T-tau as a
neurodegeneration-related marker, believing that it cannot
represent AD-specific tau pathology [20].

A high level of CSF T-tau is associated with rapid pro-
gression from MCI to AD, steerer cognitive decline, and
increased mortality in AD. CSF T-tau also differentiates
individuals with AD from CU individuals with good perfor-
mance [94]. Additionally, it is suggested that CSF tau is
correlated with postmortem NFT load, implying that neu-
rons affected by NFTs may contribute to the elevated CSF
T-tau levels, and thus CSF T-tau might reflect AD-specific
neurodegenerative processes.

Although plasma T-tau is associated with an increase in
the risk of all-cause or AD [95], it is ineffective in dis-
tinguishing individuals with AD from CU individuals [96].
The disparity in the performance of CSF and plasma T-tau
may stem frompost-translationalmodification or peripheral
metabolism of tau. As depicted in Figure 8, the brain contains
the full-length tau, but post-translational modifications
result in truncated tau in both CSF and blood. Specifically,
tau in CSF comprises N-terminal and mid-region species,
while in blood, it predominantly exists in N-terminal forms.
These characteristics of tau kinetics might lead to a poor
correlation between CSF and plasma T-tau [97] and a sig-
nificant overlap in plasma T-tau between normal aging and
AD [97]. Recently, a novel biomarker designed to specifically
detect brain-derived tau (BD-tau) in blood is expected to
address this issue [96]. The performance of blood BD-tau is
superior to that of traditional blood T-tau. Blood BD-tau is
highly correlated with CSF BD-tau and has significant
changes in individuals with AD. It can accurately diagnose
AD and recognize neurodegeneration with AD specificity
(AUC=0.86) [96]. Therefore, BD-tau may have the potential to
complement the AT(N) system in the blood.

Synaptic proteins

Synaptic dysfunction is also an important pathological
feature of AD, and the associated biomarkers include
growth-associated protein 43 (GAP43), neurogranin,
synaptosome-associated protein 25 (SNAP25), synaptotagmin
1, and β-synuclein. In CSF, synaptic proteins change
earlier than NfL and are highly promising AD biomarkers
[98]. Neurogranin, a protein localized in dendrites and
associated with protein kinase C, is intricately connected to
the compromised synaptic function observed in AD [99]
and therefore emerges as a promising biomarker with the
potential to identify the disease with high sensitivity in the

early stage [100]. Presynaptic proteins also offer valuable
potential as biomarkers for AD. GAP43, which is crucial for
synapse maintenance and neurite regeneration [101, 102], is
diminished in the brain but increased in CSF in individuals
with AD. Notably, a positive correlation exists between CSF
GAP43 and amyloid deposition as well as tau pathology,
underscoring its effectiveness in diagnosing AD (AUC=0.92
for distinguishing AD from the control) [103, 104]. Another
presynaptic protein, SNAP25, plays a role in vesicle fusion
and exocytosis [105]. CSF SNAP25 levels are elevated in in-
dividuals with AD. The longer soluble forms including at
least amino acid 32–40 of SNAP25, SNAP25aa40, not only
serve as a diagnostic marker (AUC=0.93 for distinguishing
AD from the control group) but also aid in differential
diagnosis (AUC=0.92 for distinguishing AD from other de-
mentias) [103]. Synaptotagmin 1, a crucial vesicle protein in
hippocampal neurons, facilitates rapid neurotransmitter
release [106]. Initial studies [107] suggested decreased CSF
synaptotagmin 1 in early-onset AD, but later research [108]
contradicted this, revealing increased concentrations in AD
and MCI, with the highest levels in MCI due to AD. β-Synu-
clein is a presynaptic protein predominantly expressed in
the brain. An increase in CSF β-synuclein in AD was identi-
fied in an MS study focusing on synaptic proteins and was
corroborated through immunodetection [109, 110]. This
specificity to amyloidopathies was reinforced by its un-
changed levels in non-amyloid pathologies like FTD [111].
Importantly, the elevation was evident in individuals with
MCI due to AD [110], indicating its potential as an early
diagnostic and prognostic biomarker.

There is limited research on synaptic protein in the
blood, which may be due to lower peripheral expression
concentrations. No blood biomarkers have been found that
can accurately reflect synaptic pathology until very recently,
the assay for blood β-synuclein has been developed. Blood
β-synuclein has demonstrated a correlation with cognitive
impairment and brain atrophy in AD [112]. Furthermore,
blood β-synuclein is associated with amyloid PET positivity
inmultiple regions and predicts Aβ status in individualswith
MCI. Other synaptic proteins remain challenging tomeasure
in blood, even with highly sensitive methods, as demon-
strated in recent tests for SNAP-25 [113]. While neurogranin
can be identified in blood, its expression extends beyond the
brain and its alterations observed in CSF may not be accu-
rately reflected in blood samples [113].

Inflammation and immunity

More and more evidence suggests that inflammation and
immunity play an important role in the occurrence and
development of AD. Currently, inflammatory/immunity
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biomarkers related to AD mainly include glial fibrillary
acidic protein (GFAP), triggering receptor expressed on
myeloid cells 2 (TREM2), chitinase-3 like-protein-1 (CHI3L1),
and systemic inflammatory markers.

GFAP is currently a promising biomarker for AD, which
is specifically expressed in astrocytes. A meta-analysis
revealed elevated CSF GFAP concentrations in both early-
onset and late-onset AD participants compared to CU
participants [114]. A longitudinal study demonstrated
increased GFAP levels throughout the continuum of AD,
spanning preclinical, MCI, and dementia phases, compared
to Aβ-negative controls [115]. Plasma GFAP levels also
begin to increase during the asymptomatic phase of AD,
increasing with the progression of AD disease [116]. The
amplitude of changes in plasma GFAP is greater than that
in CSF GFAP. Furthermore, plasma GFAP has a stronger
correlation with Aβ pathology and has a better ability to
differentiate Aβ-positive individuals from Aβ-negative
individuals than CSF GFAP (plasma AUC, 0.69–0.86; CSF
AUC, 0.59–0.76) [117, 118]. It is currently the only plasma
biomarker with higher efficacy than its CSF counterpart.

TREM2 is expressed on the surface of microglial cells. It
undergoes ectodomain shedding and produces soluble
TREM2 (sTREM2). CSF sTREM2 is increased in individuals
with AD [119]. Furthermore, a positive correlation between
sTREM2 level and classical CSF biomarkers T-tau and P-tau
suggests its potential as a reliable predictor for early-stage
AD [120]. Plasma sTREM2 is highly correlated with CSF
levels and predicts the risk of AD conversion and cognitive
decline [121]. Increased TREM2 mRNA expression in pe-
ripheral blood mononuclear cells distinguishes individuals
with AD and enables differentiation between disease

stages [122, 123] Consistently, Hu et al. revealed a diagnostic
accuracy close to 70 % when assessing TREM2 protein in
circulating mononuclear cells [124].

CHI3L1, also known as YKL-40, is expressed by
astrocytes and microglia in response to proinflammatory
cytokines. Increased CHI3L1 concentrations in CSF and
plasma are indicative of ongoing inflammatory processes.
CHI3L1 is increased in the early stage of AD [125]; however,
the increase may not be specific to Aβ pathology, as no sig-
nificant differences have been found between individuals
with AD and those with other neurodegenerative dementias.
Instead, the progression of clinical symptoms and brain
cortical atrophy appears to be more closely associated
with increased CHI3L1 levels [126, 127]. Therefore, it would
function more effectively as a staging biomarker rather
than a standalone diagnostic biomarker for AD.

Research on inflammatory markers in AD is also
controversial. Interleukin (IL) has emerged as a potential
biomarker in numerous studies, focusing on alterations in
pro-inflammatory cytokines like IL-1α, IL-1β, and IL-6 in in-
dividuals with AD [128]. Elevated concentrations of IL-6 and
impaired cognitive function have been linked to the pro-
gression of AD [129]. Furthermore, systemic levels of IL-6
were associated with cognitive function in carriers of APOE
ε4 [130]. The soluble form of IL-33 and its decoy receptor sST2
could potentially serve as additional indicators of inflam-
mation in AD, with reduced IL-33 observed in the brain tis-
sue of individuals withMCI and AD [131]. Conversely, plasma
IL-33 level was higher in those withMCI and AD compared to
CU individuals. However, it is important to note that alter-
ations in these inflammatory markers may not directly
correlate with AD pathology, as they could also be influenced

Figure 8: Tau in the brain and biofluids. Tau exists in the full-length form in the brain, while tau in CSF and blood is truncated after post-translational
modification. CSF, cerebrospinal fluid.
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by aging or systemic conditions. Additional clinical evidence
is essential to substantiate the feasibility of using systemic
inflammatory markers as biomarkers in future research.

Immunity and inflammation are essential processes
throughout AD. While they currently fall short of meeting
diagnostic specificity requirements, their potential for
diagnosis becomes more promising when combined with
other core biomarkers such as Aβ and tau.

Co-pathology biomarkers

It has beenwidely acknowledged that additional pathologies
other than amyloid plaques and NFTs often co-occur in
AD, including α-synucleinopathy, vascular pathology, and
TDP-43 inclusions pathology [132]. The presence of these
co-pathologies not only contributes to clinical heterogeneity
but also potentially accelerates the progression of AD,
resulting in an earlier onset of neurodegeneration and
clinical symptoms. Biomarkers of co-pathology of AD reflect
concurrent pathological processes and play a crucial role in
clinical diagnosis, prognosis, and treatment decisions of AD.
For example, an individual experiencing cognitive impair-
ment with co-pathology may not respond as effectively
to anti-Aβ immunotherapy compared to someone with
biomarker profiles lacking co-pathology indicators. This
holds significance not only in clinical trials where a homo-
geneous cohort with purer AD is preferable but also in the
precise management of the disease. Currently, available
biofluid assays for co-pathology biomarkers include those
that reflect brain vascular injury and α-synuclein pathology.

Brain vascular injury biomarkers

The neurovascular system, comprising neurons, glial cells,
and blood vessel cells, is the structural and functional unit
of the brain. Its pivotal role involves regulating the perme-
ability of the blood-brain barrier (BBB) and maintaining
cerebral blood flow, which ensures normal brain function,
neuronal survival, and an optimal microenvironment
for information processing [133]. Recently, there has been
increasing interest in exploring the impact of vascular
biology on the pathophysiology of AD [134]. Heart-type fatty
acid-binding protein (H-FABP), extensively studied as a
biomarker for myocardial infarction and heart fail-
ure [135, 136], has been linked to AD. An increase in CSF
H-FABP level has been observed in AD as early as the MCI
stage, with higher baseline levels in MCI predicting con-
version to AD during follow-up [137]. However, H-FABP
levels show a limited ability to differentiate AD from other
dementias and a weak association with cognitive

impairment [138, 139]. Currently, there is no evidence that
H-FAΒP in the blood is associated with AD. Pericytes are
crucial for vascular integrity and BBB regulation in AD [140].
Pericytes release soluble platelet-derived growth factor re-
ceptor β (sPDGFRβ) under hypoxic conditions or exposure to
Aβ peptides [141]. Multiple studies suggest increased CSF
sPDGFRβ is associated with early cognitive decline in
AD [142, 143]. Furthermore, this increase predicts cognitive
decline in early AD stages irrespective of the Aβ and tau
state, suggesting that vascular injury is an early biomarker
of cognitive dysfunction independently of Aβ and tau
changes [144].

α-Synuclein

The misfolding of α-synuclein plays a pivotal role in the
pathogenesis of neuronal synuclein disease, including
Parkinson’s disease and dementia with Lewy bodies (DLB)
[145]. α-Synuclein constitutes the primary component of
Lewy bodies and is a common co-pathology in AD, account-
ing for nearly one-third of cases [146]. Studies indicate that
increased level of α-synuclein contributes to Aβ oligonu-
cleation, tau phosphorylation, kinase activation, and tau
aggregation in AD [146, 147]. Furthermore, they are associ-
ated with amyloid deposition in the asymptomatic phase
[147]. There is a positive correlation between CSF α-synuclein
and tau, with notably increased CSF α-synuclein concentra-
tion in early AD stages. This suggests that CSF α-syn could
serve as a diagnostic marker for AD, aiding in differentiation
from other neurodegenerative disorders when combined
with additional biomarkers [147].

Combination biomarkers of ATX(N)

The continuous refinement of individual biofluid biomarker
research has established the groundwork for exploring
combinations of biomarkers. Utilizing the strengths and
recognizing the limitations of various biofluid biomarkers,
researchers have developed diverse models that combine
these markers, intending to enhance the diagnostic effec-
tiveness of AD.

The first idea is to combine Aβ and P-tau or T-tau
biomarkers. Studies suggest that the combination of Aβ
and P-tau or T-tau serves as a reliable and precise marker
for diagnosing AD [44]. Moreover, T-tau/Aβ42 and P-tau/
Aβ42 ratios demonstrate equivalent diagnostic efficacy to
the widely accepted Aβ42/Aβ40 ratio for AD diagnosis
(AUC=0.94) [148, 149]. Notably, the P-tau/Aβ42 ratio stands
out for its exceptional predictive value for AD pathology and
progression [150]. A combination of Aβ42/T-tau or T-tau/Aβ42
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in both plasma and CSF shows a higher predictive ability for
progression from MCI to AD than individual biomarkers
alone [151]. Additionally, combinations like P-tau217 with
Aβ42/Aβ40 and P-tau181 with Aβ42/Aβ40 predict brain
amyloid PET status, with the latter being superior [71, 152].
Aβ42/Aβ40 combined with percentage of P-tau217 not only
has high diagnostic accuracy for identifying AD among
individuals with cognitive symptoms in primary and sec-
ondary care but also reduce the influence of comorbidities
or confounding factors [153, 154]. Therefore, biomarker
combination is a promising direction, which deserves
extensive research and continuous attention.

Various combinations involving more components of
the ATX(N) have also been explored. We previously
demonstrated that a combination of plasma Aβ42, P-tau181,
and NfL could effectively differentiate AD from CU in-
dividuals, achieving an impressive AUC of 0.99. Notably,
this combination showed promise in predicting AD 8–10
years before clinical onset, with applicability to both spo-
radic and familial AD cases [155]. Another noteworthy
combination involving P-tau181, NfL, and GFAP in plasma
had the potential to distinguish AD from FTD with an AUC
of 0.82 [156]. The incorporation of neurophysiological
markers into the analysis enhanced the diagnostic signifi-
cance of P-tau181, NfL, and GFAP in differentiating
individuals with AD from CU individuals (AUC=0.99) [156].
Our previous study indicated that the predictive ability of a
combination of plasma biomarkers for AD was superior to
individual biomarkers [155], which might be attributed to
the ability of the combination to decrease potential con-
founding factors associated with preanalytical procedures
to a certain extent [157]. Therefore, despite the simplicity
of individual biomarkers, it is recommended to utilize a
combination of biomarkers for more accurate detection
of AD.

Other biomarkers

In addition to the aforementioned biomarkers, there are
also other biofluid biomarkers under exploration, including
non-coding RNAs(ncRNA) [158, 159], metabolites [160], and
biomarkers using extracellular vesicles (EVs) as car-
riers [161, 162]. They not only serve as potential biomarkers
of AD but also reflect the upstream and downstream mech-
anisms of AD. Since most disease-modifying therapies
such as Aβ-targeting therapies have limited clinical efficacy
for AD [155], continuous development of new biomarkers
can help discover new therapeutic targets.

NcRNA

NcRNA refers to RNA transcribed from the genome
without coding potential [163]. These molecules exert a
regulatory function by binding to DNA, RNA, and proteins.
Transcriptomic analyses have revealed the abundance of
ncRNA in the CNS, exhibiting tissue and cell specificity, and
its capacity to dynamically regulate signaling pathways in
neurodegeneration [164]. Previous studies have confirmed
the involvement of ncRNA in the regulation of BACE
activity, tau protein phosphorylation, inflammation, and
synaptic plasticity [165].

MicroRNAs (miRNA) represent a class of short ncRNAs
typically comprising 20–24 nucleotides. Through binding
to the 3′untranslated region (3′UTR) of mRNA, miRNA can
modulate mRNA translation by either suppressing its
activity or promoting its degradation [166]. Kiko et al.
observed reduced levels of miR-34a and miR-146a in
plasma, and miR-34a, miR-146a, and miR-125b in CSF of
individuals with AD, while levels of miR-29a andmiR-29b in
CSF were increased [167]. Subsequent studies confirmed
these findings and assessed the diagnostic potentials of
these differentially expressed miRNAs. Blood miR-125b
was found to discriminate AD from CU (specificity: 68.3 %;
sensitivity: 80.8 %) [168] and from MCI (AUC: 0.733) [169].
Importantly, miR-125b showed a correlation with cognitive
performance in individuals with AD [168]. Plasma miR-34a-
5p correlated positively with CSF Aβ42 levels, distinguish-
ing early AD from controls (AUC=0.77) [170]. Serum
miR-206 showed significant elevation in individuals with
MCI, providing robust diagnostic value (AUC=0.88) [171].
Longitudinal follow-up demonstrated upregulated plasma
miR-206 in the pre-dementia stage, predicting cognitive
decline at the MCI stage [172]. Inconsistent findings were
observed for miR-146a in CSF and serum. A fluorescent
miRNA-array showed increased CSF miR-146a in AD [173],
while qPCR indicated a reduction, potentially due to blood
contamination in CSF [174]. Serum miR-146a increased in
MCI but decreased in AD, playing a role in AD progression
and correlating with CSF Aβ levels, APOE ε4 status, and
hippocampal volume [175].

While individual miRNAs show promise as diagnostic
biomarkers, their efficacy remains suboptimal due to the
intricate pathogenesis of AD. Studies suggest that combina-
tions of miRNAs yield superior diagnostic performance.
Kumar et al. identified a seven-miRNA panel with an AUC
of 0.953 for AD detection [176]. Kayano et al. demonstrated
a combination that accurately distinguishes MCI from con-
trols with 95 % accuracy (AUC=0.962) [169]. We previously
identified a set of sevenmiRNAs accurately estimating P-tau/
Aβ42 values in CSF, differentiating AD from controls and
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other dementias [158]. Collectively, these findings indicate
the potential of miRNAs as effective biomarkers for AD.

While miRNA has received extensive attention due to its
important role in gene regulation, there is limited research
on biomarkers of circular RNA (circRNA) and long ncRNA
(lncRNA). CircRNA, a closed circular non-coding RNA, plays
a crucial role in gene regulation by acting as a sponge for
miRNAs and regulating RNA binding proteins (RBPs) [177].
Specific circRNAs, including hsa_circRNA_050263,
hsa_circRNA_403959, and hsa_circRNA_003022, are found to
be upregulated in the plasma of individuals with AD andMCI
[178]. Conversely, hsa_circ_0003391 is reduced in the blood
of AD participants compared to other forms of dementia
and effectively distinguishes AD with an AUC of 0.7283 [179].
Moreover, incorporating additional circRNAs into the panel
significantly enhances its ability to identify individuals with
AD from those with other dementias, achieving an impres-
sive AUC of 0.968 [159]. This underscores the potential of
circRNA biomarkers, along with the need for further
exploration in this area.

LncRNA, a subset of ncRNA exceeding 200 nucleotides,
regulates gene expression through interactions with DNA,
RNA, and RBP [180]. Plasma lncRNA BACE1 demonstrated
high specificity (88 %) for AD [181]. This observation was
consistent in other studies where BACE1-AS, upregulated in
AD plasma, effectively discriminated AD from CU with 68 %
sensitivity and 100 % specificity [182]. Additionally, plasma
levels of NEAT1 (72 % sensitivity, 84 % specificity) and BC200
(60 % sensitivity, 91 % specificity) successfully differentiated
individuals with AD from CU [183]. In our prior study, a
combination of seven lncRNAs showed strong performance
in AD diagnosis (AUC=0.797), significantly outperforming
individual markers [184].

In conclusion, ncRNAs hold promise in diagnosing and
differentially diagnosing AD. Notably, miR-125b, miR-206,
and miR-146a demonstrate high sensitivity and specificity.
The exploration of relationships between peripheral ncRNA
markers and other indicators sparks further investigation.
However, inconsistencies in ncRNA detection, data pro-
cessing, and statistical analysis contribute to variability in
results. We anticipate more research adhering to stringent
standards, and using consistent detection and analysis
methods, with a particular emphasis on longitudinal studies.

Metabolites

Metabolites, small molecules typically possessing a molecu-
lar weight below 1,500 Da, play a pivotal role in various
biological functions, providing valuable insights into disease
phenotypes and uncovering pathophysiologicalmechanisms

[185]. Multiple metabolic disorders, such as diabetes and
hyperlipidemia, are comorbidities of AD, indicating a po-
tential connection between AD and metabolic dysregulation
[186]. As of November 2023, the Human Metabolome Data-
base (available at https://hmdb.ca) contains more than 220,
945 entries for metabolites, including both water- and fat-
soluble compounds. Metabolomics, an advanced in vivo
analytical technique facilitating rapid and simultaneous
detection of hundreds/thousands of metabolites, has suc-
cessfully detected metabolic changes and characterized
biochemical pathways in AD. This approach aids in identi-
fying biomarkers in the early stages of AD, searching for
emerging therapeutic targets, and assessing therapeutic
response and disease progression [187, 188].

Several aromatic, branched, and urea cycle amino acids
in CSF were associated with CSF Aβ42 and P-tau181 in AD,
indicating dysregulated systemic energy metabolism in AD,
alongside specific alterations in the tryptophan pathway
and creatinine within the CNS [189]. An earlier study iden-
tified several novel CSFmetabolites associatedwith indole-3-
propionic acid, kynurenine, indole-3-acetic acid, guanosine,
and glutathione, which showed high accuracy in dis-
tinguishing individuals with AD from controls (AUC=0.96)
[190]. Targeted metabolomics on CSF from postmortem-
confirmed AD revealed a significant decrease in concentra-
tions of metabolites associated with polyamines and the
tryptophan-kynurenine pathway [191]. A diagnostic model,
mainly comprising amino acids, nucleotides, and other small
molecules, predicting AD occurrence, with an accuracy of
98.7 %, and specificity and sensitivity values exceeding 95 %
[192].

Lipid metabolism abnormalities, particularly involving
sphingolipids and phospholipids in plasma, are key focuses
in AD research. A longitudinal cohort study suggested
higher baseline serum ceramide levels (C16:0 and C24:0) are
associated with an increased risk of AD [193]. Stage-specific
changes in plasma metabolites, such as specific sphingoli-
pids (sphingomyelin with acyl residue sums of C16:0, C18:1,
and C16:1, as well as hydroxysphingomyelin with an acyl
residue sum of C14:1), are closely associated with AD pa-
thology severity and progression during preclinical and
prodromal stages [187]. To identify AD-specific metabolomic
alterations, the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) study revealed correlations between MCI and AD
with plasma levels of anthranilic acid, glutamate, taurine,
and xanthine in 2,067 participants [194]. Other studies
identified metabolites associated with cognitive impair-
ment, dementia risk, and lifestyle factors [195]. Notably, a
diagnostic model incorporating 11 serum metabolites
demonstrated high accuracy in both diagnosing AD and
distinguishing it from other types of dementia [160].
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In summary, metabolomics reveals significant alter-
ation in certain neurotransmitters, amino acids, and lipids
in CSF and blood of individuals with AD. These changes
are involved in pathways closely related to amino acid
metabolism, lipid metabolism, and mitochondrial energy
metabolism, all of which are intricately linked to the path-
ophysiology of AD [196]. They provide dynamic biological
insights into different clinical stages of AD. Metabolomics
holds promise in providing crucial clues for the early diag-
nosis, treatment strategies, and preventive measures in AD.

EVs

EVs, ranging from 30 to 200 nm, are released by living
cells [197]. Nearly all types of cells in the CNS, including
neural stem cells, neurons, and glial cells, can release EVs
[198]. EVs play a crucial role in intercellular communication,
as the proteins, lipids, and nucleic acids they are carrying
can reflect and influence various physiological and patho-
logical states of cells [199]. EVsmay play a dual role in AD. On
one hand, they participate in the formation of pathological
proteins such as Aβ and P-tau, propagating them among
interconnected neurons and causing cellular damage and
neuronal loss [200]. On the other hand, EVs mediate the
clearance of these pathological proteins through multiple
pathways [201]. Besides, EVs have been implicated in syn-
aptic function [202, 203], neuroinflammation [204], and
insulin resistance [205], all of which are essential mecha-
nisms for AD. Of interest, pathological changes in AD pre-
cede clinical symptoms over many years, and toxic
substances in EVs can be detected early in AD [206]. Thus,
EVs may be promising biomarkers for effectively recog-
nizing AD in the asymptomatic phase.

Asmentioned earlier, the levels of Aβ42, T-tau, and P-tau
in CSF have been recognized as appropriate biomarkers for
early identification of AD [19, 207]. In postmortem studies,
these pathological proteins were found to colocalize with
EVs [208, 209]. Furthermore, their changes in CSF are related
to EV-mediated secretion [210]; therefore, assessing these
toxic proteins within CSF-derived EVs is expected to improve
the diagnostic sensitivity for AD. P-tau in CSF-derived EVs
also can reflect the severity of AD, which is supported by the
observation of significantly higher levels in advanced AD
than in early-stage [210]. In addition, miRNAs in CSF-derived
EVs have also been recognized as a potential diagnostic tool
for AD, although their expression profiles varied across
different studies. Importantly, miR-193b andmiR-125b-5p are
both changed in EVs derived from CSF, serum, and plasma,
despite the variation in expression patterns across different
sources of EVs [211].

The small size and cell membrane-like structures of EVs
facilitate their relatively easy passage across the BBB [212].
Additionally, the continuous flow of CSF may play a role in
mediating the diffusion of EVs from the CNS to the periph-
ery [213]. Consequently, EVs can transport pathological
proteins from the brain to the bloodstream, preventing
their contents from degradation and contamination by
blood components. Specific pathological substances carried
by neuronal-derived EVs (NDEs) detected in peripheral
blood are anticipated to serve as identifiable biomarkers for
AD diagnosis and treatment. Furthermore, detecting NDEs in
the blood is proved to be feasible as we previously demon-
strated high consistency between Aβ42, T-tau, and P-tau181
in NDEs and those from CSF, suggesting NDEs may reflect
AD pathological changes in the brain [214]. This becomes
particularly crucial in scenarios where biomarker in free
form is affected by the peripheral metabolism or when their
concentrations in peripheral blood are subtly changed.
Notably, two independent studies identified significantly
elevated levels of P-tau396, P-tau181, and Aβ42 in plasma
NDEs of individuals with AD. The combination of these
biomarkers allowed for accurate detection of preclinical AD
up to 10 years before the onset of cognitive
impairment [215, 216].

As mentioned in the 2.2.3. Synaptic protein section,
while synaptic protein in CSF stands as promising bio-
markers for AD, most of the synaptic proteins are chal-
lenging to measure in blood possibly due to low peripheral
expression; NDEs in blood might solve this issue. We previ-
ously found a combination of GAP43, SNAP25, neurogranin,
and synaptotagmin 1 in plasma NDEs successfully identify
preclinical AD 5–7 years before clinical onset [217]. Consis-
tently, the levels of other synaptic proteins including
neuronal pentraxin 2, neurexin 2α, GluA4-containing gluta-
mate, and neuroligin 1 detected in plasma NDEs were also
significantly decreased in individuals with AD. This reduc-
tion is indicative of the progression of dementia, suggesting
they may serve as biomarkers for predicting AD 6–11 years
before cognitive decline [218]. These studies collectively
highlight the potential of plasma neuronal-derived synaptic
protein to reflect the degree of synaptic dysfunction in AD.

MiRNAs are an important component in EVs. Alterations
in miRNA from blood EVs have been observed in AD, with
specificmiRNAs likemiR-30b-5p, miR-22-3p, andmiR-378a-3p
identified by Dong et al. to distinguish AD from CU in-
dividuals (AUC: 0.88) [219]. Wei et al. observed a reduction in
plasma EV miR-223 in AD and correlations with cognitive
status and plasma inflammatory marker levels [220]. Our
previous research identified a panel of six miRNAs in blood
NDEs capable of detecting preclinical AD 5–7 years before
cognitive decline [162]. While various studies support the
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potential of miRNAs in plasma NDEs for AD prediction or
diagnosis, the specific miRNA types showing elevation or
reduction vary.Multicenter studies are crucial for validating
these findings.

Undoubtedly, EVs derived from diverse sources
demonstrate promising potential in the prediction and
diagnosis of AD. However, the intricate process of extracting
and characterizing EVs presents challenges, necessitating
efficient and high-purity extraction while mitigating inter-
ference from other EVs.

Challenges and future directions of
biofluid biomarkers for AD

In recent years, a paradigm shift has taken place in the AD
field, leading to the development of a new diagnostic
framework. Aligned with this framework is a novel disease
model that initiates with the evaluation of risk factors for
primary prevention, advances to screening for early detec-
tion and intervention in the disease, proceeds to diagnosis
and staging, and concludes with treatments and the moni-
toring of their effects [221]. Therefore, the role of the
biomarker should be addressed. The goal of biofluid
biomarker research in AD is to apply these biomarkers in
clinical practice. To achieve this goal, Frisoni et al. [222]
proposed a five-phase roadmap for the development of AD
biomarkers (Figure 9). In the first phase, preclinical
exploratory studies aim to identify potential useful bio-
markers. The second phase involves the development and
validation of clinical assays for biomarkers, assessing their
ability to identify individuals with AD. In the third phase,
biomarkers should be evaluated in retrospective and longi-
tudinal cohorts to determine their capacity for early iden-
tification or diagnosis of AD and define criteria for screening
biomarker positivity. The fourth phase involves prospective
studies to ascertain the accuracy of core biomarkers in
clinical settings. Finally, the fifth phase focuses on clinical
implementation, evaluating the reduction in mortality,
morbidity, and disability rates associated with biomarker
detection. Among the ATX(N) biomarkers, the first and sec-
ond stages of Aβ42/40, P-tau, and NfL have been largely
completed. The first and second phases of GFAP, as well as
the third phase for all biomarkers, are currently ongoing.
Limited work on the fourth phase has been undertaken,
while research for the fifth phase is pending further
refinement of the preceding steps [223].

The establishment of the ATX(N) framework holds
significant importance for predicting AD risk, enabling

early diagnosis and treatment, and advancing clinical
research. However, the current ATX(N) classification sys-
tem does not achieve the consistency required for use in
clinical settings [224]. While the ATX(N) framework was
discussed as clinical criteria at the recent Alzheimer’s
Association International Conference (AAIC), it still pri-
marily serves as a research framework. Further research
and refinement are necessary before its integration into
clinical practice can be realized. Currently, biofluid bio-
markers are mainly used for the identification of
individuals with preclinical AD and AD progressors at a
lower cost than amyloid PET screening. Furthermore, these
biomarkers can help improve target engagement and
enrollment in randomized controlled trials (Figure 10).
These biomarker tests used in a clinical trial to screen
participants for amyloid positivity before amyloid PET does
not need to be as accurate as a test intended to replace
amyloid PET. A relatively crude marker that minimizes
false negatives could substantially decrease the number of
individuals requiring PET imaging, streamlining the pro-
cess of participant selection for clinical trials. Future
research not only needs to focus on the efficacy of blood
biomarkers in the diagnosis and prediction of AD, but also
requires long-term longitudinal research to clarify the
relationship between biofluid biomarkers, response to
treatment, and clinical symptoms. They will continue to
play a crucial role in identifying the disease and creating
opportunities for new therapeutic advancements.

While blood biomarkers might serve as a non-invasive,
low-cost, and relatively convenient method for early
diagnosis and disease monitoring of AD, their reliability
faces challenges due to systemic and biological factors.
Recent assessments in real-world settings, particularly in
populations characterized by significant heterogeneity,
reveal that comorbidities, such as chronic kidney disease
and myocardial infarction, have a considerable impact on
AD biomarker levels [76, 225]. Noteworthy biological factors,
including age, body mass index, and circadian rhythm, as
well as the influence of concomitant medications and life-
style variables, contribute substantially to both inter- and
intra-individual variation [226, 227]. The susceptibility of
blood biomarkers to these diverse factors arises from their
metabolic interactions in peripheral tissues, whichmay lead
to potential confusion with biomarkers originating from the
periphery. The intricate dynamics of AD biomarkers in the
blood involve processes such as dysfunction of BBB, dilution
within the circulating blood, adherence to blood proteins
or cells, and clearance by peripheral organs [143, 228, 229].
Moreover, the origin of pathological proteins in the blood
extends beyond the brain to peripheral organs or tissues,
which further amplifies the complexity. NDE is a potential
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avenue for regulating the impact of peripheral metabolism;
however, the complexity of NDE isolation and character-
ization poses a practical challenge.

Due to the intricate interaction of biological and sys-
temic factors, it is challenging to define the normal refer-
ence ranges and cut-off values for these biomarkers. Real-
world studies are imperative for the clinical application of
these biomarkers in AD. Various studies, including those in
memory clinics and communities [230–232], have explored
cutoff values for these biomarkers. While similar studies
have been conducted in specialized research cohorts, the
performance and cut-off values of these biomarkers in real-
world populations, characterized by increased heterogene-
ity in patient demographics, co-morbidities, and disease
presentations, remain to be fully ascertained. Likewise,
establishing reference intervals for biomarkers is crucial for
interpreting clinical laboratory tests and diagnosing

diseases. These intervals represent the range of physiolog-
ical measurements observed in healthy individuals. Most of
the existing biomarker data mainly comes from the Euro-
pean and American populations, and its applicability in the
Asian population needs further research and verification. A
recent study [233] has preliminarily revealed the reference
intervals for plasma Aβ42, Aβ40, T-tau, and P-tau181
measured using Simoa assays in Chinese CU individuals aged
50–89 years. In the future, larger-scale, multicenter research
is needed to cover participants of different ages, genders,
and races, to better understand the performance of these
biomarkers in different populations.

Recently, several new techniques have been developed
for the diagnosis of AD. Seed amplification assay has
received more attention in the field of neurodegenerative
diseases. Using Aβ as a seed, it expands exponentially by
a protein-based self-proliferation mechanism. The

Figure 9: Five-phase framework to develop biomarkers for Alzheimer’s disease.

Figure 10: Potential role of AD biomarkers for research purposes. AD biomarkers are used for the identification of individuals with preclinical AD (A) as
well as AD progressors (B). They also improve target engagement and enrollment in clinical trials (C). AD, Alzheimer’s disease; Aβ, amyloid-β; CSF,
cerebrospinal fluid; CU, cognitively unimpaired; MCI, mild cognitive impairment; PET, positron emission tomography.
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amplification power of these assays allows for diagnosis of
AD [234]. This method without antibodies may provie a cost-
effective choice for AD screening [235]. More studies have
shown that Tau and α-synuclein also have potentials to act as
seeds [236, 237]. Therefore, seed amplification assays may
have potentials for clinical translation.

Evenwith highly sensitivemethods, the results of theAD
biomarker are inconsistent across different laboratories.
The variability may arise from inconsistency in detection
methodologies, data processing, and analytic models,
which hinders their use as reliable clinical tools. Therefore,
optimization and standardization measures should be
addressed to advance the reliability and global imple-
mentation of biomarker tests in Alzheimer’s and dementia
research and diagnosis. The Alzheimer’s Association estab-
lished the Global Biomarker Standardization Consortium
to standardize and validate biomarker tests for global clin-
ical practices. Achieving optimization and standardization
is a complex and substantial endeavor. Rigorous quality
control measures should be implemented to ensure unifor-
mity across diverse laboratories, which involves creating a
monitoring tool for assessing biomarker performance
between clinical and large research laboratories, utilizing
existing testing platforms like MS and immunoassays.
This facilitates inter-laboratory comparisons to identify
and address variations in measurement techniques and
results. The development of universal materials for bio-
fluid biomarkers ensures standardized measures and cali-
bration. Standardizing pre-analytical factors in CSF
and blood handling and processing aims to minimize sys-
temic differences in biomarker measurements. Moreover,
creating a standardized reporting format for biomarker
results, including specifying units of measurement, refer-
ence ranges, and other relevant information, supports
clinicians in interpreting results accurately. These compre-
hensive efforts collectively contribute to enhancing the
reliability and consistency of biomarker tests in Alzheimer’s
and dementia research and diagnosis [238, 239].

In summary, biofluid biomarkers have great potential in
early diagnosis and disease monitoring of AD, but there are
still some challenges and limitations that need to be over-
come. Future research will further expand our under-
standing of these biomarkers, providing more possibilities
for early diagnosis and treatment of AD.
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