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Yearly more than 15 million babies are born premature (<37 weeks gestational age), 
accounting for more than 1 in 10 births worldwide. Lung injury caused by maternal 
chorioamnionitis or preeclampsia, postnatal ventilation, hyperoxia, or inflammation 
can lead to the development of bronchopulmonary dysplasia (BPD), one of the most 
common adverse outcomes in these preterm neonates. BPD patients have an arrest 
in alveolar and microvascular development and more frequently develop asthma and 
early-onset emphysema as they age. Understanding how the alveoli develop, and repair, 
and regenerate after injury is critical for the development of therapies, as unfortunately 
there is still no cure for BPD. In this review, we aim to provide an overview of emerging 
new concepts in the understanding of perinatal lung development and injury from a 
molecular and cellular point of view and how this is paving the way for new therapeutic 
options to prevent or treat BPD, as well as a reflection on current treatment procedures.

Keywords: bronchopulmonary dysplasia, chronic lung disease of prematurity, respiratory distress syndrome, 
preterm birth, lung development, chronic lung disease

iNTRODUCTiON

Yearly over 15 million babies are born premature (<37 weeks gestational age), accounting for more 
than 1 in 10 births worldwide, of which approximately 2.4 million babies are born before 32 weeks 
of postmenstrual age (PMA) (1). Bronchopulmonary dysplasia (BPD) is the most common adverse 
outcome in very preterm neonates with an incidence of 5–68%, depending on the cohort and defini-
tion used, which increases significantly with declining gestational age (2, 3). BPD develops as a 
result of lung injury caused by maternal pre-eclampsia, chorioamnionitis, postnatal ventilation, 
hyperoxia, and/or inflammation, leading to an arrest in alveolar and microvascular development 
and pulmonary hypertension, although the relative contribution of the different pathogenic factors 
for the individual patient is hard to identify (4). Originally, BPD (“old” BPD) was defined based on 
lung injury resulting from mechanical ventilation and oxygen supplementation, and was seen mostly 
in premature infants born at 26–30  weeks PMA (5–7). The introduction of major interventions 
such as maternal corticosteroids (8, 9) and surfactant replacement therapy (10–12) resulted in a 
changed disease phenotype that was seen in preterm infants that could survive at younger gestational 
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FigURe 1 | The pathogenesis of bronchopulmonary dysplasia (BPD) is highly multifactorial in nature, with a wide variety of pre- and postnatal 
exposures influencing lung development. Depending on the timing and combinations of exposures, BPD likely exists of multiple different pathophysiologies that 
manifest themselves in a similar way clinically. The top arrow represents exposures that may to a certain extent protect from BPD pathogenesis and promote repair, 
while the bottom arrow indicates exposures that injure the preterm lung and contribute to BPD pathogenesis. Figure reprinted from Hütten et al., originally published 
by Springer (36).
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ages (24 to 26 weeks PMA). As a result, “new” BPD, defined as 
the requirement of supplemental oxygen at 36  weeks PMA or 
treatment with supplemental oxygen for more than 28  days 
(4), was characterized based on impaired alveolar and capillary 
development of the immature lungs (13). It is now becoming clear 
that BPD survivors continue to have respiratory morbidity after 
they leave the neonatal intensive care unit (NICU) [see compre-
hensive review by Islam et al. (14)], underlining that BPD really 
is a disease of disrupted lung development. Understanding how 
the alveoli and underlying capillary network develop and how 
these mechanisms are disrupted in BPD is critical for develop-
ing efficient therapies, which currently are lacking. Moreover, 
the nature of lung injury and consequently BPD is perpetually 
changing as treatment strategies evolve in an attempt to prevent 
injury to the premature lungs. Combined with increasing insight 
into the pathophysiology of BPD, this has started a discussion 
on yet a newer definition of what BPD is, basing it more on bio-
markers, pulmonary hypertension and the underlying vascular 
basis of BPD (15–17). In this review, we provide an overview of 
emerging new pathophysiological concepts in the understanding 
of perinatal lung development and injury from a molecular and 
cellular point of view and how this is paving the way for new 
therapeutic options to prevent or treat BPD, as well as a reflection 
on how this compares with current treatment procedures.

Overview of Lung Development
To understand BPD pathophysiology, it is important to under-
stand how the lung normally develops. Despite the large body of 
knowledge concerning the morphogenesis of the lung (18, 19),  
research on the intercellular communications that regulate 
growth, migration, and differentiation during lung development 
is still unfolding. Among the best characterized growth factors 
and their signaling components in early lung development are 
fibroblast growth factor (FGF), transforming growth factor β 
(TGFβ), bone morphogenetic protein (BMP), sonic hedgehog 
(SHH), wingless-type MMTV integration site family (WNT), 
vascular endothelial growth factor (VEGF), and retinoic acid 
signaling pathways [reviewed by Hogan and Morrissey (20) 

and Kool et al. (21)]. Far less is known about the molecular and  
cellular processes that direct saccular and alveolar development, 
the very stages that are clinically relevant after preterm birth and 
BPD pathogenesis. VEGF, which is expressed by alveolar epithe-
lial type II cells in response to hypoxia-induced factor (HIF), is 
crucial in directing pulmonary microvascular development and 
alveolar development (22). Moreover, VEGF plays an important 
role in BPD pathogenesis as BPD patients express little or no VEGF 
in their lung epithelium, and lack expression of VEGF receptors 
in pulmonary microvascular endothelium (23). Multiple studies 
have demonstrated that platelet derived growth factor (PDGF) 
and FGF signaling is crucial for myofibroblast differentiation and 
subsequent onset of secondary septation (24–29). WNT, BMP, 
and TGFβ signaling components have also been implicated to 
play a role in fibroblast differentiation during alveolarization 
(30–32). Additionally, correct deposition of extracellular matrix 
(ECM) proteins by myofibroblasts, like elastin and collagen, plays 
a crucial role during secondary septation (33, 34). These and 
other ECM components may exert their role in lung development 
by functioning as a scaffold for the growth factors to coordinate 
the growth interactions of cells (35).

BPD iN 2017

Current Understanding of Perinatal Risk 
Factors
Because BPD is still very much a functional diagnosis, which 
is made when preterm infants have already been exposed to a 
wide variety of perinatal stressors [Figure 1; (36)], it is hard to 
pinpoint exactly which exposure is more detrimental for lung 
development. Most of these insights have been obtained through 
decades of work on animal models [reviewed by Jobe (37)] and 
correlations found through epidemiological research. Already 
before preterm birth, intrauterine conditions can have a profound 
impact on lung development and susceptibility to BPD. Risk fac-
tors established by statistical correlation are first and foremost 
maternal risk factors associated with preterm birth, such as 
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smoking and socioeconomic background (38). Intrauterine 
growth restriction increases the risk of BPD threefold in infants 
born before 29 weeks (2, 39), while chorioamnionitis and pre-
eclampsia trigger the release of cytokines and growth factors that 
directly inhibit alveolar and microvascular development of the 
fetal lungs (2, 36, 40). Placental abnormalities, such as gestational 
hypertension, pre-eclampsia, and eclampsia, are emerging as an 
important antenatal risk factor for BPD. A French prospective 
cohort study found that placenta-mediated pregnancy complica-
tions with fetal consequences are associated with moderate to 
severe BPD in very preterm infants (41). The maternal adminis-
tration of corticosteroids prior to preterm birth leads to thinning 
of the primary septa, which narrows the air blood barrier, stimu-
lates the production of surfactant, which stabilizes the alveolar 
sacs and prevents collapse after exhalation, and stimulates the 
clearance of fetal lung fluid (42). Although this accelerated 
development improves neonatal outcome and survival of the 
infant, antenatal corticosteroids have the unwanted side effect of 
inhibiting secondary septation and impairing microvasculature 
development (28, 43–45).

Postnatally, inflammation is also considered to be an 
important risk factor for the development of BPD [reviewed 
in Ref (46)], either as a result of lung injury caused by invasive 
mechanical ventilation and supplemental oxygen or in the form 
of sepsis. Due to their lung immaturity and apnea of prematurity, 
preterm infants are also frequently exposed to hypoxia, which 
just like hyperoxia leads to impaired alveolar and microvascular 
development (47). Recently, the presence of oxygen-sensitive 
intrapulmonary bronchopulmonary anastomoses (IBA) was 
discovered in preterm infants with BPD and other infants with 
chronic lung diseases, which may stay patent in the setting of 
persistent hypoxia (16, 48–52). Thus, IBA may in itself lead to 
persistent hypoxemia and contribute to the pulmonary hyper-
tension that is often seen in conjunction with BPD, and could 
therefore be a significant risk factor for BPD (16). Considering 
that not all infants that are born very or extremely preterm go 
on to develop BPD, multiple pre- and/or postnatal hits are prob-
ably needed for lung development to be significantly affected, 
especially since the incidence of BPD has not decreased despite 
advances in neonatal care (2).

Current Treatment Procedures
In this complex multifactorial setting, current therapies are aimed 
to not only support the survival of the preterm infant, but also to 
limit or prevent further damage as much as possible [see review by 
Jain and Bancalari (53)]. In this regard, the most direct approach 
is to prevent the need for aggressive, prolonged invasive ventila-
tion. The first treatment of choice to prevent respiratory distress 
syndrome (RDS) is still antenatal maternal corticosteroid admin-
istration, followed by prophylactic surfactant therapy through 
endotracheal bolus administration after birth. The maternal 
administration of a single or repeated intramuscular injection of 
betamethasone or dexamethasone within a time window of 24 h 
to 7 days prior to preterm birth can significantly increase survival 
of the preterm infant and decrease the incidence and severity of 
RDS (9, 54). However, there is no consensus yet on how the use 
of antenatal steroids can be optimized by improving the timing 

of administration and dosing (42). Similarly, there is discussion 
as to whether surfactant therapy should be prophylactic or only 
selectively administered upon diagnosed RDS, as a result of the 
increased use of non-invasive ventilation methods such as nasal 
continuous positive airway pressure (CPAP) (53, 55). Without the 
application of routine CPAP, prophylactic surfactant treatment 
reduces neonatal mortality. However, the routine application of 
CPAP reduces the risk of BPD and neonatal death, and in these 
infants selective administration of surfactant is more beneficial 
(55). The INSURE method (intubate-surfactant-extubate to 
CPAP) is therefore now the recommended technique to avoid 
lung injury (56).

An alternative method of surfactant administration that builds 
on this is less invasive surfactant administration (LISA), which 
circumvents the need of endotracheal intubation and mechanical 
ventilation all together while improving pulmonary outcome in 
extreme premature infants (57–59). A more high-tech approach 
that is now being tested in the NICU is surfactant administration 
through aerosolization, nebulization, or atomization (60–67). It 
has proven technically challenging to achieve sufficient delivery 
of surfactant in the distal lung compared to bolus administra-
tion of surfactant, although the recent development of vibrating 
membrane nebulizers seems promising (67). Switching from 
animal-derived surfactants to new generation synthetic sur-
factants, which are more resistant to inactivation and even anti-
inflammatory in cell culture and animal studies, may be another 
step forward (11, 68–75). Several clinical trials are testing two 
promising synthetic surfactants to combat RDS in the NICU. A 
multicenter phase 2 study is comparing the safety and efficacy of 
CHF5633, a synthetic surfactant with surfactant protein (SP)-B 
and SP-C analogs, with poractant alfa in preterm infants with RDS 
(ClinicalTrials.gov identifier NCT02452476). In addition, two 
multicenter phase 2 studies are assessing the safety and efficacy of 
aerosolized lucinactant (also known as KL4 surfactant, Aerosurf, 
and Surfaxin) in preterm neonates 26 to 32 weeks PMA receiving 
nasal CPAP (ClinicalTrials.gov identifiers NCT02636868 and 
NCT02528318). Optimizing ventilation strategies and surfactant 
therapy are therefore seen as the most easily achievable targets in 
the prevention of BPD.

Besides ventilation strategies, surfactant therapy and corticos-
teroids, there are a few therapies that have a profound effect in the 
prevention of BPD. Prophylactic caffeine therapy is recommended 
to counter apnea of prematurity and is now common practice 
after it was shown to be effective in reducing BPD and subsequent 
neurodisability (56, 76–78). The protective effect of caffeine 
therapy appears greater when given earlier rather than later, 
although there is still discussion among experts as early therapy 
is also associated with slightly greater mortality in some studies 
(79–81). This effect has been attributed to infants receiving earlier 
extubation and subsequently shorter mechanical ventilation 
times, alleviating the injury burden on the developing premature 
lung (76, 79). Multiple recent animal studies have attempted to 
elucidate whether caffeine itself can promote or protect alveolar 
development directly, with mixed results. Using the hyperoxia 
model of experimental BPD, caffeine could protect against alveo-
lar simplification and inflammation in rats (82, 83) and rabbits 
(84), but not in mice (85, 86). Potential mechanisms include its 

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive
http://ClinicalTrials.gov
http://ClinicalTrials.gov


4

Collins et al. New Concepts in BPD

Frontiers in Medicine | www.frontiersin.org May 2017 | Volume 4 | Article 61

abilities to amplify glucocorticoid-mediated SP-B expression in 
alveolar type 2 cells (87, 88), to modulate connective tissue growth 
factor (CTGF) expression (89) and TGFβ pathway members 
(85), and to attenuate endoplasmic reticulum (ER) stress (82). 
Conflictingly, both up- and downregulation of alveolar apoptosis 
has been reported (82, 86). Caffeine is however primarily known 
as a methylxanthine, which is a non-selective phosphodiesterase 
(PDE) inhibitor (78). PDE inhibitors have potent immunomodu-
latory and vascular effects and are therefore still interesting 
targets for neonatal intensive care medicine. Animal studies 
using the neonatal rodent hyperoxia model of experimental BPD 
have shown promise for non-selective PDE inhibitor pentoxyfil-
line (90), PDE4 inhibitors rolipram, piclamilast, and cilomilast 
(91–93), and PDE5 inhibitor sildenafil (94), which were able 
to ameliorate pulmonary inflammation and hypertension and 
improve lung alveolarization. Inhaled nitric oxide (iNO) therapy, 
which has a complementary mode of action to PDE inhibitors 
by boosting cyclic guanosine monophosphate (cGMP) (95), has 
long been the subject of clinical trials after promising results in 
animal models of BPD. Although iNO decreases inflammatory 
mediators in tracheal aspirates of treated preterm infants (96), 
systematic reviews show no protective effect in the development 
of BPD (97). Interestingly, iNO therapy was effective in reducing 
BPD incidence when combined with vitamin A therapy (98). 
Supplementation with vitamin A improved alveolarization in 
neonatal rats and lambs (99, 100), while in clinical studies, sup-
plementation with vitamin A in preterm infants significantly 
reduced the risk of BPD (101–103). Unfortunately, these studies 
have not lead to the adoption of vitamin A supplementation in 
clinical practice, as the treatment benefits were deemed too small 
and the intramuscular route of administration too cumbersome 
in tiny preterm infants (104, 105). Other administration routes 
must be investigated for these promising therapies to become 
commonplace in the clinic.

For all currently used therapies, there is still ground to be 
gained through clinical trials and evidence-based medicine to 
ascertain optimal dosing, timing, and administration methods 
for maximum efficiency. It is essential that risk stratification 
takes place within the trial design to identify the real potential 
advantage of the different interventions. Despite all efforts at 
reducing lung injury through current treatment procedures, 
the incidence of BPD has remained stable over the past two 
decades (2). This is in part explained by the increased survival 
of extremely preterm infants born between 22 and 26  weeks 
PMA but probably also reflects the highly multifactorial nature 
of BPD. Prematurity is often not the first complication leading 
to BPD pathogenesis, as infants have already been exposed to 
a disadvantageous intrauterine environment, either through 
severe intrauterine growth restriction resulting from severe 
pre-eclampsia or chorioamnionitis. This is then followed by 
various exposures and comorbidities in the NICU, which in a 
substantial portion of these extreme premature infants leads 
to BPD with a similar phenotype, even though the underlying 
pathogenesis might have been quite different. It should not be 
forgotten that an astonishing portion of these infants does not 
go on to develop BPD, despite experiencing similar exposures. 
A better understanding of the pathophysiology leading to BPD 

is therefore crucial to create a better tailored treatment regimen 
for premature infants.

CURReNT UNDeRSTANDiNg OF BPD 
PATHOPHYSiOLOgY, New 
PATHOPHYSiOLOgiCAL CONCePTS,  
AND POTeNTiAL THeRAPieS

Infants at greatest risk of developing BPD are born when their 
developing lungs are still transitioning from the canalicular to 
saccular phase. Given the complexity of lung development and 
the wide variety of perinatal insults leading to BPD, there is 
likely no single pathophysiology of BPD. Because of a paucity of 
histopathological data from preterm infants and BPD patients, 
our current understanding of BPD pathophysiology has mostly 
been generated from various small and large animal models 
looking at the effect of perinatal inflammation, oxygen toxicity, 
and mechanical ventilation on lung development [reviewed by 
Jobe (37)]. Although these simplified animal models of BPD only 
approximate the actual disease in humans, they have helped us 
immensely to better understand the pathophysiology of BPD. A 
number of recent reviews have generated a detailed overview of 
the various pathophysiological mechanisms implicated in BPD 
that have been uncovered through these models [see review by 
Niedermaier and Hilgendorff (106) and Hilgendorff and O’Reilly 
(107)], focusing on the role of perinatal infection and inflamma-
tion (46, 108, 109), pulmonary vascular development (17), the 
mesenchyme (110), the extracellular matrix (111), and oxygen 
(112) [Figure 2 (107)]. For the remainder of this review, we will 
highlight new pathophysiological concepts that are promising 
avenues for potential future therapies for BPD. Because of the 
inherent intertwinement of the pathophysiological mechanisms 
and potential therapies, we have chosen to present these side by 
side for each pathophysiological concept.

Stem Cells in Development and for 
Therapy of BPD
In the past decade, the field of stem cell biology has advanced 
significantly, especially with respect to tissue resident stem cells 
in development and repair. A wide variety of lung epithelial stem/
progenitor cells has been described but also multipotent mes-
enchymal stromal cells (MSCs) and endothelial colony forming 
cells (ECFCs) [reviewed in Ref (113)]. In the developing lung, 
where an extensive microvasculature is crucial for lung function, 
resident lung MSCs (L-MSCs) are a heterogeneous progenitor 
population, which orchestrate the formation of the alveolar 
microvasculature, repair/regeneration, and tissue maintenance 
[reviewed in Ref (114, 115)]. Already at the beginning of lung 
budding, a multipotent cardiopulmonary mesoderm progenitor 
has been described, based on expression of Wnt2, Gli1 and Isl1, 
giving rise to pulmonary vascular and airway smooth muscle, 
proximal vascular endothelium and pericyte-like cells (116). 
During pseudoglandular lung development early Tbx4+ multipo-
tent MSCs give rise to a wide variety of distinct mesenchymal cell 
populations including airway and vascular smooth muscle and 
early fibroblast-like cells (117), reminiscent of quintipotential 
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FigURe 2 | A schematic overview of the pathophysiology of bronchopulmonary dysplasia (BPD). Pre- and postnatal risk factors lead to lung injury, 
resulting in apoptosis of distal lung cells, inflammation, extracellular matrix remodeling and altered growth factor signaling. These have long term effects on lung 
growth and function, including vascular and immune function, resulting in an increased disposition for chronic lung disorders. Figure reprinted from Hilgendorff and 
O’Reilly, originally published by Frontiers in Medicine (107).
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MSCs in bone marrow (118). During saccular and alveolar lung 
development, Pdgfrα+, Shh+, and Fgf10+ L-MSCs give rise to 
myofibroblasts and lipofibroblasts, which are crucial for alveolar 

development (119–122). Importantly, Pdgfrα + L-MSCs are sup-
portive of lung epithelial progenitor cells, which are unable to form 
colonies in their absence or in the presence of more differentiated 
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myofibroblasts (123, 124). There is mounting evidence from both 
human patients and animal models that L-MSCs are perturbed 
in BPD, potentially actively contributing to BPD pathogenesis. 
The presence of L-MSCs in tracheal aspirates from ventilated 
preterm infants could predict the subsequent development of 
BPD (125). In vitro, these L-MSCs showed signs of dysfunction 
through reduced PDGFRα expression, a propensity toward 
myofibroblast differentiation and impaired migration capacity 
(126, 127). This is supported by a recent study in neonatal mice, 
where suppression of Fgf10 expression left alveolar epithelial 
type 2 cells (AEC2) unable to regenerate after hyperoxia damage, 
leading to increased AEC1 differentiation (128). Combined with 
prior observations in parabronchial smooth muscle cells upon 
naphthalene injury (129), the secretion of FGF10 to stimulate 
epithelial repair may be one of the ways through which L-MSCs 
exert their regenerative capacities in the distal lung following 
injury (130).

Similarly, lung resident ECFCs, which are important for 
the development of the pulmonary microvasculature, were 
shown to be dysfunctional in a neonatal rat model of BPD 
(131). Moreover, the cord blood of preterm infants who go on 
to develop BPD contains lower numbers of circulating ECFCs, 
which are more vulnerable to hyperoxia-induced oxidative 
stress and dysfunction (132). Understanding how these resi-
dent progenitor populations are affected in BPD, but also how 
they normally mediate development, repair, and regeneration 
in the lung, will provide an insight into how we may mobilize 
these cells to actively engage in repair and normalize lung 
development.

Potential Therapies
Tapping into and stimulating the regenerative properties of 
L-MSCs and ECFCs through cell-based therapy may be a central 
way to ameliorate the lung injury leading to BPD pathogen-
esis. To this end, important lessons will come from exogenous 
stem cell therapy. In a neonatal rat hyperoxia model of BPD, 
intratracheal installation of either bone marrow or umbilical 
cord derived MSCs, or their conditioned media, could nearly 
completely repair experimental BPD, both on a histological and 
on a functional level (133, 134). The mode of action appears to 
be largely paracrine, as injection with MSC conditioned medium 
could promote alternatively activated (M2) macrophages (135). 
Exosomes, which are extracellular vesicles containing a cocktail 
of proteins, RNAs and even mitochondria, are secreted by a wide 
variety of cells including MSCs and likely play an active role in 
the paracrine therapeutic effects of MSCs (136). Their potential as 
a carrier of therapeutic paracrine factors makes them appealing 
and promising targets for cell-free MSC based therapy. However, 
several technical challenges must be overcome to ensure their 
safety, such as a robust reproducible isolation technique and 
their ability to facilitate infectious or damaging particles (137). 
The next decade will likely see large advances in the develop-
ment of exogenous stem cell therapy for BPD and a vast array 
of other diseases, either by injecting stem cells themselves, their 
conditioned medium or through exosomes [see recent reviews 
by Möbius and Thébaud (138), O’Reilly and Thébaud (139), and 
Mitsialis and Kourembanas (136)].

Pulmonary Macrophages Contribute to 
Alveolar Development and Repair
Arguably the most important immune cells to participate in wound 
repair are alternatively activated macrophages. Besides peripheral 
blood derived macrophages, the pulmonary microenviron-
ment contains three distinct resident pulmonary macrophage 
populations: alveolar macrophages, interstitial macrophages 
and primitive macrophages (140). Alveolar macrophages are the 
best-studied subset and are most abundantly present in the lung. 
They reside in the alveolar spaces where they phagocytose foreign 
particles and have a crucial role in the surfactant metabolism 
that facilitates alveolar function and gas exchange. Interstitial 
macrophages (IMF) reside on the other side of the epithelial 
barrier, among mesenchymal cells and capillaries. They have a 
distinct phenotype and behavior from alveolar macrophages and 
are geared more toward tissue repair and maintenance, antigen 
presentation and influencing dendritic cell functions to prevent 
allergy (140, 141). The third population, primitive macrophages, 
has only very recently been identified as a distinct subtype. These 
macrophages are the first to colonize the fetal lungs, and persist in 
adult lungs in the parenchyma of the peripheral alveoli. Because 
of their location in peripheral and perivascular spaces, which have 
been described as hotspots for alveolar regeneration, they are 
speculated to promote or be attracted to stem cell activity (140). 
The influx of these macrophages, which display an alternatively 
activated or M2 phenotype, and localization at the branching 
sites of the developing lung, suggest they potentially contribute 
to alveolar lung development (142). Conversely, if fetal lung 
macrophages are activated by an inflammatory stimulus, they 
actively inhibit expression of genes critical for lung development, 
leading to disrupted airway development and perinatal death in 
mice (143).

Potential Therapies
These insights provide new support for anti-inflammatory treat-
ments. Furthermore, exogenous MSC therapy may be beneficial 
in regulating pulmonary macrophage activity. As cells with potent 
immunomodulatory capacities, MSCs can regulate macrophage 
function and polarization (144). Steady-state MSCs drive mac-
rophages toward a wound healing or M2 phenotype through the 
production of IL-6 and inhibit differentiation toward dendritic 
cells (145, 146). However, in a proinflammatory environment 
MSCs stimulate macrophages toward a pro-inflammatory M1 
phenotype (147). Using cell-based therapy to activate resident 
L-MSCs may therefore also be effective in promoting an M2 
phenotype in pulmonary macrophages.

The Lung Microbiome: An important 
emerging Field of interest
Although there has been a surge in interest in the microbiome 
thanks to the Human Microbiome Project, the lung was not 
included in this research project. Research interest in the lung 
microbiome is now however on the rise, uncovering that not 
only the upper but also the lower airways are colonized, with 
numbers of 10–100 bacterial cells per 1,000 human cells being 
reported (148). The six most commonly detected bacterial phyla 
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are found throughout the body, but composition varies per organ. 
In the lung, composition varies between different areas, making 
consistent sampling of the same area extremely important when 
comparing between groups. The lungs of newborn infants are 
already colonized at birth with a variety of bacterial phyla, most 
predominately Acinetobacter (149). The composition of the lung 
microbiome changes and stabilizes in the first month of life, 
but is decidedly different in lungs of children and adult patients 
with lung disease (148, 149). Interestingly, amniotic fluid and 
the placenta harbor their own microbiota, suggesting that fetal 
tissues already get colonized in utero, potentially having an effect 
on early immune cell maturation (148).

Inflammation frequently occurs in preterm infants, both 
antenatal (chorioamnionitis) and postnatal (sepsis), and can 
strongly perturb lung development (150). In the neonatal period, 
the immune system is still immature, and evidence is mounting 
that host-microbial interactions are necessary for development 
and homeostatic control of the immune system (151). Recently, 
a strong correlation was found between decreased diversity of 
the lung microbiome at the time of birth in preterm infants and 
the development of BPD (149, 152). Other studies correlated 
prolonged antibiotics use during the first week of life and BPD 
(153, 154). The protective effect of bacterial exposure in early life 
on asthma and allergy development, the “hygiene hypothesis,” 
is extensively studied, and a greater microbial diversity of com-
mensal bacteria seems to underlie this protective effect (148). 
Beyond microbial diversity and exposure, the role of the lung 
microbiome in the regulation and maturation of the immature 
immune system and the developing neonatal lung is less clear. 
One route of how the lung microbiome might train the immature 
immune system is by inducing expression of programmed death 
ligand 1 (PD-L1) in pulmonary dendritic cells. Lack of microbial 
colonization, or blocking pulmonary PD-L1 during the first 
2 weeks of life in mice, induced a disproportionate inflammatory 
response to allergens later in life (155).

An imbalanced microbiome, called dysbiosis, may further 
impact the inflammatory and tissue repair response to oxygen 
exposure, as beneficial bacteria are lost or overrun by other 
bacteria. An important emerging mechanism through which the 
microbiome can influence cell function is through the produc-
tion of microbial metabolites, such as short chain fatty acids or 
tryptophane catabolites (156, 157). Tryptophane catabolites are 
produced via the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) 
and function as agonists for the aryl hydrocarbon receptor (AhR). 
AhR activation leads to an immune suppressive response through 
the production of interleukin (IL) 22 and promotes development 
of regulatory T-cells (158). One genus of bacteria capable of 
metabolizing tryptophane into AhR agonists are Lactobacilli. The 
beneficial effects of tryptophane metabolites and Lactobacilli have 
been shown to inhibit inflammation and promote health in the 
gut, central nervous system and the lung (156, 157). Treatment 
of COPD patients with emphysema with the anti-inflammatory 
macrolide antibiotic azithromycin, resulted in increased levels 
of tryptophane catabolites in bronchoalveolar lavages, which 
decreased macrophage production of proinflammatory cytokines 
(156). In mice, intranasal administration of Lactobacilli was more 
potent in reducing allergic airway inflammation than intragastric 

administration, possibly linked to an increase in regulatory 
T lymphocytes in the lungs (159). Interestingly, Lactobacilli were 
found to be significantly less abundant in the lungs of preterm 
infants who develop BPD compared to preterm infants who are 
BPD resistant (152). Within this cohort, Lactobacilli abundance 
was particularly low in infants born to mothers with chorioam-
nionitis. Coincidentally, azithromycin treatment could reduce the 
risk of BPD in preterm infants (160), particularly those colonized 
with Ureaplasma spp., which have been associated with chorio-
amnionitis and BPD (161, 162). The beneficial impact of the lung 
microbiome and specifically Lactobacilli on lung development is 
supported by a study in mice, where there was a positive correla-
tion between microbial abundance and lung development (163). 
Injection of Lactobacilli into the lungs of germ-free mice could 
improve alveolar development (163).

Potential Therapies
In the near future, a potentially interesting avenue of therapy for 
the prevention or treatment of BPD may be the further explora-
tion of the benefits of azithromycin. Following the bacterial lung 
microbiome, the lung virome and mycobiome are now slowly also 
becoming unraveled, which may provide further insights and 
treatment opportunities (148, 164, 165). Additionally, the benefits 
of pre- or probiotics to promote a healthy growth promoting lung 
microbiome should be investigated, and in particular the presence 
of Lactobacilli. d-Tryptophane was recently identified as a potent 
probiotic that could ameliorate allergic airway inflammation in a 
mouse model of allergic airway disease, and may therefore also 
be of interest in the setting of BPD (166). One possible way to 
achieve the same effect as tryptophane catabolites may be through 
the proton pump inhibitor omeprazole, which induces detoxifica-
tion enzyme cytochrome P540 (CYP)1A1 possibly through an 
AhR-mediated process (167). AhR signaling is protective against 
hyperoxic injury in human fetal pulmonary microvascular cells 
and neonatal mice, likely because of its potent effects on the gene 
expression of immunomodulatory and developmental pathways 
(168). Combined pre- and postnatal omeprazole administration 
could attenuate hyperoxic lung injury in preterm rabbits even at 
low doses, making omeprazole an interesting potential therapeu-
tic intervention to prevent BPD (167). Further studies are needed 
to validate its effects and to ascertain that it has no adverse effects 
on other developing organs.

Anti-inflammatory Agents
Bronchopulmonary dysplasia is primarily considered to be a 
developmental disease resulting from perinatal inflammation, 
and therefore specialists in the field have for the past decade 
called for a special focus on the development and improvement 
of anti-inflammatory therapies in BPD (169). Currently there 
are multiple anti-inflammatory therapies under investigation. 
Interleukin 1 receptor antagonist (IL1RA) is particularly promis-
ing, as it can prevent the development of experimental BPD when 
administered at a low dose in the neonatal rodent “double hit” 
model of BPD, consisting of hyperoxia and perinatal inflam-
mation (170–172). In a sheep model for prenatal inflammation, 
intra-amniotic IL1RA could partially prevent the effects that 
lipopolysaccharide (LPS) had on lung maturation, measured as 
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surfactant protein gene expression and lung compliance (173). 
Interestingly, preterm infants who go on to develop BPD have 
elevated levels of IL1RA in their tracheal aspirates (174). A more 
recent study in preterm ventilated baboon and human infants 
suggested however that an increased IL1β:IL1ra ratio on days 
1 to 3 of life is more predictive of BPD (172). The same study 
provided compelling animal data that early IL1RA or glyburide 
therapy, which prevents the formation of the NLR family, pyrin 
domain containing 3 (NLRP3) inflammasome upstream of IL1β, 
can indeed ameliorate BPD development (172). IL1RA, also 
called anakinra or Kineret, and glyburide, also known as Diabeta, 
are both already approved by the Federal Drug Administration 
(FDA) for treatment in rheumatoid arthritis and type 2 diabetes, 
respectively, making them attractive treatment options. Future 
studies will have to show whether their use would also be safe in 
the neonatal setting.

Postnatal use of corticosteroids such as dexamethasone and 
hydrocortisone, which are potent anti-inflammatory compounds, 
can effectively reduce the incidence of BPD (175, 176). Despite this 
positive effect, there are significant adverse effects associated with 
systemic administration of corticosteroids. Short-term adverse 
effects include intestinal perforation, gastrointestinal bleeding, 
hypertension, hypertrophic cardiomyopathy, hyperglycemia, and 
growth failure, while follow-up studies pointed to adverse effects 
on neuronal development (175, 176). Experts in the field have 
therefore questioned whether the beneficial effects of reducing 
BPD and death can be weighed up to these significant adverse 
effects (175, 176), and are reluctant to recommend postnatal 
systemic corticosteroids for the prevention of BPD (177). A per-
haps more compelling alternative would be to more specifically 
target the lung through intratracheal administration. Early results 
obtained with inhaled corticosteroids have been mixed (178, 179), 
likely due to its efficiency to reach the lung parenchyma. However, 
as more studies are being done, there is increasing evidence that 
inhaled corticosteroids prevent BPD and death when adminis-
tered early, but long term follow-up studies are needed to assess 
the risk-benefit ratio (180–182). Recent in vitro studies in human 
fetal lungs attributed budenoside more potent anti-inflammatory 
effects than dexamethasone, swiftly decreasing gene expression 
of chemokines IL8 and CCL2 (MCP1) in whole lungs even in 
the presence of exogenous surfactant (183). Future validation 
studies should however closely monitor the combined effect of 
intratracheal corticosteroids and pre-existing pulmonary inflam-
mation, as combined antenatal exposure of fetal sheep to LPS and 
corticosteroids had much stronger effects on lung inflammation 
and developmental pathways than either agent alone (184–187). 
Additionally, it will be important to validate with combined 
budenoside and surfactant treatment also has the potential to 
prevent BPD in premature infants that initially present with mild 
RDS and do not receive surfactant therapy (188).

Potential Therapies
As outlined above, IL1RA, glyburide, and inhaled budenoside are 
currently the most promising anti-inflammatory therapies that 
have the potential to prevent BPD in premature infants. However, 
more studies will have to look into the safety and potential long-
term effects in human neonates.

Reactive Oxygen Species (ROS) and 
Mitochondrial Dysfunction
Although BPD pathogenesis has a very multifactorial nature, with 
oxygen exposure, mechanical ventilation and inflammation as 
some of the most widely accepted causes, one common pathway is 
shared by these insults: the generation of ROS. In animal models, 
exposure of neonatal animals to hyperoxia within a specific time 
period is sufficient to induce a pathophysiology similar to BPD 
(189). Underlying this pathophysiology is an exaggerated mito-
chondrial oxidant stress in response in newborn mice compared 
to adults, with an overall lower expression of antioxidant enzymes 
(190). The response to hyperoxia is developmentally regulated, 
leading specifically to the production of mitochondrial ROS-
dependent NADPH oxidase 1 (NOX1) expression in neonatal 
animals (191). Expression of antioxidant enzymes is controlled 
by AhR, as AhR-deficient fetal human pulmonary microvascular 
cells displayed significantly attenuated antioxidant enzyme 
expression and increased hyperoxic injury (192). Deficiency 
of another key antioxidant enzyme, extracellular superoxide 
dismutase (EC-SOD), was sufficient to impair alveolar develop-
ment and induce pulmonary hypertension in mice (193). This 
phenotype was worsened by additional oxidative stress caused by 
bleomycin exposure, which was also associated with decreased 
VEGF signaling (193). Further support for the hypothesis that 
ROS formation also plays a role in human BPD development 
has come from a genetic study in very low birth weight infants, 
which found an association between single nucleotide polymor-
phisms (SNPs) in antioxidant response genes and an increased 
or decreased risk for the development of BPD (194). The role of 
antioxidant enzymes in neonatal chronic lung disease is reviewed 
in depth by Berkelhamer and Farrow (195).

Mitochondria play a central role in oxygen metabolism, and 
mitochondrial abundance as measured by mitochondrial protein 
expression peaks around birth to facilitate the transition to the 
oxygen-rich world outside the womb (196, 197). Preterm infants 
are born before this peak, making them less prepared to deal with 
this shift in bioenergetics. Besides this mitochondrial immaturity, 
the exposures leading to chronic lung diseases have been linked to 
mitochondrial dysfunction (198, 199). Both hyperoxia exposure 
and mechanical ventilation of neonatal mice caused pulmonary 
mitochondrial dysfunction (200, 201). Moreover, direct inhibi-
tion of mitochondrial oxidative phosphorylation significantly 
impaired alveolar development, comparable to hyperoxia or 
mechanical ventilation. In vitro experiments indicate that 
elevated CO2 levels, called hypercapnia, a common occurrence in 
BPD patients, also causes mitochondrial dysfunction (202). One 
potential mechanism through which mitochondrial dysfunction 
and ROS generation potentially lead to impaired alveolar develop-
ment in hyperoxia exposed neonatal mice is through endoplasmic 
reticulum (ER) stress, which can cause apoptosis (82).

Potential Therapies
In animal studies, several potential treatments have been identi-
fied to decrease ROS generation. In neonatal mice, treatment with 
a specific mitochondrial antioxidant, (2-(2,2,6,6-tetramethylpi-
peridin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium 
chloride (mitoTEMPO), could protect against hyperoxia-induced 

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive


9

Collins et al. New Concepts in BPD

Frontiers in Medicine | www.frontiersin.org May 2017 | Volume 4 | Article 61

lung injury (191). Another promising treatment compound is 
GYY4137, a slow-releasing H2S donor, which could decrease 
ROS generation and thus protect and restore normal alveolar and 
microvascular development after neonatal hyperoxia injury in 
rats (203). Targeting the AhR would appear to be another promis-
ing approach considering it also has potent anti-inflammatory 
properties, as described above. Although omeprazole is generally 
seen as a potentiator of AhR activation, omeprazole treatment of 
hyperoxia-exposed newborn mice counterintuitively decreased 
functional AhR activation, worsening hyperoxic injury (204). 
Other approaches to promote AhR activation may however prove 
to be more effective. An entirely different approach in treating 
mitochondrial dysfunction may be through mitochondrial trans-
fer, a process that has been reported as one of the therapeutic 
mechanisms of MSC therapy (205). In human BPD patients, most 
neonatal antioxidant trials have unfortunately not shown any 
benefit in the prevention of BPD, with the exception of vitamin A 
therapy (195). However, none of these antioxidant therapies were 
specifically targeted against mitochondrial ROS or dysfunction. 
More targeted approaches, as those outlined in the animal stud-
ies, may prove to be more promising.

Other Promising Therapeutic Options 
Based on Novel Pathophysiological 
insights
Inflammation associated with BPD pathogenesis affects many 
molecular pathways, which by themselves can be interesting 
therapeutic targets. One of these is the ceramide pathway, which 
is upregulated in both hyperoxia and antenatal inflammation ani-
mal models (206–208) and also in other chronic lung diseases such 
as asthma, cystic fibrosis and COPD (209). Increased ceramide 
levels lead to increased apoptosis, both in epithelial cells of BPD 
patients and in animal models of BPD (208, 209). Intervention 
with a sphingosine-1-phosphate (S1P) analog in the mouse 
hyperoxia model of BPD could successfully ameliorate ceramide 
levels and hyperoxia-induced alveolar hypoplasia (208). In a more 
complex piglet model of lung injury by lavage, LPS instillation 
and injurious ventilation, tracheal installation with surfactant and 
d-myo-inositol-1,2,6-trisphosphate (IP3) could achieve a similar 
effect in reducing ceramide levels and improving oxygenation 
(210). In a different approach to decrease sensitivity to apoptosis 
in hyperoxia-exposed epithelial cells, inhibiting regulatory-asso-
ciated protein of mechanistic target of rapamycin (RPTOR) could 
prevent hyperoxia-induced lung injury in neonatal mice (211). 
Based on these studies, selective pharmacological interventions 
which temporarily reduce apoptosis could be a promising way to 
prevent or repair neonatal lung injury and reduce BPD severity.

An intervention that has garnered attention in neonatal care 
is lactoferrin (LF), an iron-binding protein that is a normal 
component of human colostrum and milk (212). It has potent 
antimicrobial activity, can stimulate the innate immune system 
and promote epithelial proliferation and differentiation of the 
immature gut (213). Recent studies have identified LF supple-
mentation as a promising agent for the reduction of late onset 
sepsis and necrotizing enterocolitis (214). Although the proper-
ties of LF may also be desirable for the prevention of BPD, to 

date no study has been able to show a significant reduction in the 
development of BPD following LF supplementation (214).

A pathophysiological mechanism of BPD that is slowly 
gaining more attention is the link between pre-eclampsia and 
BPD. Pre-eclampsia a proven risk factor for BPD (41), and the 
underlying impact on the developing fetus may be three-fold. 
Firstly, maternal preeclampsia is a frequent cause of preterm 
birth before 28 weeks (215). Secondly, severe preeclampsia can 
lead to intrauterine growth restriction, which in itself is a strong 
risk factor for BPD (38, 39). Thirdly, the placental dysfunction 
that lies at the root of pre-eclampsia leads to an overproduction 
of soluble VEGF receptor 1 [also known as soluble fms-like 
tyrosine kinase-1 (sFlt-1)], which inhibits VEGF signaling  
(216, 217). This not only leads to increased sVEGFR-1 in maternal 
serum, but also in amniotic fluid (218). By giving pregnant rats 
intra-amniotic injections with sVEGFR-1, Steven Abman’s group 
demonstrated a link between pre-eclampsia and BPD, as neonatal 
rats presented with impaired alveolar and microvascular develop-
ment and right and left ventricular hypertrophy (40). Moreover, 
intrauterine exposure to excess sVEGFR-1 led to increased 
apoptosis of endothelial and mesenchymal cells in neonatal rat 
lungs. Placental dysfunction and subsequent overexpression of 
sVEGFR-1 may therefore be a potential therapeutic target to 
improve fetal outcome and prevent development of BPD. At the 
very least, the diagnosis of maternal pre-eclampsia should be con-
sidered as a serious predisposition for the development of BPD.

From a developmental biology perspective, developmental 
molecular pathways that are downregulated in BPD provide other 
potential targets for the amelioration of BPD pathogenesis. These 
include the Wnt signaling pathway (187, 219, 220), SHH signal-
ing (185, 221–223), axonal guidance cues semaphorin 3 C and 
ephrin B2 (224, 225), Notch signaling (226, 227), and HIFs (228). 
In addition, a wealth of new molecular insights on mouse and 
human lung development has been and will be published in the 
upcoming years by the LungMAP consortium (1U01HL122638), 
funded by the National Heart, Lung, and Blood Institute (NHLBI) 
(http://www.lungmap.net) (229, 230). BPD is generally consid-
ered to be caused by environmental factors, but in recent years 
studies have uncovered that a genetic component may also be 
at play [reviewed in Ref (231, 232)]. Although associations are 
not conclusive, these studies suggest that genetic variants of 
genes in well-known lung development and repair pathways may 
predispose for severe BPD or mild/moderate BPD (232). micro-
RNAs have emerged as both a pathophysiological mechanism 
and a tempting tool to target transcription of multiple of these 
developmental signaling pathways at once. Although multiple 
human and animal studies have reported an association between 
altered microRNA levels and BPD, valid concerns have been 
raised about the lack of a causal link between altered microRNA 
levels and BPD pathogenesis [reviewed in Ref (233)]. However, 
if such a causal link can be confirmed, as was recently seen in a 
study which demonstrated the regulation of alveolar septation by 
microRNA-489 (234), the use of specific microRNA antagonists 
or agonists may be considered as a potential therapy for BPD. 
Caution should however be exercised when directly modulating 
potent developmental pathways, either directly or through micro-
RNA therapy. Further exploration of such therapeutic targets 
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should perhaps be combined with slow releasing microparticles 
or capsules to ensure a more physiological release and prevent 
pathological side effects.

Conclusion and Future Directions
The pathophysiology of BPD is extremely multifactorial, which is 
underlined by the emerging role of cell types that have only recently 
been acknowledged, such as the microbiome, macrophages, and 
tissue stem cells (Figure 3). Our knowledge on the pathophysiol-
ogy is poised to move forward rapidly in the next decade, due to 
exciting new technological advances in the research field, and 
is opening avenues for the pursuit of therapeutic options. In 
addition, there is still promise for new and better applications of 
existing therapies, which have not yet fulfilled their promise in 
a clinical setting. In the next decade of BPD research, the most 
promising therapies and pathophysiological concepts that should 
be pursued for new therapeutic options are as follows:

•	 Animal models investigating the pathogenesis of BPD should 
identify different sub-pathophysiological processes that arise 
because of different combinations of pre-and postnatal expo-
sures (e.g. pre-eclampsia, dysbiosis), as opposed to only look-
ing at hyperoxia or inflammation models. Moreover, better 
appreciation of extrapulmonary issues related to BPD might 
be instructive, particularly neurodevelopmental outcome and 
retinopathy, which are frequent long-term outcomes resulting 
from BPD (235).

•	 Different routes of administration for effective therapies such 
as vitamin A and postnatal corticosteroids, in particular 
non-invasive intratracheal routes.

•	 Cell-based therapies, either through administration of stem 
cells and their products or by promoting the regenerative 
potential of resident lung stem cells.

•	 The commensal role of the pre- and postnatal (lung) microbi-
ome in the normal and perturbed lung development, and its 
potential as a therapeutic target.

•	 The role of placental dysfunction in the pathogenesis of BPD, 
and its potential as a therapeutic target in the prevention of 
BPD.

•	 The role of the immune system not only as an adverse factor 
in BPD pathogenesis, but its importance in supporting normal 
lung development and repair.
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FigURe 3 | Continued  
Summary of new pathophysiological concepts in bronchopulmonary dysplasia (BPD). In normal alveolar lung development, a diverse microbiome is 
necessary to train the pulmonary immune system and secrete metabolites that support lung development. Pulmonary M2 interstitial macrophages (M2 IMφ) are 
present and likely play an active role in lung development. L-MSCs support M2 IMφ, alveolar epithelial cells and the microvasculature. In BPD (bottom panel), 
pre- and postnatal risk factors lead to decreased microbiome diversity, a proinflammatory environment, dysfunctional L-MSCs, epithelial and endothelial injury and 
impaired repair. LF, lipofibroblast; EC, endothelial cell; AMΦ, alveolar macrophage; L-MSC, lung mesenchymal stromal cell; AEC2, alveolar epithelial cell type 2; M1/
M2 IMΦ, type 1/2 interstitial macrophage; DC, dendritic cell.
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