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Abstract: Novel heterojunction photocatalysts with remarkable photocatalytic capabilities and durability
for degrading recalcitrant contaminants are extremely desired; however, their development still remains
quite challenging. In this study, a series of flower-like BiOI/BiOCOOH p–n heterojunctions were fabricated
via a controlled in situ anion-exchange process. During the process, BiOI formation and even deposition
on BiOCOOH microspheres with tight interfacial contact were realized. As expected, BiOI/BiOCOOH
heterojunctions revealed remarkable enhancements in photocatalytic antibiotic degradation capacities
under visible light irradiation compared with pristine BiOI and BiOCOOH. The best-performing
BiOI/BiOCOOH heterojunction (i.e., IBOCH-2) showed much improved photocatalytic CIP degradation
efficiency of approximately 81- and 3.9-fold greater than those of bare BiOI and BiOCOOH, respectively.
The eminent photocatalytic performances were due not only to the enhanced capability in harvesting
photon energies in visible light regions, but also the accelerated separation of electrons and holes boosted
by the p–n heterojunction. Active species trapping tests demonstrated that superoxide free radicals (•O2

−)
and photo-generated holes (h+) were major active species for CIP degradation. Recycling experiments
verified the good durability of BIBO-2 over four runs. The facile in situ synthesis route and excellent
performance endow flower-like BiOI/BiOCOOH heterojunctions with a promising potential for actual
environmental remediation.

Keywords: flower-like heterostructure; BiOI/BiOCOOH; p–n heterojunction; visible light photocatalysis;
antibiotic removal

1. Introduction

In recent decades, the widespread occurrence of pharmaceutical antibiotics in the environment
has induced overwhelming concerns for human health. Thus, searching for a viable approach to
efficiently eliminate these harmful antibiotics is an urgent issue. Semiconductor-based photocatalysis
as an environmentally friendly and high-efficiency treatment represents a promising method to
protect and remedy the environment [1–4]. Nowadays, bismuth-based semiconductors have evoked
great interest for their exclusive electronic and structural characteristics [5–11]. Typically, by virtue
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of its unique layered architecture, fast charge separation, strong redox ability, and good chemical
stability, n-type BiOCOOH is demonstrated to be an active photocatalyst for toxic contaminant
removal [12,13]. Nevertheless, the severe recombination of photo-excited electron-hole pairs and the
insufficient utilization of sunlight (merely 4% of solar energy) have substantially restrained its further
application [14–18]. The fabrication of heterojunctions is an effective strategy to upgrade photocatalytic
behavior by remarkably boosting the separation efficiency and/or substantially extending the optical
absorption range. Developing novel BiOCOOH-based heterojunctions with extraordinary catalytic
behavior is very imperative but still a huge challenge.

P-type bismuth oxyiodide (BiOI) has been widely applied in the photocatalytic treatment of wastewater
because of its excellent light absorption characteristics (Eg = ∼1.8 eV) and high electron-hole separation
rate [19–22]. To date, numerous studies have shown that the integration of BiOI with semiconductor
materials can pronouncedly ameliorate the photocatalytic performance. For instance, BiOI/Bi2O2CO3 [23],
BiOI/BiOCl [24], BiOI/Bi12O17Cl2 [25], BiOI/SnO2 [26], and BiOI/BN [27] all exhibited superior activity
compared to the constituents. Hence, it could be a fantasy strategy to upgrade the photocatalytic
performance of BiOCOOH by fabricating BiOI/BiOCOOH p–n heterojunctions. Moreover, due to the strong
interaction between the architecture of the semiconductor and photocatalytic performance, it is extremely
desirable and promising to fabricate 3D flower-like BiOI/BiOCOOH p–n heterojunctions that are endowed
with easily recycling characteristics and remarkable photocatalytic performance.

Inspired by these intriguing ideas, flower-like BiOI/BiOCOOH p–n heterojunctions were developed
via a facile route, where BiOI was in situ anchored on BiOCOOH microspheres. These heterojunctions
displayed superior photocatalytic behavior for antibiotic (CIP and TC) elimination. Furthermore,
the photoluminescence (PL) spectra were measured to illustrate the interfacial charge separation
of BiOI/BiOCOOH. More importantly, this study could provide enlightenment for developing 3D
BiOCOOH-based heterojunction photocatalysts with admirable photocatalytic performance.

2. Experiment

2.1. Reagents

All reagents of analytical grade were obtained from Chinese Sinopharm (Shanghai, China).

2.2. Fabrication of Photocatalysts

Flower-like BiOCOOH microspheres were synthesized referring to a previous route [13,28].
BiOI/BiOCOOH heterojunctions were synthesized through a controlled in situ anion-exchange method.
Firstly, 2 mmol/L of BiOCOOH powder was uniformly dispersed into 70 mL of KI (X mmol/L) solution
in a beaker under constant stirring for 1 h while the pH of the suspension was maintained at pH 4.5.
Subsequently, the suspension was placed in a 100 mL autoclave and heated at 140 ◦C for 15 h.
After repeatedly washing 3 times, the product was collected after dryness. For convenience, these
as-fabricated BiOI/BiOCOOH heterojunctions were labeled as IBOCH-X, where X refers to the amount
of KI added as either 0.1, 0.2, 0.3, or 0.5 mmol/L.

2.3. Characterization

The characterization methods are shown in the supporting information (i.e., Experimental Section).

2.4. Photocatalytic Tests

Batch tests of CIP and TC elimination were implemented under visible light illumination to assess
the catalytic behavior of the as-fabricated catalysts. Visible light, with a light intensity of ∼4.89 KW/m2

measured by an optical radiometer, was produced by a 300 W Xe lamp with a 400 nm cutoff glass filter.
The distance between the surface of reaction solution and the light source was about 20 cm. Then,
photocatalyst powder (35 mg) was dispersed into a CIP (10 mg/L, 80 mL, pH = 6.8) or TC (15 mg/L,
80 mL, pH = 6.4) aqueous solution. During the reaction, samples were taken at 25 min intervals, and
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the concentration of CIP or TC was analyzed using an UV-2600 spectrophotometer. To conduct the
recycling experiments, the IBOCH-2 sample collected after each round was washed thoroughly with
water and dried at 70 ◦C overnight for the subsequent run. On account of the inevitable loss of catalysts
during the recycling process, several parallel runs under identical conditions were also performed to
replenish the photocatalyst and ensure that the amount of photocatalyst applied in each round was
identical (35 mg). The mineralization degrees of CIP solution by IBOCH-2 were obtained by detecting
the total organic carbon (TOC) on a Shimadzu TOC–LCSH/CPH analyzer.

3. Results and Discussion

3.1. Characterization

The XRD patterns of all samples are displayed in Figure 1. Pure BiOCOOH was tetragonal in
structure (JCPDS No. 35-0939) [13,16]. For IBOCH-1, IBOCH-2, and IBOCH-3 heterojunctions, only the
characteristic peaks of BiOCOOH were detected. As the amount of KI was further increased, besides
the peaks of BiOCOOH, one diffraction peak indexed to the (004) crystal facet of tetragonal BiOI (JCPDS
No. 10-0445) [8,25] was also observed, signifying the presence of the BiOI phase. Moreover, the peaks
of other crystals in the XRD pattern were not observed, indicating the good purity of the samples.
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Figure 1. XRD patterns of BiOCOOH, and as-fabricated BiOI/BiOCOOH heterojunctions (IBOCH-1,
IBOCH-2, IBOCH-3, and IBOCH-4).

Figure 2 displays SEM images of BiOCOOH and the IBOCH-2 heterojunction. It was seen that
BiOCOOH microspheres were of flower-like architecture with diameters of 2.0-4.0 µm (Figure 2a,b).
After the anion-exchange treatment, the as-fabricated IBOCH-2 still exhibited a flower-like shape
(Figure 2c,d). Moreover, the EDX spectrum (Figure 3) was measured to provide further evidence for
the formation of the BiOI/BiOCOOH heterojunction. Apparently, Bi, O, C, and I elements co-existed in
IBOCH-2, evidence of the intimate integration between BiOI and BiOCOOH.

The features of IBOCH-2 were further visualized by TEM. As noted in Figure 4a, IBOCH-2 showed
a 3D flower-like structure that consisted of 2D nanosheets. The high-resolution TEM (HR-TEM) image
of IBOCH-2 (Figure 4b) showed two adjacent lattice fringes with interlayer distances of 0.35 and 0.29 nm,
which were associated with the (102) and (012) lattice facets of BiOCOOH and BiOI, respectively.
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According to the above results, the successful fabrication of BiOCOOH/BiOI heterojunctions can
be confirmed.
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UV–Vis spectra of the BiOI, BiOCOOH, and BiOI/BiOCOOH samples were collected to analyze their
light-harvesting capabilities (Figure 5). The light-absorption verges of BiOI and BiOCOOH were around
668 (Eg = 1.80 eV) [24,25] and 370 nm (Eg = 3.40 eV) [14,15], respectively, which are in accordance with
the results reported in previous studies. When BiOI was in situ grown on BiOCOOH, the absorption
verges of the BiOI/BiOCOOH samples were evidently red-shifted and exhibited remarkably enhanced
visible light absorption compared to BiOCOOH, signifying that the as-fabricated heterojunctions could
be endowed with high VLD photocatalytic behavior. Further, the band structures of BiOI and BiOCOOH
were determined according to the empirical equations

EVB = X − E0 + 0.5Eg (1)

ECB = EVB – Eg (2)

where EVB, ECB, E0, and X separately refer to the valence band (VB) potential, conduction band (CB)
potential, electronegativity of the semiconductor, and potential energy of free electrons (~4.5 eV).
Consequently, the ECB and EVB for BiOCOOH were calculated as −0.67 and 2.73 eV [16,29], while those
for BiOI were determined as 0.54 and 2.34 eV [19,27].Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 15 
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3.2. Photocatalytic Properties

The as-fabricated photocatalysts were utilized to eliminate toxic antibiotics (CIP and TC) under
visible light illumination. Figure S1 and Figure 6a present the CIP adsorption and degradation profiles
over various samples. Prior to illumination, the mixture containing CIP solution (10 mg/L, 80 mL)
and the as-fabricated sample (35 mg) was vigorously agitated in the dark for 30 min to reach the
adsorption–desorption equilibrium.
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inactive under visible light [12]. Suffering from the rapid recombination rate of carriers [23,30], pure
BiOI also showed unsatisfactory photocatalytic performance. Only 33.4% of CIP was removed under
the same conditions. Encouragingly, compared to bare BiOI and BiOCOOH, these BiOI/BiOCOOH p–n
heterojunctions demonstrated markedly superior photocatalytic behavior, which was probably due
to the novel 3D hierarchical heterostructure that triggered the efficient separation of charge carriers.
Moreover, the BET surface areas of the as-fabricated materials were tested. As displayed in Table S1,
the BET surface areas of BiOCOOH, IBOCH-1, IBOCH-2, IBOCH-3, and IBOCH-4 were 27.35, 29.64,
26.72, 25.28, and 24.83 m2

·g−1, respectively. Though the BET surface area of IBOCH-2 was not the largest
among these catalysts, IBOCH-2 demonstrated the optimum catalytic behavior with a CIP degradation
efficiency of 87.2% in 125 min. Clearly, the BET surface area was not a vital factor in determining
the photocatalytic capability of BiOI/BiOCOOH heterojunctions. Further, the photocatalytic behavior
of IBOCH-2 was superior to that of the physically mixed sample (named as mix), highlighting the
premier role of a closely contacted interface in determining the activity. Furthermore, for a better
understanding of the photocatalytic capability of the as-fabricated catalysts, a kinetic analysis should
be performed [31,32]. The pseudo-first-order model was utilized to determine the apparent rate
constant (k) of CIP degradation over different samples (Figure 6b). The linearity between ln (C0/C) and
illumination time (t) was good for all the samples, signifying that the photocatalytic removal of CIP in
aqueous solution could be well analyzed by pseudo-first-order reaction dynamics. Of note, the k value
using IBOCH-2 was 0.0164 min−1, approximately 81- and 3.9-fold greater than using pure BiOCOOH
(0.0002 min-1) and BiOI (0.0033 min−1), respectively.

Antibiotic TC, which could induce reproductive abnormalities to people, was used to further
demonstrate the excellent photocatalytic behavior of IBOCH-2. As shown in Figure S2 and Figure 7,
78.6% of TC was efficiently removed in 125 min of irradiation, illustrating that IBOCH-2 possessed the
high photocatalytic behavior for the elimination of pharmaceutical antibiotics (CIP and TC).
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Further, the photocatalytic behaviors of the as-fabricated photocatalysts were examined via the
elimination of CIP in water under simulated solar irradiation (Figure S3). Notably, IBOCH-2 also
demonstrated the most powerful photocatalytic capability, and 91.4% of CIP was eliminated in 100 min
of simulated solar irradiation.



Nanomaterials 2019, 9, 1571 8 of 14

To appraise the mineralization performance of IBOCH-2, the TOC elimination efficiency was
determined during the degradation of CIP (40 mg/L, 200 mL) by IBOCH-2 (150 mg). Apparently,
IBOCH-2 achieved a remarkable TOC elimination efficiency of 76.2% after 6 h of illumination (Figure 8),
illustrating that IBOCH-2 owned remarkable mineralization ability.
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The recyclability of the photocatalyst is a premier index for the actual applications [33–35].
Therefore, we studied the stability of IBOCH-2 by recycling experiments (Figure 9a). Inspiringly,
IBOCH-2 had no appreciable slump (merely 6.3% loss) in photocatalytic capability even after four
successive runs. In addition, there were no apparent alternations in its crystalline phases, as evidenced
by the XRD analysis of IBOCH-2 before and after the reaction (Figure 9b). The findings verify that
IBOCH-2 possesses high activity and good stability. Further, its good stability is probably due to its
unique hierarchical heterostructure, which could prevent the photocorrosion of IBOCH-2 by promoting
interfacial charge transfer.
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3.3. Photocatalytic Mechanism

The roles of different reactive species in the photodegradation of CIP antibiotic was studied via
the trapping experiment. As shown in Figure 10, as IPA was added, no significant changes in the
photocatalytic activity of IBOCH-2 were observed, suggesting that •OH exerts a secondary impact on
CIP removal. However, when BQ and AO were added, the catalytic efficiencies were reduced to 43.6%
and 27.1%, respectively, reflecting that superoxide free radicals (•O2

−) and photo-generated hole (h+)
species have a dominant contribution to the elimination of CIP. In conclusion, •O2

− and h+ species
primarily govern the photocatalytic elimination of CIP.
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The photoluminescence (PL) spectra can reveal the recombination degree of photo-excited charge
carriers, hence, the PL spectra of BiOCOOH and IBOCH-2 were measured (Figure 11). In general, the low
PL intensity facilitated charge separation and, consequently, superior photocatalytic ability [30,36–41].
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On account of the abovementioned characterizations and analyses, a plausible photocatalytic
mechanism of BiOI/BiOCOOH p–n heterostructures under visible light was proposed and presented in
Figure 12. The VB potentials of BiOCOOH and BiOI were situated at 2.73 and 2.34 eV, respectively, while
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their corresponding CB potentials were −0.67 and 0.54 eV, respectively. However, when BiOCOOH
and BiOI were in contact, a p–n heterostructure was created at the interface. The electrons and holes at
the interfaces of the p-type and n-type semiconductors were redistributed to achieve an equilibrium of
the Femi energy (EF). Accordingly, the band bending took place in the space charge area, inducing
a strong internal electric field. Of note, such a powerful internal electric field is greatly beneficial to
separating the photo-excited electrons and holes [42–44]. Simultaneously, the CB and VB positions of
BiOI and BiOCOOH shifted along with the movement of EF. As a consequence, the band position of
BiOI was more negative than that of BiOCOOH. Under visible light illumination, the electrons in the
VB of BiOI were excited and migrated to the CB, where they rapidly flowed into the CB of BiOCOOH,
leaving the photo-excited holes to remain in the VB of BiOI. Such a charge transfer pathway made the
separation of photo-excited carriers more effective, contributing to the enhancement of photocatalytic
performance [42–44]. More specifically, the electrons stored on the CB of BiOCOOH were involved in
reacting with O2 to generate •O2

− radicals, which can efficiently degrade antibiotics. On the other
hand, the holes remaining on the VB of BiOI were capable of directly eliminating the antibiotics.
Under the attack of two crucial reactive species of •O2

− and h+, the antibiotics (CIP and TC) could be
effectively removed over the BiOI/BiOCOOH p–n heterojunction under visible light.Nanomaterials 2019, 9, x FOR PEER REVIEW 12 of 15 
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4. Conclusions

In summary, the hierarchical assembly of BiOI nanosheets embedded in BiOCOOH microflowers
with tightly contacted interfaces was achieved via a feasible synthesis for highly efficient pollutant
degradation. The resulting BiOI/BiOCOOH heterojunction can offer plenty of charge transfer
channels, which could boost the migration and separation of photogenerated charges and, finally,
lead to a remarkably improved photocatalytic performance. Specifically, the BIOB-3 heterojunction
achieved the highest photocatalytic capacity with an 81-fold photodegradation rate compared to
that of BiOCOOH, and 4.9-fold in CIP degradation. Moreover, TOC tests and cycling experiments
demonstrated the strong mineralization capability and good stability of BiOI/BiOCOOH. Therefore,
heterojunctions are promising for practical wastewater treatment. This study presents a promising
route to explore hierarchical heterostructure photocatalysts for environmental purification.
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