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Abstract: With the intensive development of polymeric biomaterials in recent years, research using
drug delivery systems (DDSs) has become an essential strategy for cancer therapy. Various DDSs
are expected to have more advantages in anti-neoplastic effects, including easy preparation, high
pharmacology efficiency, low toxicity, tumor-targeting ability, and high drug-controlled release.
Polyurethanes (PUs) are a very important kind of polymers widely used in medicine, pharmacy,
and biomaterial engineering. Biodegradable and non-biodegradable PUs are a significant group of
these biomaterials. PUs can be synthesized by adequately selecting building blocks (a polyol, a di- or
multi-isocyanate, and a chain extender) with suitable physicochemical and biological properties for
applications in anti-cancer DDSs technology. Currently, there are few comprehensive reports on a
summary of polyurethane DDSs (PU-DDSs) applied for tumor therapy. This study reviewed state-of-
the-art PUs designed for anti-cancer PU-DDSs. We studied successful applications and prospects for
further development of effective methods for obtaining PUs as biomaterials for oncology.

Keywords: biomaterials; drug delivery systems; anti-cancer drug delivery systems; biomedical
polyurethanes; biodegradable polyurethanes; polyurethane chemistry

1. Introduction

According to the World Health Organization, the number of cancer cases is expected
to reach 22 million per year by 2035 [1]. Surgery, radiotherapy, and chemotherapy are the
most common cancer treatments. Chemotherapy is the most frequently used systemic
treatment for suppressing cancer cell proliferation, disease progression, and metastasis.
However, chemotherapeutic drugs also inevitably attack normal cells, causing dangerous
adverse effects. Therefore, new anti-cancer drug delivery systems (DDSs) that maintain
or improve the efficacy of chemotherapy while reducing the severity of reactions and side
effects are urgently needed [2–6].

DDSs are a particular type of biomaterials. Biomaterials are defined as any natural,
semi-synthetic, or synthetic substances engineered to interact with biological systems in
order to direct medical treatment or diagnostics. These materials must be biocompatible,
meaning they perform their function with an appropriate host response. Biomaterials
can be generally divided into the following groups: polymers, metals, ceramics, carbon
materials, and various composites [5,7].

Biodegradable or bioresorbable polymers are of utmost interest since these biomateri-
als can be broken down, excreted, or resorbed without removal or surgical revision. One
of the most promising groups of biomedical and biodegradable polymers is aliphatic or
cycloaliphatic polyurethanes (PUs) [8,9]. PUs are popular because of their segmented-block
structure, which endows them with a broad range of versatility in terms of tunable mechan-
ical, physicochemical, and biological properties, as well as blood and tissue compatibility
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and their biodegradability. PUs are characterized by valuable and unique physicochemical
properties that are very important for biomedical applications. The soft segments determine
the low glass-transition temperature (Tg) or high elasticity of PUs. The hard segments
determine the high Tg, melting point (Tm), or high strength of PUs. The values of fail
stress and elongation at break are 5–230 MPa and 200–1300%, respectively. PUs are also
characterized by corrosion resistance, high gloss and weathering resistance [10–14].

PUs have traditionally been used as biostable and inert materials in catheters, heart
valves, prostheses, and vascular grafts [10–13]. However, interest in designing resorbable/
degradable PUs for tissue engineering and drug delivery systems (DDSs) has also been
increasing in recent years [10,14–20].

Biomedical PUs (BioPUs) can be synthesized by incorporating hydrolyzable segments
into their backbones (e.g., polyether, polyester, and polyamide segments). A second
strategy for making such PUs is to use amino-acid-derived diisocyanates and biocompatible
aliphatic or cycloaliphatic diisocyanates (ICs) in the synthesis. These components have
lower toxicity than traditional ICs, such as 4,4′-methylenebis(phenyl isocyanate) (MDI) and
toluene 2,4-diisocyanate (TDI). An additional benefit of such PUs is their proven ability to
promote cell adhesion and proliferation without adverse effects [10,13,15,19].

Recent developments of BioPUs as short-, medium-, or long-term anti-cancer DDSs
are described in detail in this review.

2. Synthesis and Properties of Biomedical Polyurethanes Used in Anti-Cancer Drug
Delivery Systems

BioPUs can be obtained through the polyaddition or polycondensation processes. The
polyaddition process involves ICs reacting with bi- or multi-functional polyols, polyamines,
alcohols, and amines. BioPUs are obtained in a one- or two-step method (prepolymer
method). In the first step of the second method, polyols are continuously stirred with ICs,
and the obtained prepolymers are then extended using chain extenders (such as a diol
or diamine) (Figure 1). Different types of ICs (aromatic, aliphatic, and cycloaliphatic) are
used in BioPU synthesis: TDI, MDI, L-lysine diisocyanate ethyl ester (LDI), hexamethylene
diisocyanate (HDI), isophorone diisocyanate (IPDI), bis(2-isocyanatoethyl) disulfide (CDI),
dicyclohexylmethane 4,4′-diisocyanate (HMDI), and tetramethylene diisocyanate (BDI)
(Figure 2). Polyols are used polyesters (e.g., poly(ε-caprolactone) (PCL) and polylactide
(PLA)), polyethers (e.g., poly(ethylene glycol) (PEG) and poly(propylene glycol) (PPG)), and
polycarbonates (poly(trimethylene carbonate) (PTMC), poly(ester-carbonate)s, and copoly-
mers of cycle monomers (e.g., glycolide (GG) and lactide (LA)) (Figure 3). The polyols
are usually prepared using ring-opening polymerization (ROP) of heterocyclic monomers
(e.g., esters and carbonates) in the presence of cationic or anionic initiators, enzymes, and
coordination catalysts. Chain extenders are often used, such as 1,4-butanediol (BDO), di-
ethylene glycol (DEG), ethylene glycol (EG), 1,3-propanediol (PDO), 1,4-diaminobutane (1,4-
DAB), 1,2-diaminoethane (1,2-DAE), 1,6-diaminohexane (1,6-DAH), and 1,8-diaminooctane
(1,8-DAO). The most popular polyaddition catalysts are 1,4-diazabicyclo-[2.2.2]-octane
(DABCO), dibutyltin dilaurate (DBTDL), dibutyltin dioctanate (DBTDO), and tin(II) 2-
ethylhexanoate (SnOct2).

It is also worth mentioning that isocyanate crosslinker molecules contain aromatic
phenolic groups (e.g., functionalized catechol, processed lignin, and phenolic compounds
from tannin). It was found that some PUs obtained from these substrates do not adversely
affect cell proliferation [21].

There are also other less frequently used methods of obtaining PUs, which are dis-
cussed later in this article.
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BioPUs are biodegradable or non-degradable polymers whose biocompatible char-
acteristics can be tailored to biological systems, such as those of the blood, organs, and
tissues, and are biodegradable depending on their components [20]. PUs’ chains comprise
relatively long and flexible polyols (soft segments) and a relatively rigid part imparted by
chain extenders and ICs (hard segments). PUs are unique polymeric materials with a wide
range of physical and chemical properties. The mechanical properties of PUs can easily be
modified by altering the soft-to-hard segment ratio and composition [20,22].

The physical properties of BioPUs should be adequate for particular medical appli-
cations. Implantology requires materials with optimal yield modulus and strength, along
with fatigue, wear, or friction resistance. The modulus, mechanical strength, and fatigue
resistance are essential for PUs to be used in reconstructive surgery of soft tissue and cardio-
vascular. In contrast, the mechanical strength, modulus, and thermal expansion along with
conductivity, wear, and abrasion resistance all affect the performance of dental materials.
The properties of PUs are usually controlled by the structure, degree of crystallinity, molec-
ular weight, soft-to-hard segment ratio, number of crosslinks, pendant groups, additives,
surface properties, etc. All these factors will also affect the PUs’ biocompatibility to some
extent [22–25].

PUs have several properties required from synthetic biomaterials. They can be re-
produced as pure materials, fabricated into the desired form without being degraded or
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adversely changed, and sterilized without changing properties or form. Moreover, PUs
have no physical, chemical, or mechanical properties that are adversely altered by the
biological environment unless they were purposely designed as degradable materials. PUs
also have no adverse effect on the recipient of the implant. These biomaterials have neither
induced thrombosis or abnormal intima formation nor interfered with normal clotting
mechanisms. PUs do not lead to cell fragility or aging, allergic reactions, hypersensitivity,
or carcinogenic, mutagenic, teratogenic, or toxic reactions [22–25].

3. Polyurethane Anti-Cancer Drug Delivery Systems

As mentioned earlier, one of the intensively developed directions of pharmacy research is
anti-cancer polyurethane DDSs (PU-DDSs). PU-DDSs provide stable formulation, improved
pharmacokinetics, and a degree of ‘passive’ or ‘physiological’ targeting to tumor tissue. To
date, several kinds of anti-cancer PU-DDSs have been developed [10,13,26]. The developed
carriers contain cytostatic drugs such as cyclophosphamide (CYCLOPHO), doxorubicin
(DOX), epigallocatechin gallate (ECG), 5-fluorouracil (5-FU), gefitinib (GEF), methotrexate
(METX), temozolomide (TMZ), and paclitaxel (PACL) (Figure 4). These drugs are commonly
known and characterized with different mechanisms of pharmacology actions [27–34]. Various
types of anti-cancer PU-DDSs have been prepared (Figure 5) (Table 1).

Int. J. Mol. Sci. 2022, 23, 8181 6 of 20 
 

 

 
Figure 4. Anti-cancer drugs used in the technology for polyurethane drug delivery systems. 

 
Figure 5. Types of polyurethane drug delivery systems for anti-cancer drugs. 

  

Figure 4. Anti-cancer drugs used in the technology for polyurethane drug delivery systems.



Int. J. Mol. Sci. 2022, 23, 8181 6 of 18

Int. J. Mol. Sci. 2022, 23, 8181 6 of 20 
 

 

 
Figure 4. Anti-cancer drugs used in the technology for polyurethane drug delivery systems. 

 
Figure 5. Types of polyurethane drug delivery systems for anti-cancer drugs. 

  

Figure 5. Types of polyurethane drug delivery systems for anti-cancer drugs.

Table 1. Polyurethane drug delivery systems.

Drug/Drugs Type of PUs or Composites Type of DDSs Main Conclusions Ref.

DOX PEG-1500/bis-MPA/IPDI
nano- and
microparticles/injectable
carriers

- Thermoresponsive PUs manifested an LCST that could be
easily tuned from 30 ◦C to 70 ◦C by increasing the PEG
content.

- Temperature-responsive PU nanoparticles were
characterized by a highly controlled DOX release.

[35]

DOX HDI/PCL/PEG microcapsules

- pH-sensitive PU-DDSs were easily internalized by BGC 823
and Hela cells.

- PU-DDSs were characterized by a highly controlled drug
release.

[36]

DOX

PU-SS-COOH: PEG-1000/PCL-
2000/HDI/CYS/DMPA;
PU-SS-COOH-NH2: PEG-1000/PCL-
2000/HDI/CYS/DMPA/1,6-
diaminohexane

micelles

- The DOX release rate from the redox-sensitive PU micelles
was controlled by the addition of GSH.

- DOX-loaded PU micelles displayed high cytotoxicity
against tumor cells.

[37]

DOX LDI/PEG-PU(SS)-PEG/ micelles

- DOX-loaded PU micelles had good stability under the
extracellular physiological environment, but the drug was
released quickly under the intracellular reducing conditions.

- DOX-loaded PU micelles had a high in vitro anti-tumor
activity in C6 cells;

[38]

DOX PHBHx/PEG-2000/PPG-2050/HDI thermogel

- DOX was released from thermogel with zero-order kinetics
during 10 days.

- DOX-loaded thermogels showed an enhanced
anti-melanoma effect on melanoma solid tumors and no
apparent harm to other tissues, including liver, heart, spleen,
kidney, and lung tissues.

[39]

DOX
LDI/mPEG-OH-5000/PCL; PCL
obtained form ε-CL to
2,20-dithiodiethanol

micelles

- DDSs for osteosarcoma therapy were obtained.
- In vitro, DOX-loaded PU micelles displayed significant

anti-tumor activity, which was comparable with that of free
DOX, against Saos–2 cells.

[40]

DOX PTMC-SS-PTMC/CDI/PEOtz-OH micelles
- The pH and redox dual stimuli-responsive PU micelles were

characterized by controlled DOX release to C6 cells. [41]

DOX
HDI/2,2-bis(hydroxymethyl)
propionic acid/PEG; amphiphilic PUs
with carboxyl pendent groups

nanoparticles

- pH-sensitive PU nanoparticles (NP) had a higher level of
cellular internalization and higher inhibitory effects on the
proliferation of human breast cancer (MCF-7) cells than that
of pure DOX.

[42]
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Table 1. Cont.

Drug/Drugs Type of PUs or Composites Type of DDSs Main Conclusions Ref.

DOX IPDI/methoxyl-poly(ethylene glycol)
(mPEG)/carboxylic acid/piperazine micelles

- The drug release of DOX-loaded PS–PU micelles showed an
obvious step-up with the reducion of the pH.

- The charge-reversal property improved the cellular uptake
behavior and intracellular drug release in both HeLa cells
and MCF-7 cells.

[43]

DOX

mPEG-
5000/HDI/trimethylolpropane/bis(2-
hydroxyethyl)
disulfide

core-shell nanogels

- GSH-responsive PU-based core-shell nanogels with
hydrophilic mPEG shell were prepared.

- GSH triggered the nanogel swelling and accelerated the
loaded drug release in PBS (pH = 7.4).

[44]

DOX poly(2-oxazoline)s/PLA-SS-PLA/LDI micelles

- The release of the drug was stimulated in an acidic and
reductive environment.

- The DOX-loaded PU micelles had high activity against C6
(rat glioma cells) cells.

[45]

DOX PEG-2000/HDI and
PCL-2000/PEG-2000/HDI nanomicelles

- PU micelles had higher cytotoxicity compared with pure
DOX.

- The obtained micelles had better tumor inhibition ability
and safety than that of pure DOX.

- DOX micelles had almost no burst release of the drug in a
pH 7.4 environment.

[46]

DOX
mPEG-1000 (or
PEG-2000)/poly(1,3-propylene
succinate) diols (PPS)/IPDI

micelles

- The enzymatic degradation of the micelles for 8 weeks
under the physiological environment revealed that the
degradation mainly occurred at the ester group of PPS
blocks.

- A cytotoxicity test proved that the PU micelles were
non-toxic, while the DOX-loaded micelles showed
concentration-dependent cytotoxicity to HeLa cells.

[47]

DOX PLA-SS-PLA/LDI/PEG micelles

- DOX was released quickly under intracellular reducing
conditions.

- CCK-8 assays showed that DOX-loaded PU micelles had
high in vitro anti-tumor activity in C6 cells.

[48]

DOX WPU/CS membranes

- Waterborne polyurethane (WPU) and chitosan (CS)
composite membranes exhibited fine biodegradability,
favorable cytocompatibility, excellent blood compatibility,
and a well-sustained release effect manifested in slow
release, stability, and no sudden releases.

- DOX can be released efficiently from the drug-loading
matrix and taken up by tumor cells.

[49]

DOX mPEG-1900/PCL/LDI; PUs with
benzoic-imine linkage micelles

- The cleavage of PEG corona bearing a pH-sensitive
benzoic-imine linkage could act as an on–off switch, which
is capable of activating clicked targeting ligands under an
extracellular acidic condition, followed by triggering a core
degradation and payload release within tumor cells.

[50]

DOX polycondensation products of ortho
ester-based diols and HDI (or HMDI) microparticles

- pH-sensitive POEUs NP were stable at physiological
condition (7.4), were characterized by an accelerated
degradation at a mildly acidic pH (5.0), an effective
intracellular delivery of DOX, and high anti-tumor activity
against 2D monolayer cells in vitro, and significantly
enhanced the penetration of DOX into 3D multi-cellular
tumor spheroids.

[51]

DOX

polycondensation product of
terephthalilidene-
bis(trimethylolethane) and LDI (and
next termination process with allyl
alcohol)

nanomicelles

- In vitro DOX was released from obtained nanomicelles in a
controlled and pH-dependent manner.

- DOX-loaded PU micelles had high in vitro anti-tumor
activity in both RAW 264.7 and drug-resistant MCF-7/ADR
cells.

[52]

DOX trans-4,5-dihydroxy-1,2-dithiane
(O-DTT)/HDI/mPEG nanomicelles

- DOX-loaded PU micelles exhibited high anti-tumor efficacy
in vivo with reduced toxicity. [53]

DOX PEG-2000/bis-1,4-(hydroxyethyl)
piperazine (HEP)/O-DTT/HDI nanomicelles

- PU micelles tended to decompose under a weakly acidic
environment or in the presence of an intracellular reducing
agent (GSH).

[54]
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Table 1. Cont.

Drug/Drugs Type of PUs or Composites Type of DDSs Main Conclusions Ref.

DOX LDI/PDO/PEG/PCL/folic acid (FA) nano- and micelles

- FA-conjugated PU micelles displayed a sustained DOX
release, preferential internalization by human epidermoid
carcinoma cell line (KB cells), and pronounced cytotoxicity
compared with PU micelles without FA.

[55]

DOX PCL/poly (tetramethylene ether)
glycol/HDI

cellulose
acetate/PU/carbon
nanotubes/composite
nanofibers

- The synergic effects of composites and DOX-loaded
nanofibers on the death of LNCaP prostate cancer cells were
observed.

[56]

DOX LDI/hydrazine/dihydroxy
carboxybetaine

conjugates/nano- and
micromicelles

- pH-responsive PU-DDSs showed high stability in a
physiological environment and continuously released DOX
under acidic conditions. Carrier was virtually non-cytotoxic,
while the prodrug micelles were more efficient in killing
tumor cells.

[57]

DOX Dipentaerythritol/HDI/mPEG-
2000/glycerol

conjugates/nanomicelles/
dendritic PU

- PU-DDSs showed excellent pH/ultrasound dual-triggered
drug release and tumor growth inhibition performance. [58]

DOX and
PACL PLA-SS-PLA/IPDI/PEG micelles

- PACL release from DDSs was significantly accelerated by
redox stimuli.

- PU micelles showed high cytotoxicity against HepG2 tumor
cells.

[59]

ECG MEG/BDO/PEG-200/HDI/IPDI microparticles
- The in vitro cytotoxic effect of obtained PU loaded with

ECG on human pharyngeal carcinoma cells (Detroit 562)
and squamous cell carcinoma (SCC-4) was observed.

[60]

5-FU
HDI/PEG-650 or -1250 or -1500 or
-2000/1,2−DAE or 1,6-DAH or
1,4-DAB or 1,8-DAO/L-LYS

WPU

- WPU were characterized with highly controlled
drug-released kinetics.

- The 5-FU release rate was easily controlled in relation to the
chain length of the chain extender and Mw of PEG.

[61]

5-FU and
PACL

(PCL/HDI)/PNIPAAm
grafted-chitosan core-shell nanofibers core-shell nanofibers

- PACL and 5-FU were released from nanofibers under a
acidic and physiological pH with high control (and no burst
release of drugs).

- The minimum increase in tumor volume was obtained
using PACL and 5-FU loaded-nanofibers coated by
magnetic gold nanoparticles.

[62]

METX PCL-b-PEG-b-PCL/BDI/
L-glutathione oxidized films

- In some cases, the drug was released with sustained highly
controlled kinetics over a period of 96–144 h (with near
zero-order kinetics).

[63]

PACL L-LYS-GQA/L-LYS-ABA-ABA
tripeptide/HPCL/HPEG/LDI/PDO nanomicelles

- Nanocarriers improved cellular internalization and
triggered intracellular PACL release in response to acidity
within tumor cells.

[64]

PACL

PEG-1000/PCL-2000/LDI/BDO/CYS
or PEG-1000/PCL-
2000/LDI/MDEA/BDO or
PEG-1000/PCL-
2000/LDI/CYS/MDEA

micelles

- PACL was released from PU micelles within 48 h in
response to acidic and reductive stimuli;.

- Intracellular release of anti-cancer drug and internalization
into H460 cancer cells was evidenced.

[65]

PACL PCL-co-PEG/HMDI nanoparticles
- A biodistribution study of healthy mice evidenced no

relevant differences between the commercial drug (Taxol)
and obtained NP forms of PACL.

[66]

PACL and
TMZ PU purchased from Lubrizol Co

magnetic particles
incorporated into
nanofibers

- Magnetic MIL-53 nanometal organic framework particles
incorporated into poly(acrylic acid) grafted-CS/PU
core-shell nanofibers were obtained.

- Nanofibers induced maximal apoptosis of U-87 MG
glioblastoma cells.

[67]

TMZ PCL/HDI/BDO

- NP incorporated
into nanofibers;

- gold-coated
NP-loaded PU
nanofibers;

- NP (CS/TMZ) incorporated into nanofibers (PU/TMZ) and
gold-coated (CS/TMZ) NP-loaded PU nanofibers were
obtained.

- The obtained nanofibers inhibited the growth of U-87 MG
human glioblastoma cells.

- Sustained TMZ release from DDSs for 30 days with the
zero-order kinetic model was achieved.

[68]
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Table 1. Cont.

Drug/Drugs Type of PUs or Composites Type of DDSs Main Conclusions Ref.

DOX
polycondensation products of
multi-functional L-lysine
monomers/1,12-dodecanediol

nanomicelles

- The amphiphilic aliphatic PU (APU) nanocarriers showed
thermoresponsiveness above the lower LCST at 41–43 ◦C
corresponding to cancer tissue temperature.

- The DOX-loaded APU nanoparticles accomplished more
than 90% cell death in breast cancer (MCF 7) cells.

[69]

GEF
TDI/unknown polyol/unknown
cross-linker (Vysera Biomedical Ltd.);
GEF-loaded PLGA-based microspheres

PU foams either as
micronized
drug or as GEF-PLGA
microspheres

- The coating of drug-eluting stents for the palliative
treatment of bronchotracheal cancer was obtained.

- The drug was released with sustained highly controlled
kinetics of GEF over a period of nine months (with
zero-order kinetics).

[70]

PACL MDI/PCL-4000/BDO membrane

- Temperature-responsive PU membranes exhibited a
switching temperature at 44 ◦C.

- Below the switching temperature, shrunken free volume
within the polymeric matrix prevented the incorporated
PACL from diffusing out; upon heating above the switching
temperature, the PU membranes rapidly switched on,
allowing dramatically accelerated drug diffusion.

[71]

CYCLOPHO TDI/PEG-600 (or -1500 or -3500)/DEG implant
- High control of the CYCLOPHO release from PU-DDSs
- Reduced toxic action of PU-DDSs compared with drug

injections (in vivo tests—rats)
[72]

DOX MDI/PPG-N3/PPEG-2000 or
PPEG-4000 micelles

- At pH 6.0, DOX was rapidly released from pH-responsive
PU micelles.

- Released DOX exerted potent anti-proliferative and
cytotoxic effects in vitro.

- Micelles safely and efficiently delivered DOX into the cell
nuclei.

[73]

5-FU PCL (or PLA, CL/LA
copolymers)/HDI conjugates

- In some cases, a highly controlled release of 5-FU over a
period of 35 days was observed (with near zero-order
kinetics).

[74]

The controlled release of a drug is a crucial property of DDS due to the effective-
ness and biosafety of the therapy. Considering the physical and chemical properties of
both the drug and the matrix, the mechanisms used are diffusion, erosion, swelling, or
osmosis. However, most often a mixed mechanism is used (Figure 6) [6,25]. Diffusion is
a concentration-gradient-driven mass transfer process. In a diffusion release system, the
drug’s diffusion kinetics is the rate limiting step. In a diffusion-mediated controlled release
system, the drug can either be dispersed or dissolved in the polymeric matrix. If the drug
is already dissolved in the matrix, it can lead to an initial burst release from the surface.
Many factors, such as a change in temperature or pH, the matrix’s composition, and the
drug molecule’s size, affect diffusivity [3,4,25]. An eroding polymer matrix is preferred
for implantable DDSs. There is no need for DDS retrieval after implantation because the
polymeric matrix gets eliminated by erosion. However, the resorbability and toxicity of
the degrading products are very important. A drug molecule gets released from DDS only
upon the hydrolytic degradation of the matrix. The degradation of DDS depends on the
rate of water penetration into the matrix and the kinetics of the hydrolysis process. If water
cannot readily penetrate the DDS, surface erosion behavior is observed. Conversely, if
water penetrates more rapidly than the degradation rate of the polymeric matrix, bulk
erosion is induced. Sometimes degradation products themselves catalyze hydrolysis, lead-
ing to autocatalytic degradation [6,25]. Swelling as a drug release mechanism can be used
both in polymer matrices and crosslinked polymer networks. The drug is dissolved or
dispersed in a matrix with limited diffusivity. Electrostatic and ionic interactions, entropy
changes, hydrophilic/hydrophobic interactions, and osmotic stress influence a solvent’s
diffusion into the polymer network, leading to solvation and swelling. Generally, the kinet-
ics of drug release from DDSs depends on the surface area and degree of swelling [3,4,25].
Osmosis-mediated controlled DDSs are also used. In osmotic pump-based DDSs, a drug
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and an osmogen are compacted to form a core compartment, which is enveloped by a
semi-permeable membrane. The membrane selectively allows only an inward flow of
the solvent under an osmotic gradient. The solvent flow leads to the dissolution of drug
molecules, which release out of the system under hydrostatic pressure at a constant rate.
However, these systems are highly complicated to fabricate. Moreover, membrane rupture
can lead to dose dumping of drugs [4,25].
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4. Anti-Cancer Drug Delivery Systems Obtained from Biodegradable Polyurethanes

Biodegradable PU-DDSs can be in the form of nano- or microsystems (micelles,
nanoparticles, nanocapsules, microspheres, and pellets), membrane systems (films and
foams), or matrix systems (gels and scaffolds) (Table 1). The drug release profiles from these
DDSs are often discussed in relation to their composition, swelling, initial drug-loading,
and degradation rate. The pH and presence of enzymes are also factors that influence drug
release kinetics [26].

Biodegradable PU used in PU-DDSs production can be obtained via polyaddition [35–68]
or the polycondensation process [69]. IPDI, HDI, LDI, CDI, HMDI, and BDI were used as IC
components in biodegradable PUs synthesis.

A very interesting group of PU-DDSs are the systems responding to physicochemical
and biological stimuli.

One strategy focuses on PU-DDSs’ preparation, which characterizes thermal anti-
cancer drug release control [35]. For example, thermoresponsive PU-DDSs’ aqueous media
were obtained. By increasing the PEG content, an LCST was manifested that could easily
be tuned from 30 ◦C to 70 ◦C. PU nanoparticles with lower critical solution temperature
(LCST) values below the body temperature and temperature-responsive DOX release were
characterized by a highly controlled drug release [35]. The amphiphilic aliphatic PU (APU)
nanocarriers showed thermoresponsiveness above lower LCST at 41–43 ◦C, corresponding
to cancer tissue’s temperature [69]. The APUs were obtained from L-lysine monomers
and 1,12-dodecanediol via a polycondensation process. The obtained nanoparticles ac-
complished more than 90% of cell death in breast cancer (MCF 7) cells. Moreover, the
PU nanoparticles were readily taken up and internalized in the cancer cells [69]. Poly(3-
hydroxybutyrate-co-3-hydroxyhexanoate)-based PU thermogels as highly controlled anti-
cancer DDSs were also obtained [39]. DTX was released from DDSs with zero-order
kinetics for 10 days. DTX-loaded thermogel showed an enhanced anti-melanoma effect on
melanoma compared with the free drug and showed no apparent harm to other tissues,
including liver, heart, spleen, kidney, and lung tissues [39].

Another strategy is that of pH-stimuli-responsive PU-DDSs [36,47,48,51,52,57]. A
very interesting example are PUs obtained from HDI, 2,2-bis(hydroxymethyl) propionic
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acid, and PEG [42]. An in vitro cellular uptake assay and a Cell Counting Kit-8 assay
demonstrated that these DDSs had a higher level of cellular internalization and higher
inhibitory effects on the proliferation of human breast cancer (MCF-7) cells than that of pure
DOX [42]. Similar DDSs were obtained from IPDI, methoxyl-poly(ethylene glycol) (mPEG),
carboxylic acid groups, and piperazine groups. The DDSs released DOX at a controlled rate
with a lowering of the pH value [43]. Liu and co-workers obtained pH-stimuli-responsive
PU-DDSs (from HDI, PEG, and PCL) characterized by no burst release of DOX [43].

Another way to control the anti-cancer drug release is through redox-sensitive sys-
tems [37,45,53,59,65]. Redox-sensitive PU micelles, with tunable surface charge, switch
abilities, and crosslinked with pH cleavable Schiff bonds, were obtained. PU micelles with
DOX displayed high cytotoxicity against tumor cells [37]. Reduction-responsive micelles
based on biodegradable amphiphilic PUs (polyurethane with disulfide bonds and PEG
fragments; PEG-PU(SS)-PEG) were obtained by Zhang [38]. Under the influence of the re-
ducing substance glutathione (GSH), the disulfide bond in the main chain broke, triggering
the release of the loaded DOX. Cell experiments confirmed that treatment with DOX-loaded
PEG-PU(SS)-PEG micelles significantly inhibited the growth of C6 cells compared with
that of other groups [38]. GSH-responsive PUs were also described in other papers [44,54].
Similarly, reduction-sensitive PUs were synthesized using a disulfide-containing PCL as
the hydrophobic block and a cystamine-functionalized PEG as the hydrophilic block [40].
Under a reductive environment, DOX was released in vitro within 5 h. DOX-loaded PU
micelles displayed significant anti-tumor activity [40].

Dual-controlled anti-cancer DDSs were also obtained [41]. One of the more interesting
examples of such a system is the pH and redox dual-stimuli-responsive PU micelles
prepared from PTMC–SS–PTMC, CDI, and PEOtz–OH (Figure 7). In vitro drug release
profiles and cell experiments confirmed that the obtained PU micelles caused controlled
DOX release to C6 cells [41]. Another example of a dual system is dendritic PUs synthesized
from dipentaerythritol, HDI, mPEG-2000, and glycerol. These obtained PU-DDSs showed
excellent pH/ultrasound dual-triggered DOX-release performance [58].
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Composite biodegradable DDSs containing PUs were also obtained [49,56,62,68,74].
Obtained waterborne polyurethane (WPU) and chitosan (CS) composite membranes exhib-
ited fine biodegradability, favorable cytocompatibility, and excellent blood compatibility.
A cellular uptake assay and CCK 8 assay showed that the DOX was released efficiently
from DDSs and taken up by tumor cells [49]. Another important example of systems of
this type of DDSs are the nanofibers from cellulose acetate/PU/carbon nanotubes. The
obtained results demonstrated the high effects of DOX-loaded nanofibers on the death



Int. J. Mol. Sci. 2022, 23, 8181 12 of 18

of LNCaP prostate cancer cells [56]. Farboudi and co-workers obtained a composite
DDS (PCL/HDI/PNIPAAm grafted-chitosan core) containing two cytostatics—5-FU and
PACL [62]. The drugs were released from nanofibers under an acidic and physiological
pH with high control. There was no burst release of PACL and 5-FU from the nanofibers.
Incubation of the nanofibers in 4T1 breast cancer cells indicated the good adhesion of cells
to the surface of the nanofibers [62].

Other exciting examples are biodegradable PU-DDSs containing superparamagnetic
iron oxide nanoparticles (SPION) [50]. It was found that PU micelles in combination with
SPION exhibit excellent magnetic resonance imaging (MRI) and the targeting of DOX to
the tumor precisely, leading to a significant inhibition of cancer [50].

In summary, many different biodegradable PU-DDSs (or PU-composite DDSs) have
been developed, including those which respond to physicochemical and biological stimuli.
Despite this, none of the developed DDSs of this type have been clinically applied yet.

5. Anti-Cancer Drug Delivery Systems Obtained from
Non-Biodegradable Polyurethanes

Non-degradable PUs, used in DDSs technology, are mainly characterized by high
biostability, good blood or tissue compatibility, and structural and mechanical strength for
long- or medium-term use (e.g., dental and orthopedic implants). The release of drugs from
non-degradable PU-DDSs depends mainly on diffusion. The release rate is governed by the
thickness and permeability of DDS as well as the drug solubility in the polymer matrix [26].

One of the most interesting examples of non-degradable anti-cancer PU-DDSs are PU
foams (synthesized from TDI) containing GEF. Drug-release studies showed a sustained
highly controlled release of GEF over nine months (with zero-order kinetics). The developed
biomaterial is dedicated for the palliative treatment of bronchotracheal cancer [70]. Another
fascinating DDS with very high cytostatic (PACL) release control for 10 days is temperature-
responsive PUs (obtained from MDI, PCL, and BDO) [71]. The PU membranes were
non-cytotoxic to a broad range of cell lines.

However, in some cases, the use of non-biodegradable or semi-biodegradable PU mate-
rials may raise some concerns, mainly possible toxicological problems. Semi-biodegradable
implants were obtained using TDI, PEG, and DEG, for example [72]. Some of the developed
PU-DDSs were characterized by relatively high CYCLOPHO release control (with near
zero-order kinetics). However, the authors did not conduct complete toxicological tests
of the obtained biomaterials. Similarly, pH-responsive PU micelles were obtained using
MDI [73]. The DOX-loaded PU micelles at pH 6.0 DOX were rapidly released. The released
DOX exerted potent anti-proliferative and cytotoxic effects in vitro. However, the authors
did not discuss the possible toxicity of the decomposition products of the obtained PUs.
Another interesting example of the PU-DDSs is the dual systems (as carriers of PACL
and TMZ) constituting the magnetic metal nanoparticles incorporated into poly(acrylic
acid) grafted-CS/PU core-shell nanofibers [67]. The obtained results indicated that the
synthesized nanofibers could be used for the targeted delivery of anti-cancer drugs with
a maximum apoptosis of 49.6% for U-87 MG glioblastoma cells. However, no complete
DDSs biodegradation studies or toxicological tests of the carrier degradation products
were performed.

The above systems were obtained by a polyaddition process (prepolymer or one-
step method).

6. Anti-Cancer Polyurethane Prodrug

One of the most interesting types of anti-cancer PU-DDSs are macromolecular pro-
drugs (macromolecular conjugates). Macromolecular prodrugs are a covalent conjugation
of a drug with a polymeric chain. As is well-known, many types of labile chemical bonds
are formed between a polymer chain and a drug that are susceptible to enzymatic or hy-
drolytic degradation (e.g., amide, carbonate, ester, ether, and urethane) [4]. Polyurethane
prodrugs (PU-prodrugs) can have varied and complex structures. A drug moiety might
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be a terminal group of the PU chain, linked to the polymer through a pendant group, or it
could also be incorporated into the PU backbone [4,26]. The kinetics of drug release from
anti-cancer PU-prodrugs depends on the type of linkage between PU and drug molecules,
structure, hydrophilic–hydrophobic properties, and the molecular weights or polydisper-
sity of PU. PUs based on polyester segments degrade faster than PU based on polycarbonate
or polyether segments, for example [4,10,26]. The selection of these parameters allows
short-, medium-, or long-term anti-cancer PU-prodrugs to be obtained.

One example of a very effective anti-cancer PU-DDSs is 5-FU-PU conjugates obtained
from HDI, dihydroxy(polyethylene adipate) (OEDA), and homo- or copolymers of LA and
CL [74]. The synthesized PU conjugates are an example of DDS where the drug molecules
were incorporated into the polymer chain. Drug-release studies showed the sustained
release, and in some cases, highly controlled release, of 5-FU over 35 days (with near
zero-order kinetics). It was found that the release of 5-FU from PU-DDSs depended on the
nature of oligoester units and consisted of soft and hard segments.

PU conjugates, where molecules of the drug were from the pendant group of the
macromolecular chain, were obtained by Qian and co-workers (Figure 8) [57]. The PU-
DDSs were obtained from LDI, hydrazine, dihydroxy carboxybetaine, and DOX. The
obtained pH-responsive PU-DDSs showed high stability in a physiological environment
and continuously released the DOX under acidic conditions. In addition, cytotoxicity
studies demonstrated the pure PU carrier to be virtually non-cytotoxic, while the prodrug
micelles were more efficient in killing tumor cells.

A novel dendritic polyurethane-based prodrug with a drug content of 18.9% was
obtained by conjugating DOX onto the end groups of the functionalized dendritic PU via
acid-labile imine bonds [58]. The PU-DDSs showed excellent pH/ultrasound dual-triggered
drug release performance, with drug leakage of only 4% at pH 7.4 but a cumulative release
of 14% and 88% at pH 5.0 without and with ultrasound, respectively. With ultrasound, the
PU micelles possessed greater tumor-growth inhibition than that of free DOX, but without
ultrasound, they showed no apparent cytotoxicity on the tumor cells.

The use of PU and anti-cancer drugs conjugates may have certain dangers. During the
degradation of the conjugates, drug molecules and various oligomeric fragments containing
the active substance molecules are formed. This may pose a toxicological risk due to the
lack of complete knowledge about the biological properties of the breakdown products of
these conjugates.
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7. Conclusions, Challenges, and Prospects

According to various global cancer statistics, there were about 20 million new cancer
cases and about 10 million deaths last year. Cancer treatment methods include surgery,
radiotherapy, chemotherapy, and targeted therapy. Unfortunately, these therapy methods
are often limited in many cases of intensely aggressive tumors with a high fatality rate. The
attempts to apply polymeric DDSs as a novel and more promising therapy method are
increasingly made to improve the cure for and survival rate of cancer patients. DDSs based
on PUs have become one of the most interesting directions of research on new anti-cancer
drug carriers, further opening a new clinical treatment method for cancer.
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What are the main challenges in the technology of new anti-cancer PU-DDSs? Despite
intensive research, it has not been possible to resolve the following problems fully:

- some of the PUs (mainly based on aromatic isocyanates), products of their degradation,
used solvents, etc., may exhibit toxic, irritating, and allergenic properties.

- PU nano- and microcarriers have an active and large surface and can “negatively”
interact with biomolecules.

- The immune system may incorrectly recognize PU-DDSs.
- Nano-PU-DDSs have the size of some proteins and can interfere with the transmission

of information between cells.
- A small number of developed PU-DDSs are characterized by a fully controlled release

of the anti-cancer drug.
- In many cases, the occurrence of the phenomenon of the drug’s burst release is

observed.
- Some methods of obtaining PU-DDSs are multi-stage and complex.
- The cost of raw materials and technologies for obtaining PU-DDSs is, in many

cases, high.

Although many developed anti-cancer PU-DDSs have been used in pre-clinical trials,
no obtained system has been approved for commercial use. It is worth considering that
most of these studies are in early stages, and their clinical effects must be further verified.
However, positive and prospective biological and pharmaceutical test results in many cases
indicate the need for further work on these types of DDS, and they offer hope for their
quick practical application in cancer therapy.
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Abbreviations

APUs amphiphilic aliphatic polyurethanes
BDI tetramethylene diisocyanate
BDO 1,4-butanediol
BioPUs biomedical PUs
CL ε-caprolactone
CYCLOPHO cyclophosphamide
CS chitosan
CYS Cystaminedihydrochloride
CDI bis(2-isocyanatoethyl) disulfide
DABCO 1,4-diazabicyclo-[2.2.2]-octane
1,4-DAB 1,4-diaminobutane
1,2-DAE 1,2-diaminoethane
1,6-DAH 1,6-diaminohexane
1,8-DAO 1,8-diaminooctane
DBTDL dibutyltin dilaurate
DBTDO dibutyltin dioctanate
DEG diethylene glycol
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DDS/DDSs drug delivery system(s)
DMPA 2,2-bis(hydroxymethyl)propionic acid
DOX doxorubicin
EG ethylene glycol
ECG epigallocatechin gallate
FA folic acid
5-FU 5-fluorouracil
GG glycolide
GEF gefitinib
GSH glutathione
HDI hexamethylene diisocyanate
HMDI dicyclohexylmethane 4,4′-diisocyanate
HEP bis-1,4-(hydroxyethyl) piperazine
HPEG hydrazone-ended methoxyl-poly(ethylene glycol)
HPCL hydrazone-embedded poly(ε-caprolactone) diol
IC/ICs diisocyanate/diisocyanates
IPDI isophorone diisocyanate
LA lactide
LCST lower critical solution temperature
LDI L-Lysine diisocyanate ethyl ester
L-LYS L-lysine

L-LYS-GQA
L-lysine-derivatized gemini quaternary ammonium salts with
two primary amine groups

L-LYS-ABA-ABA tripeptide L-lysine-γ-aminobutyric acid-γ-aminobutyric acid tripeptide
mPEG methoxyl-poly(ethylene glycol)
MDEA N-methyl-diethanolamine
MDI 4,4′-methylenebis(phenyl isocyanate)
EG ethylene glycol
METX Methotrexate
bis-MPA 2,2-bis(hydroxymethyl)-propionic acid
NP nanoparticles
O-DTT trans-4,5-dihydroxy-1,2-dithiane
OEDA dihydroxy(polyethylene adipate)
PACL paclitaxel
PBS phosphate buffered saline
PCL poly(ε-caprolactone)
PEG-PU(SS)-PEG polyurethane with disulfide bonds and PEG fragments
PEOtz-OH poly(2-ethyl-2-oxazoline)
PHBHx poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)
PLGA copolymer of lactide and glycolide
PDO 1,3-propanediol
PEG poly(ethylene glycol)
PLA polylactide
PLACL copolymer of lactide and ε-caprolactone
PLA-SS-PLA PLA with disulfide bonds
PNIPAAm-g-chitosan poly(N-isopropylacrylamide)-grafted-chitosan
POEUs poly(ortho ester urethanes)
POx poly(2-oxazoline)s
PPG poly(propylene glycol)
PPG-N3 azide-grafted PEG
PPEG Propargyl-grafted PEG
PPS poly(1,3-propylene succinate) diols
PTMC poly(trimethylene carbonate)
PTMC-SS-PTMC PTMC with disulfide bonds
PTMG poly(tetramethylene ether) glycol
PUs polyurethanes
PU-DDSs polyurethane drug delivery systems
PU-Prodrugs polyurethane prodrugs
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PU-SS-COOH
polyurethane obtained from PEG-1000, PCL-2000, HDI, CYS and
DMPA

PU-SS-COOH-NH2
product of condensation reaction between the PU-SS-COOH and
1,6-diaminohexane

ROP ring-opening polymerization
SnOct2 tin(II) 2-ethylhexanoate
SPION superparamagnetic iron oxide nanoparticles
TDI toluene 2,4-diisocyanate
TMC trimethylene carbonate
TMZ temozolomide
WPU waterborne polyurethane dispersions
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