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A B S T R A C T   

Multi-omics technologies, encompassing genomics, proteomics, and transcriptomics, provide profound insights 
into cancer biology. A fundamental computational approach for analyzing multi-omics data is differential 
analysis, which identifies molecular distinctions between cancerous and normal tissues. Traditional methods, 
however, often fail to address the distinct heterogeneity of individual tumors, thereby neglecting crucial patient- 
specific molecular traits. This shortcoming underscores the necessity for tailored differential analysis algorithms, 
which focus on particular patient variations. Such approaches offer a more nuanced understanding of cancer 
biology and are instrumental in pinpointing personalized therapeutic strategies. In this review, we summarize the 
principles of current individualized techniques. We also review their efficacy in analyzing cancer multi-omics 
data and discuss their potential applications in clinical practice.   

1. Introduction 

The investigation of human cancer using multi-omics methodologies 
has emerged as a pivotal area of research, seeking to elucidate cancer 
mechanisms by integrating diverse biological dimensions. This 
approach merges data from genomics, epigenomics, transcriptomics, 
and proteomics to forge a comprehensive molecular portrait of cancer 
[1]. Genomic analysis focuses on DNA alterations, including mutations 
and copy number variations, primarily utilizing whole-genome 
sequencing [2]. Epigenomic research delves into DNA methylation 
and histone modifications, shedding light on gene regulation [3]. 
Transcriptomics examines RNA transcripts to reveal gene expression 
patterns, predominantly through RNA sequencing [4]. Proteomics, 
employing methods such as mass spectrometry, examines the complete 
protein set in a sample, thus reflecting the actual functional molecules 
[5]. 

Differential analysis is one of the most commonly performed tasks for 
multi-omics data. Currently, most of these methods were designed for 
the population-level, offering insights into variances between distinct 
groups such as tumor and normal samples. The T-test [6] is a statistical 
method utilized for hypothesis testing to detect differences between 
continuous data that are approximately normally distributed and have 

equal variances. DESeq2 [7] identifies differentially expressed genes 
using a negative binomial distribution model, necessitating biological 
replicates in the experimental samples to ensure result accuracy. Simi-
larly, edgeR [8] also applies a negative binomial distribution model to 
identify differentially expressed genes. It accounts for variance in gene 
expression levels to calculate normalized expression values for each 
gene across various sample groups. 

However, conventional population-level analysis methods often 
overlook the heterogeneity unique to individual tumors, thereby 
neglecting patient-specific molecular traits. Therefore, several studies 
have shifted their focus towards the heterogeneity and individual dif-
ferences among patients, leading to the development of individualized 
differential analysis techniques. 

Individualized differential analysis methods are initially designed to 
identify sample-specific deregulated genes. The assumption of these 
methods is that the relative expression orderings (REOs) of gene pairs 
remain consistent in normal tissue types, yet are susceptible to disrup-
tions in diseased tissues. REOs demonstrate robustness, rendering them 
insensitive to batch effects. By assessing the reversal of REOs in indi-
vidual diseased samples, personalized analysis effectively identifies 
differentially expressed genes critical for precision medicine (Fig. 1). 

Research demonstrates that such personalized tools, encompassing 
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mRNA, miRNA, lncRNA, and proteins, are superior in computational 
precision and clinical relevance [9–14]. For instance, Liu et al.’s study in 
proteomics across various cancers, including lung, gastric, and liver 
cancer, underscores the superiority of individualized methods in pre-
cisely identifying dysregulated proteins over population-level analysis 
[12]. This review elucidates the principles of various individualized 
differential analysis methods, summarizing their performance in cancer 
multi-omics data analysis and their applications in cancer research. 

2. Overview of individualized differential analysis methods 

2.1. RankCompV1 and RankCompV2 

RankCompV1 [13] and RankCompV2 [11] initiate their processes by 
identifying highly stable gene pairs within normal samples. Subse-
quently, using the relative rank order of these stable gene pairs in 
normal samples as a baseline, RankCompV1 and RankCompV2 identify 
differentially expressed genes distinguished by reversed rankings 
(Fig. 2A).  

(1) Selection of highly stable gene pairs in normal samples: Gene 
expression data are ranked based on the expression values, with 
genes having higher values receiving higher ranks, and vice versa 
for those with lower values. For a specific gene, i (Gi), there are 
two potential rank order relationships with its partner gene Gj: 
either Gi > Gj or Gi < Gj. The significance of these relationships is 
assessed using a P-value derived from the cumulative binomial 
distribution: 

P = 1 −
∑m− 1

i=0

(n
i

)
Pi

0(1 − P0)
n− i  

In the formula, ’n’ denotes the number of normal tissue sam-
ples, while ’m’ represents the number of samples exhibiting a 
specific rank order (Gi > Gj or Gi < Gj). The probability P0 

represents the likelihood of a particular rank order (Gi > Gj or Gi 
< Gj) occurring randomly in normal samples, which is set at 0.5. 
The P value is adjusted using the Benjamini-Hochberg method. If 
the adjusted P value is below a predefined threshold, such as 
0.05, the gene pair with this rank order is considered a highly 
stable gene pair in the normal tissue sample. 

(2) Identification of differentially expressed genes in disease sam-
ples: A gene pair is classified as reversed if its ranking in a disease 
sample is the opposite of its ranking in the highly stable gene 
pairs identified in normal samples. The presence of a reversed 
gene pair, compared to a stable pair in normal samples, implies 
abnormal expression of at least one gene in the pair. The number 
of cases where Gi > Gj in normal samples is denoted as ’a’, while 
the instances of Gi < Gj are denoted as ’b’. In a specific disease 
sample, ’c’ represents the number of gene pairs that transition 
from Gi > Gj to Gi < Gj, while ’d’ represents the reversals from Gi 
< Gj to Gi > Gj. If ‘c′ exceeds ‘d′, gene Gi is considered down- 
regulated in the disease sample; conversely, if ’c’ is less than 
’d’, Gi is considered up-regulated. The statistical significance of 
these findings is determined using the Fisher test, with the null 
hypothesis defined as a / (a - c + d) = b / (b - d + c). A p-value 
below 0.05 leads to the rejection of this hypothesis, indicating a 
significant up-regulation or down-regulation of gene Gi in the 
disease sample compared to its expression in normal samples.  

(3) Identification of differential genes in gene pairs: The change in 
rank order of genes in disease samples may stem from imbalances 
in gene pairs. Thus, it is essential to alleviate the effects of 
expression level alterations in these gene pairs. After the initial 
steps, if the partner gene of gene Gi is identified as a differential 
gene and its imbalance direction conflicts with that of Gi, this pair 
of genes is eliminated. Following this, a secondary Fisher test is 
carried out, which provides the conclusive result for gene Gi. 

The first three stages of RankCompV2 closely resemble those of 
RankCompV1, with the key difference lying in the iterative filtering 
process used in the final stage. In this stage, when a differential gene is 
identified as the partner gene of gene Gi, the corresponding gene pair - 
consisting of gene Gi and its partner - is promptly excluded from the 
reference set. Subsequently, both stable and reversed gene pair counts in 
normal and diseased samples are recalculated. A Fisher test is then 
carried out, and this recalculation and testing process continues until the 
counts of differential genes in the two comparative analyses converge. 
This convergence point is then established as the definitive criterion for 
judgment. It is worth noting that RankCompV2 represents a significant 
enhancement in statistical efficiency compared to RankCompV1. 

2.2. Peng 

This method enables the identification of differentially expressed 
long non-coding RNAs (lncRNAs) in individual cancer patients[9]. In 
step 1, similar to the RankComp method, the absolute expression data of 
lncRNAs is transformed into a rank spectrum. Using lncRNA-A as an 
example (Supplementary Figure 1A), a stable pair for lncRNA-A is 
observed in over 95% of the normal samples. Subsequently, in the 
cancer samples, the reversed pair of lncRNA-A is identified. The signif-
icance of both stable and reversed pairs is then assessed using the Fisher 
exact test. 

In step 2, only the partner lncRNAs in the cancer sample that show 
the same directional imbalance as lncRNA-A are retained (Supplemen-
tary Figures 1B and 1C). Subsequently, in step 3, the coefficient of 
variation for the ranking of each partner lncRNA across normal and 
cancer samples is calculated. If the number of partner lncRNAs is three 
or more, only the top three lncRNAs with the smallest coefficient of 
variation are kept. Conversely, if there are fewer than three partner 
lncRNAs, all of them are retained (Supplementary Figure 1D). Finally, in 
the last step, lncRNA-A is deemed differentially expressed in a patient 

Fig. 1. Overview of individualized analysis methods for human cancer 
multi-omics. 
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sample if more than half of its associated lncRNA pairs with reversed 
directional imbalance are detected in that patient (Supplementary 
Figure 1E). 

2.3. PenDA 

In the PenDA method[10], each gene g is associated with two distinct 
gene lists based on their ranks relative to gene g: H(g) for higher-ranking 
genes and L(g) for lower-ranking genes. The rank order of both H(g) and 
L(g) must remain consistent with at least 99% of normal samples with 
gene g. To ensure comparability among genes with similar expression 
levels and to improve the PenDA method’s sensitivity, H(g) and L(g) are 
limited to a subset of l genes whose expression levels closely resemble 
that of gene g in the normal control sample. The median expression of 
this subset is chosen for its proximity to the median expression of gene g 
in the normal sample. The user-defined parameter l regulates the size of 

the gene lists H(g) and L(g) (Fig. 2B). 
In a specific cancer sample T, the PenDA method conducts an iter-

ative individualized differential analysis. The subsequent description 
outlines the steps undertaken by PenDA to identify differentially 
expressed genes.  

(1) Each gene g’s expression level in cancer sample T is denoted as E 
(g, T) and compared with genes in the H(g) and L(g) lists. This 
comparison results in the generation of four distinct and non- 
overlapping gene set lists (Fig. 2C): 

Ld = {gʹ ∈ L(g)∣E(gʹ,T) < E(g,T)}

Lu = {gʹ ∈ L(g)∣E(gʹ,T) > E(g,T)}

Hd = {gʹ ∈ H(g)∣E(gʹ,T) < E(g,T)}

Fig. 2. RankComp and Penda methods for individualized analysis. (A) Detection of stable and reversed pairs in RankComp. (B, C) Defining gene lists using the 
Penda method. 
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Hu = {gʹ ∈ H(g)∣E(gʹ,T) > E(g,T)}

(2) A gene g is categorized as a dysregulated gene in cancer sample T 
only if it meets the specified conditions: 
(
|Lu|

|L|
≥ h

)

∨

(
|Hd|

|H|
≥ h

)

The cardinality of set L is denoted as |L|, and h represents a 
user-defined threshold determining the minimum proportion of 
genes in either H(g) or L(g) needed to change their relative po-
sition in comparison to gene g. Gene g is considered down- 
regulated in cancer sample T if the ratio |Lu|/|L| is greater than 
or equal to h, and the sum of |Ld| and |Hd| is less than |L|. 
Conversely, gene g is classified as up-regulated in cancer sample T 
if the ratio |Hd|/|H| is greater than or equal to h, and the total 
count of |Lu| and |Hu| is less than |H|. If either the L or H list is 
empty, the Percentile method, which will be described subse-
quently, is used to verify the dysregulation of gene g in the cancer 
sample T. 

(3) To prevent misunderstanding gene g’s dysregulation as a conse-
quence of changes in the relative positions of genes within the H 
(g) or L(g) lists, rather than being attributed to the inherent 
dysregulation of gene g, the following approach is proposed: 
Upon identifying each gene, all previously categorized dysregu-
lated genes are excluded from the H(g) and L(g) sets. Then, the 
aforementioned steps are repeated iteratively until the list of 
differentially expressed genes reaches stability. 

2.4. Percentile 

The Percentile[10] method identifies differentially expressed genes 
by comparing a gene’s expression level in a test disease sample with its 
expression in normal reference samples. Specifically, a gene g’s 
expression value across all normal samples, denoted as E(g, S), is or-
dered from the lowest to the highest. Subsequently, lower (pl) and upper 
(pu) thresholds are set at the xth and (100-x)th percentiles of the dis-
tribution of E(g, S), respectively, where x represents a user-defined 
percentage (Supplementary Figure 2A). Within a specific cancer sam-
ple T, E(g, T) represents the expression level of gene g. If E(g, T) is lower 
than pl divided by a factor f, gene g is classified as down-regulated; if E 
(g, T) exceeds pu multiplied by f, the gene is classified as up-regulated. 
The parameter f, which must be equal to or greater than 1, is also 
user-defined (Supplementary Figure 2B). However, the Percentile 
method is criticized for its lack of rigorous statistical control and 
increased subjectivity resulting from the use of arbitrarily determined 
thresholds. 

2.5. DEGdriver 

DEGdriver [15] is an innovative approach that identifies driver 
mutations by examining differential gene expression at the individual 
level. This method effectively distinguishes between driver genes and 
passenger genes by utilizing information from protein-protein interac-
tion networks. 

2.6. Comparison of five individualized analysis methods 

We conducted a brief comparison of five individualized analysis 
methods, as presented in Table 1. The initial steps for RankCompV1, 
RankCompV2, and Peng involve the transformation of actual expression 
quantifications into relative expression orders. RankComp sets itself 
apart by utilizing a binomial distribution test to evaluate the significance 
of relationships, while Peng, originally developed for lncRNA data 

analysis, utilizes Fisher’s exact test to assess relative expression orders. 
RankCompV2 introduces an iterative filtering step absent in Rank-
CompV1. PenDA enhances the detection sensitivity for differences by 
employing a comprehensive algorithm that calculates the change pro-
portions in four gene sets associated with the target gene. In contrast, 
Percentile provides a simple and intuitive method, based on the devia-
tion of gene expression levels in targeted disease samples from those in 
normal samples. 

3. Assessment of the performance of individualized differential 
analysis methods 

3.1. Feasibility analysis 

Before applying individualized analysis methods to diverse cancer 
omics datasets, it is essential to validate the foundational principles of 
these methods. The individualized analysis algorithm is primarily 
grounded on the concept of stable pairs identified in normal samples. To 
assess the reproducibility of these stable pairs across independent 
datasets, two metrics are utilized: the Percentage of Overlapping Pairs 
(POP) and Concordance. Assuming there are M and N stable pairs in two 
datasets, with n pairs common to both. If the relative order of s pairs 
remains consistent among these n overlapping pairs across both data-
sets, then the POP is calculated as n/N, and Concordance is determined 
by s/n (Fig. 3A). 

3.2. Precision and sensitivity 

To evaluate the precision of each differential analysis method, 
directional discrepancies in gene expression between cancer samples 
and their paired normal samples were established as the gold standard 
(Fig. 3B). Samples in each dataset are evenly split into a test group and a 
reference group, both containing an equal number of samples. The 
reference group, consisting of normal samples, functions as controls to 
identify differentially expressed genes in the cancer samples of the test 
group. Various differential analysis methods are employed for this 
identification. Subsequently, normal tissue samples paired with 
cancerous tissues in the test group are utilized for comparison. The gene 

Table 1 
Comparisons of individualized differential analysis methods.  

Method Url Principle and 
advantage 

Limitation References 

RankCompV1/ 
2 

https://gith 
ub. 
com/pathint 
/reoa 

Identification 
of highly stable 
gene pairs; 
Iterative 
filtering of 
partner 
differential 
genes 

Time 
consuming 
and memory 
consumption 

Wang, H., 
et al.[13]; 
Cai, H., 
et al. [11] 

Peng https://gith 
ub.com/F 
uduanPeng/ 
LncRIndiv 

Based on 
coefficient of 
variation (CV) 

Low accuracy Peng, F., 
et al. [9] 

Penda htt 
ps://github. 
com/bcm-u 
ga/penda 

Based on the 
local ordering 
of gene 
expressions 
within 
individual 
cases; 
Improved 
sensitivity 

Dependence 
on parameter 
settings; 
Sensitivity to 
differences in 
gene 
expression 
levels 

Richard, 
M., et al.  
[10] 

Percentile htt 
ps://github. 
com/bcm-u 
ga/penda 

Simple and 
intuitive; 
Suitable for 
rapid screening 

Without 
statistical 
significance; 
Sensitivity to 
outliers 

Richard, 
M., et al.  
[10]  

J. Li et al.                                                                                                                                                                                                                                         

https://github.com/pathint/reoa
https://github.com/pathint/reoa
https://github.com/pathint/reoa
https://github.com/pathint/reoa
https://github.com/FuduanPeng/LncRIndiv
https://github.com/FuduanPeng/LncRIndiv
https://github.com/FuduanPeng/LncRIndiv
https://github.com/FuduanPeng/LncRIndiv
https://github.com/bcm-uga/penda
https://github.com/bcm-uga/penda
https://github.com/bcm-uga/penda
https://github.com/bcm-uga/penda
https://github.com/bcm-uga/penda
https://github.com/bcm-uga/penda
https://github.com/bcm-uga/penda
https://github.com/bcm-uga/penda


Computational and Structural Biotechnology Journal 23 (2024) 2049–2056

2053

expression patterns in these normal samples adjacent to the cancer set 
the standard for gene regulation direction. A gene is categorized as 
showing a positive differential direction if its expression is higher in 
cancer than in the corresponding normal sample, and negative if the 
expression is lower. The performance of each differential analysis 
method is then assessed against this standard using the following pre-
cision formula: 

Precision = TP
TP+FP 

Precision in differential analysis methods denotes the accuracy with 
which these methods identify differentially expressed genes. TP (True 
Positives) represents genes correctly identified as differentially 
expressed and match the directional difference indicated in the gold 
standard. Conversely, FP (False Positives) are genes mistakenly labeled 
as differentially expressed, showing a directional difference that con-
flicts with the gold standard. 

In addition to assessing precision, the total count of differentially 
expressed genes determined by a differential analysis method plays a 
crucial role, highlighting the sensitivity of the method. The PN score, 
which acts as a weighted harmonic mean of both precision and the 
number of differentially expressed genes, provides a comprehensive 
evaluation of both the method’s accuracy and the scope of gene iden-
tification. The formula for calculating the PN score is presented below: 

PN − score =
(
1+ β2) ∗

Precision ∗ Number
β2 ∗ Precision + Number 

The PN score quantifies the effectiveness of a differential analysis 
method, with Precision indicating the method’s accuracy in detecting 
differentially expressed genes, and Number representing the percentage 
of such genes identified by the method relative to the total gene count. 
The parameter β functions as a weighting factor, balancing the signifi-
cance of accuracy with the number of identified differentially expressed 
genes. 

The precision and sensitivity of different differential analysis 
methods are affected by the quantity of normal tissue samples utilized. 
This is due to the reliance of these methods on the expression values and 
the relative gene order within these samples. Therefore, determining the 
optimal number of normal samples is essential for enhancing the effec-
tiveness of individualized analysis algorithms. 

3.3. Consistency 

To evaluate the consistency of differentially expressed genes identi-
fied by different individualized analysis algorithms, it is essential to 
compare these algorithms pairwise. The consistency score, as proposed 
by Liu et al.[12], measures the similarity between the gene sets identi-
fied by each algorithm. This is achieved by calculating the intersection 

Fig. 3. Assessing the performance of individualized differential analysis methods. (A) Reproducibility of stable pairs in two independent datasets: POP and 
concordance analysis. (B) Establishing a gold standard for precision evaluation. (C) Step-by-step overview of performance evaluation. 
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of the top k differentially expressed genes for each algorithm, yielding k 
intersections for each method. This process is conducted for every tumor 
sample, producing a unique list for each sample that outlines the sig-
nificant intersections of differential gene expression. These lists contain 
k intersections each. The mean intersection count is then calculated for 
each rank across all samples. A consistency curve is plotted, spanning 
from 1 to k on the x-axis with increments of 1, while the y-axis shows the 
average intersection count for each k value. The consistency score for 
two individualized differential methods is determined by calculating the 
Area Under the Concordance Curve. This score is then normalized by 
dividing it by k2/2. A normalized score of 1 indicates total alignment 
between the algorithms, while a score of 0 indicates complete dissimi-
larity. The standardized consistency score ranges from 0 to 1, reflecting 
the level of agreement between the methods, where higher scores 
represent increased consistency and lower scores indicate more signifi-
cant discrepancies. 

3.4. Function enrichment analysis 

The gene sets of functional pathways could be downloaded from 
Gene Ontology[16], Kyoto Encyclopedia of Genes and Genomes[17], 
and MsigDB[18]. Functional enrichment analysis is usually performed 
using the following formula: 

P =
∑n

i=k

(n
i

)
Pi

de(1 − Pde)
n− i 

The variable n represents the total number of disease samples, while 
k indicates the number of samples exhibiting a specific differentially 
expressed gene. Pde refers to the probability of misclassifying a gene as 
differentially expressed solely by chance, calculated as the ratio of 
differentially expressed genes to the total gene count. The p-value is then 
adjusted using the Benjamini-Hochberg procedure. A p-value less than 
0.05 is considered statistically significant, suggesting differential gene 
expression at the population level. 

3.5. Computational cost 

The RankComp method documentation specifies that the gene size 
(number of rows) should not exceed 2097,151, and the sample size 
(number of columns) should not exceed 255 [11]. However, the 
computational costs for other methods remain undisclosed. To address 
this gap, we conducted an assessment of the time required to execute 
each method on the proteomics dataset, gastric-Ge [19], which consisted 
of 84 pairs tumor samples. These assessments were conducted on a Linux 
server, utilizing 10 GB of memory and a single-core CPU. Among the 
methods evaluated, the Peng method exhibited the highest time 
requirement, followed by RankComp and PenDA (Table 2). 

3.6. Assessment scheme of individualized methods 

We established the fundamental criteria for evaluating the perfor-
mance of individualized differential analysis methods. Taking the pro-
teomics data of gastric cancer as an example, the first step involves 
evaluating the robustness of relative expression rankings in normal 
samples using POP and Concordance metrics across two independent 
datasets. Subsequently, the precision is determined using the paired 
tumor-normal tissue group as the gold standard. Ultimately, functional 
enrichment analysis is used to gain deeper insights into the mechanisms 
associated with deregulated proteins. The evaluation of consistency 

among different methods is an optionally subsequent step. 
Codes were provided to facilitate the evaluation of individualized 

analysis methods (https://github.com/Liuliantang223/IDEPA-XMBD). 

4. Application of individualized analysis methods on cancer 
multi-omics 

4.1. DNA methylation 

The diagnosis and treatment of colorectal cancer (CRC) present a 
challenge due to its heterogeneity. It is crucial to identify both universal 
and subtype-specific biomarkers. Yan et al. [20] demonstrated the 
effectiveness of the RankCompV1 algorithm in identifying stable 
methylation patterns in normal colorectal tissues and their disruption in 
CRC tissues. Utilizing datasets from the Gene Expression Omnibus 
database, RankCompV1 successfully detected numerous differentially 
methylated CpG sites with a high level of methylation pattern concor-
dance. In a sample of 75 CRC samples from the Cancer Genome Atlas, 
RankCompV1 identified an average of 4062 differentially methylated 
CpG sites per sample with 91.34% precision, highlighting its capability 
to pinpoint both universal and subtype-specific differentially methyl-
ated CpG sites in CRC. Key genes such as POU5F1, IRF4, and ADHFE1 
demonstrated consistent hypermethylation or hypomethylation patterns 
in a significant portion of CRC samples and were associated with 
changes in gene expression. These genes were proposed as critical tar-
gets for CRC treatment, given their substantial roles in the pathogenesis 
and progression of the disease. 

4.2. Transcriptomes 

Wang, H., et al. [13] evaluated the efficacy of the RankCompV1 al-
gorithm using diverse gene expression datasets. They revealed a notable 
consistency in the relative expression order of gene pairs across multiple 
normal tissue samples. RankCompV1 effectively distinguishes genes 
with varying behaviors in cancerous versus normal samples, displaying 
increased sensitivity to substantial differences. Nonetheless, this may 
slightly compromise the algorithm’s error detection capacity. The pre-
cision of RankCompV1 in identifying such genes improves with the in-
clusion of more normal samples, indicating enhanced accuracy with 
larger datasets. By implementing stringent criteria (99%) for consistent 
gene pair identification, RankCompV1 minimizes false positives. 
Moreover, the role of RankCompV1 in identifying differentially 
expressed genes at both individual and subpopulation levels has been 
evaluated. The algorithm performs comparably to COPA [21] and out-
performs MOST [22] at lower false discovery rates but exhibits reduced 
effectiveness at higher rates. Additionally, RankCompV1 shows resis-
tance to systematic batch effects. 

The Peng method, which is designed to identify differentially 
expressed lncRNAs in individual cancer patients, has been used to detect 
prognostic markers in patients with lung adenocarcinoma [9]. To 
determine the specificity of differentially expressed microRNAs (miR-
NAs) in particular cancer samples, Yan et al.[14] introduced a novel 
algorithm, RankMiRNA. This algorithm was evaluated using paired 
cancer and normal samples, in comparison to stable miRNA expression 
in normal tissues. In a comparative analysis of RankMiRNA, Rank-
CompV1, and the Peng method in lung and liver cancer samples, 
RankMiRNA exhibited superior performance, identifying a greater 
number of differentially expressed miRNAs with higher precision than 
the Peng method. Conversely, RankCompV1 and the Peng method 
showed lower efficacy in identifying differentially expressed miRNAs 
(Supplementary Figure 3A). Furthermore, increasing the number of 
normal samples improved the performance of RankMiRNA. In their final 
application, RankMiRNA was utilized to identify has-mir-210 and 
has-mir-490, which are commonly differentially expressed and corre-
lated with patient survival in lung cancer cases from The Cancer Genome 
Atlas. 

Table 2 
Time cost of differential analysis methods on gastric-Ge.  

Method RankComp Penda Peng Percentile 

Time (Second) 891.28 505.05 67715.05 26.29  
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4.3. Proteomes 

Liu et al.[12] first applied individualized differential analysis in 
cancer proteomics by utilizing liquid chromatography-mass spectrom-
etry. Their study revealed a remarkable level of consistency in the 
Relative Expression Order of stable protein pairs within normal tissue 
samples, exceeding 99.9% across diverse datasets. This high degree of 
consistency was maintained even when comparing results obtained 
through different quantification methods, such as tandem mass tag and 
label-free techniques. Their research established the feasibility of uti-
lizing stable protein pairs for individual-level analysis of differentially 
expressed proteins (DEPs). In a comparative evaluation, the PenDA and 
Percentile methods were identified as the most precise in detecting 
DEPs, outperforming approaches like RankCompV1/2, Limma, and the 
t-test. The Peng method exhibited the lowest Type I error rate because of 
its stringent criteria. On the other hand, conventional methods like the 
t-test, which failed to consider sample heterogeneity, led to a higher rate 
of false positives. Notably, the occurrence of false positives in the 
Percentile method displayed less reliance on mean protein abundance, 
unlike the PenDA method (Supplementary Figure 3B). 

This study also investigated the effect of normal sample size on the 
performance of DEP detection methods across varied datasets. While the 
accuracy of DEP detection remained stable regardless of sample size, the 
number of DEPs identified varied. Methods such as RankComp and the 
Wilcoxon signed-rank test showed an increased accuracy in DEP iden-
tification with larger normal sample sizes, whereas PenDA and the 
Percentile method exhibited a decreased accuracy, suggesting greater 
stringency in outlier-based approaches as sample sizes increased. In 
terms of consistency, RankCompV1 and PenDA outperformed other 
methods, while RankCompV2 and the Percentile method demonstrated 
lower consistency, with the latter ranking as the least consistent among 
the evaluated differential expression analysis methods. Furthermore, Liu 
et al. have provided a PLOTLY version of IDEPAXMBD (https://hub.docke 
r.com/r/lylan/idepa)[12], enabling users to conduct DEP identification 
with their data via a web interface. 

5. Discussion and perspectives 

The evolving field of individualized differential analysis methods in 
cancer multi-omics has been thoroughly reviewed. This shift from 
population-level to personalized analysis methods represents a signifi-
cant leap forward in identifying unique molecular characteristics at the 
patient level. However, several limitations warrant attention. 

Individualized analysis methods are notably more time-intensive and 
complex than their population-level counterparts, requiring increased 
computational resources and expertise. This complexity renders them 
less feasible for routine clinical application. Additionally, these 
individual-level methods often exhibit a high Type I error rate. This may 
be attributed to an overemphasis on inter-individual differences, leading 
to a misinterpretation of technological variances as biological dispar-
ities. Enhanced data quality control measures are imperative. 

Current research in tumor heterogeneity increasingly utilizes single- 
cell and spatial omics technologies [23]. Single-cell transcriptomics, 
analyzing gene expression at an individual cell level, offers a more 
intricate understanding of cellular diversity within tumors. This tech-
nique can uncover previously unidentified cell types and states pivotal 
in cancer progression. In parallel, spatial transcriptomics integrates 
genomic data with locational information, shedding light on the spatial 
patterns of gene expression within tissues. This approach is key to un-
derstanding the interactions between tumor cells and their microenvi-
ronment, which are critical for grasping cancer progression and the 
efficacy of treatments. 

However, integrating data across various omics layers presents sig-
nificant analytical challenges, necessitating advanced computational 
tools and algorithms. For instance, OmicsNet 2.0 [24] serves as a tool for 
exploring multi-omics data and accepts either single or multiple lists of 

mRNA, transcription factors, miRNAs, or metabolites. Researchers may 
generate personalized biological networks, such as transcriptional 
regulation networks, by leveraging multiple integrated molecular 
interaction databases based on lists of patient-specific differential 
characteristics obtained through individualized analysis. Another 
strategy, DDK-Linker [25] may also enhance personalized medicine by 
analyzing individual genetic and proteomic data to identify specific 
disease signals and potential drug targets. The development of 
multi-layered networks for omics data integration is imperative, 
enabling the delineation of complex biological interactions and path-
ways. Future research should focus on how to effectively incorporate 
multi-omics analysis in personalized medicine. 
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