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Influenza A: Understanding the Viral Life Cycle
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Influenza A virus belongs to the family of Orthomyxoviridae. It is an enveloped virus with a
negative sense RNA segmented genome that encodes for 11 viral genes. This virus has
evolved a number of mechanisms that enable it to invade host cells and subvert the host cell
machinery for its own purpose, that is, for the sole production of more virus. Two of the
mechanisms that the virus uses are “cap-snatching” and preventing the host cell from ex-
pressing its own genes. This mini-review provides a brief overview as to how the virus is able
to invade host cells, replicate itself, and exit the host cell.

INTRODUCTION

Influenza A belongs to the family of
Orthomyxoviridae. It is an enveloped virus
with a genome made up of negative sense,
single-stranded, segmented RNA. The In-
fluenza A viruses have eight segments that
encode for the 11 viral genes: hemagglu-
tinin (HA†), neuraminidase (NA), matrix 1
(M1), matrix 2 (M2), nucleoprotein (NP),
non-structural protein 1 (NSP1), non-struc-
tural protein 2 (NS2; also known as nuclear
export protein, NEP), polymerase acidic
protein (PA), polymerase basic protein 1
(PB1), polymerase basic protein 2 (PB2)

and polymerase basic protein 1 – F2 (PB1-
F2) [1].

The influenza virus virions are known
to display a number of shapes, with the
most abundant one being roughly spheri-
cal. The viral envelope is made up of a
lipid bilayer that contains three of the viral
transmembrane proteins: HA, NA, and
M2. This lipid bilayer is derived from the
host’s plasma membrane and is known to
contain both cholesterol-enriched lipid
rafts and non-raft lipids [2-4]. HA is the
most abundant envelope protein at approx-
imately 80 percent, followed by NA,
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which makes up around 17 percent of the
viral envelope proteins. M2 is a very minor
component of the envelope, with only 16 to
20 molecules per virion. HA and NAare ex-
clusively associated with the lipid rafts in
the viral lipid membrane, whereas M2 is not
[4,5]. Sitting just underneath the viral lipid
membrane is M1, which forms a matrix
holding the viral ribonucleoproteins
(vRNPs). These vRNPs are the core of the
virus and are made up of the viral negative
stranded RNAs, which are wrapped up
around NP and very small amounts of NEP.
At one end of the vRNPs are the three poly-
merase (3P) proteins (PB1, PB2 and PA)
that make up the viral RNA polymerase
complex [1,4,6].

The influenza virus life cycle can be di-
vided into the following stages: entry into
the host cell; entry of vRNPs into the nu-
cleus; transcription and replication of the
viral genome; export of the vRNPs from the
nucleus; and assembly and budding at the
host cell plasma membrane. In this review,
each stage of the viral life cycle will briefly
be described.

ENTRY INTO THE HOST CELL
HA is a homotrimer that forms spikes

on the viral lipid membrane. These spikes
of HA bind to sialic acid found on the sur-
face of the host cell’s membrane [7]. The
HA precursor, HA0, is made up of two
subunits: HA1, which contains the recep-
tor binding domain, and HA2, which con-
tains the fusion peptide. These subunits
are linked by disulphide bonds [8]. Two
major linkages are found between sialic
acids and the carbohydrates they are
bound to in glycoproteins: α(2,3) and
α(2,6). These are extremely important for
the specificity of the HA molecules in
binding to cell surface sialic acid receptors
found in different species. Viruses from
humans recognize the α(2,6) linkage,
whereas those from avians and equines
recognize the α(2,3) linkages. Those from
swine recognize both [7]. This explains
the importance of swine being a good mix-
ing vessel for avian and human influenza

viruses, hence producing dangerous path-
ogenic viruses.

Upon binding to the host cell’s sialic
acid residues, receptor-mediated endocyto-
sis occurs and the virus enters the host cell in
an endosome. The endosome has a low pH
of around 5 to 6, which triggers the fusion
of the viral and endosomal membranes. The
low pH induces a conformational change in
HA0, leading to maintenance of the HA1 re-
ceptor-binding domain but exposing the
HA2 fusion peptide. This fusion peptide in-
serts itself into the endosomal membrane,
bringing both the viral and endosomal mem-
branes into contact with each other. Several
crystal structures of HA in its various con-
formations, i.e., at neutral and acid pH, have
been solved and are reviewed in [7] and [8].

The acidic environment of the endo-
some is not only important for inducing the
conformation in HA0 and, thus, fusion of
the viral and endosomal membranes but
also opens up the M2 ion channel. M2 is a
type III transmembrane protein that forms
tetramers, whose transmembrane domains
form a channel that acts as a proton-selec-
tive ion channel [9,10]. Opening the M2 ion
channels acidifies the viral core. This acidic
environment in the virion releases the vRNP
from M1 such that vRNP is free to enter the
host cell’s cytoplasm [11].

ENTRY OF vRNPs INTO
THE NUCLEUS

Influenza viral transcription and repli-
cation occurs in the nucleus; therefore, after
being released into the cytoplasm, the vRNP
must enter the nucleus. The viral proteins
that make up the vRNP are NP, PA, PB1, and
PB2. All of these proteins have known nu-
clear localization signals (NLSs) that can
bind to the cellular nuclear import machin-
ery and, thus, enter the nucleus. To date, it is
unclear which NLS is the most important for
vRNP nuclear entry. The different NLSs
present in each of these viral proteins are re-
viewed in [12]. It is known that import oc-
curs via the Crm1 dependent pathway by
binding to the various karyopherins in-
volved in nuclear import, for example, im-
portin α and β.

154 Samji: Influenza A: understanding the viral life cycle



TRANSCRIPTION AND
REPLICATION OF THE VIRAL
GENOME

The influenza viral genome is made up
of negative sense strands of RNA. In order
for the genome to be transcribed, it first must
be converted into a positive sense RNA to
serve as a template for the production of
viral RNAs.

Replication of the genome does not re-
quire a primer; instead, the viral RNA de-
pendent RNA polymerase (RdRp) initiates
RNA synthesis internally on viral RNA.
This is possible, as the extreme 5’ and 3’
ends of the genome exhibit partial inverse
complementarity and, hence, are able to base
pair with one another to form various
corkscrew configurations. It appears that a
great number of di-nucleotide base pairs
form, although the full mechanism of viral
genome replication is still yet to be under-
stood [13-16].

Given that the influenza A virus only
encodes for 11 proteins, it has generated
many sophisticated methods of utilizing the
host cell’s machinery for its own purposes.
Through understanding viral transcription,
we have learned of a unique mechanism
whereby the virus hijacks the host’s tran-
scription machinery for its own benefits.

Mature cellular messenger RNAs
(mRNAs) have a 5’ methylated cap and a
poly(A) tail. It is known that the vRNPs have
poly(A) tails but no 5’caps. It was confusing
when the influenza community discovered
that the viral mRNAs did have a 5’ methy-
lated cap and a poly(A) tail, but the 5’ cap
was not found in the viral genome [17,18].
Much study went into this problem, and soon
it was determined that the 5’methylated caps
of the viral mRNAs actually belonged to the
cellular mRNAs. That discovery lead to the
formulation of the “cap-snatching” mecha-
nism [19-26]. The viral RdRp is made up of
three viral proteins: PB1, PB2, and PA. PB2
has endonuclease activity. It binds to the 5’
methylated caps of cellular mRNAs and
cleaves the cellular mRNAs’ 10 to 15 nu-
cleotides 3’ to the cap structure. This cellular
capped RNA fragment is used by the viral
RdRp to prime viral transcription [27].

Cellular RNA Polymerase II (Pol II)
binds to DNA and starts transcription. Dur-
ing transcription initiation, serine 5 on the
C-terminal repeat domain (CTD) of Pol II is
phosphorylated, leading to the activation of
cellular cap synthesis complex. The in-
fluenza RdRp has been shown to bind pref-
erentially to this form of Pol II, indicating
that this could be the point at which “cap
snatching” could occur [28].

Six but two of the viral segments en-
code for one protein. Segments 7 and 8 en-
code for two proteins each due to splicing.
Segment 7 encodes for M1 and M2;
whereas, segment 8 encodes for NS1 and
NEP. M2 and NEP are the spliced products
and generally are found in much lower
abundance than NS1 and M1 [29]. The virus
uses the host cell’s splicing machinery to ex-
press both of these proteins [30]. Despite in-
fluenza’s need for the cellular splicing
machinery, it prevents the host cell from
using its own splicing machinery for pro-
cessing the host cell mRNAs. NS1 binds to
U6 small nuclear RNAs (snRNAs) [31,32]
and other splicing components, causing
them to re-localize to the nucleus of infected
cells [33]. In this way, influenza is able to
inhibit splicing of cellular mRNAs. It also
has been shown to bind to a novel protein
called NS1 binding protein (NS1-BP), caus-
ing it to re-localize to the nucleus in infected
cells. The function of NS1-BP is unknown,
although it is predicted to be involved in
splicing given its co-localization with SC35,
a spliceosome assembly factor [34]. NP also
has been shown to interact with UAP56, a
splicing factor involved in spliceosomal for-
mation and mRNAnuclear export, although
the importance of NP’s binding to UAP56 is
yet to be established [35].

The mechanism of polyadenylation of
viral mRNAs is very unusual. Cellular
mRNAs are polyadenylated through cleav-
age at the polyadenylation signal
(AAUAAA) by cleavage and polyadenyla-
tion specificity factor (CPSF) and subse-
quent addition of a poly(A) tail at the 3’ end
of the mRNA. Viral mRNAs do not contain
this sequence; instead, the viral RdRp re-
mains bound to the 5’ end of the template
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viral RNA, leading to steric blockage at the
end of viral RNA synthesis [36,37]. Each
viral segment has a stretch of five to seven U
residues approximately 17 nucleotides from
the 5’ end, and this forms the basis of the
viral polyadenylation signal [38]. Therefore,
polyadenylation of the viral mRNAs occurs
due to a stuttering mechanism, whereby the
RdRp moves back and forth over this stretch
of U residues, leading to the formation of a
poly(A) tail [39,40]. Interestingly, NS1 in-
hibits the nuclear export of cellular mRNAs
by preventing cellular mRNAs from being
cleaved at the polyadenylation cleavage site
[41]. It does this by binding to the CPSF
[42] and poly(A) binding protein II
(PABPII), which is involved in stimulating
poly(A) polymerase to add the poly(A) tail
onto newly cleaved mRNAs [43].

EXPORT OF vRNPs FROM
THE NUCLEUS

It is known that only negative sense
vRNPs are exported from the nucleus [44].
vRNPs appear to be exported out of the nu-
cleus via the CRM1 dependent pathway
through the nuclear pores. NPhas been shown
to interact with CRM1 directly, although no
GTP hydrolysis activity could be detected.
This indicates an unusual method of export if
the binding of NP to CRM1 is critical for ex-
port of the vRNPs. M1 is known to interact
directly with the vRNPs through the C-termi-
nal end of the protein. Interestingly, the N-ter-
minal portion of the protein is known to have
an NLS potentially involved in the import of
the vRNPs. It has been shown that the N-ter-
minal portion of M1 can bind to NEP, thus
masking the NLS. NEP also has been shown
to bind to CRM1with the accompanyingGTP
hydrolysis that normally occurs in a CRM1-
dependent export pathway. Therefore, it is hy-
pothesised thatM1 binds to the negative sense
vRNPs, as well as binding to NEP. In turn,
NEPbinds to CRM1, and through this “daisy-
chain” complex, the vRNPs are exported out
of the nucleus [12,45,46].

Recently, live imaging has been em-
ployed to visualize the movement of vRNPs
during the influenza life cycle. It has been
shown that NP preferentially localizes to the

apical side of infected nuclei, indicating po-
larized exit of the viral genome [47,48].

ASSEMBLY AND BUDDING AT THE
HOST CELL’S PLASMA MEMBRANE

After the vRNPs have left the nucleus,
all that is left for the virus to do is form viral
particles and leave the cell. Since influenza
is an enveloped virus, it uses the host cell’s
plasma membrane to form the viral particles
that leave the cell and go on to infect neigh-
bouring cells. It is possible to create virus
particles that do not contain any or only a
few vRNPs, but all the viral proteins nor-
mally found within the viral lipid bilayer,
i.e., HA, NA, and M2, must be present to
form a viral particle [4].

Virus particles bud from the apical side
of polarized cells [4]. Because of this, HA,
NA, and M2 are transported to the apical
plasma membrane. It has been shown
through deletion and mutational analysis
that the tail of M2 is extremely important in
the formation of viral particles. Viruses that
had the M2 tail deleted or partially mutated
produced elongated particles [49]. M1,
which is present underneath the lipid bilayer,
is important in the final step of closing and
budding off of the viral particle [6,50]. Sev-
eral host factors are involved in the budding
off of viruses from plasma membranes, and
these are reviewed in [4,51].

There are twomodels that have been hy-
pothesized to explain the packaging of viral
genomic segments into virions: the random
packaging model [52,53] and the specific
packaging model [54]. The former predicts
that viral genomic segments are randomly
packaged into virions; whereas, the latter
predicts that there are signals present in the
viral segments dictating which segments are
to be packaged into the virions. Packaging
signals have been identified in the 5’ and 3’
non-coding and coding regions of some of
the viral segments [55-59], thus leaning to-
ward the specific packaging model.

One of the most important steps that
must occur before the newly made viral par-
ticle can leave the plasma membrane is the
cleavage of sialic acid residue from glyco-
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proteins and glycolipids. NA removes these
sialic acids. Without this process, the viral
particle would not be released from the
plasma membrane [60].

CONCLUSION
This is just a brief overview of the steps

in the influenzaA viral life cycle from entry
into a host cell to exit from the host cell.
This is a very complicated process, and there
is much still to be learned, such as the com-
plete mechanism of viral genomic RNA
replication. Like all viruses, influenzaAhas
evolved to take advantage of host cells by
processes such as “cap-snatching” and inhi-
bition of cellular mRNAsplicing and export.
Influenza A can be a deadly virus causing
many pandemics. We hope that by learning
how the virus is able to replicate in host
cells, we can develop better drugs and vac-
cines to protect us.
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