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Abstract

Soil-transmitted helminths (STHs) are intestinal parasitic nematodes that infect humans,

and are transmitted through contaminated soil. These nematodes include the large round-

worm (Ascaris lumbricoides), whipworm (Trichuris trichiura), and hookworm (Ancylostoma

ceylanicum, Ancylostoma duodenale, and Necator americanus). Nearly 1.5 billion people

(~24% of the population) worldwide are infected with at least one species of these parasites,

burdening the poor, in particular, children and pregnant women. To combat these diseases,

the WHO only recognizes four anthelmintic drugs, including the preferred drug, albendazole,

for mass drug administration (MDA). These four drugs have a total of two different mecha-

nisms of action, and, as expected, resistance has been observed. This problem calls for

new drugs with different mechanisms of action. Although there is precedence for the use of

Caenorhabditis elegans (C. elegans), a free-living nematode, as a model for drug screening

and anthelmintic testing, their usefulness for such anthelmintic study is not clear as past

research has shown that C. elegans did not show a strong response to albendazole, the

MDA drug of choice, in comparison with various STHs under similar treatment. To further

examine if C. elegans has the potential to be a good model organism for anthelmintic drug

study, we employed a health rating scale in order to tease out potential effects of albenda-

zole, and other anthelmintics, that may have been missed using a binary, dead/alive scale.

Using the health-rating scale we found that although the worms may have not been dying,

they were sick, showing dose responses to anthelmintic drugs, including albendazole, rein-

forcing C. elegans as a useful model for anthelmintic study.

Introduction

About 1.5 billion people in the world are infected with soil-transmitted helminths (STHs) and

most of these people are the poorest people in the world [1]. The infections have devastating

effects on human growth, nutrition, cognition, school attendance/performance, pregnancy,

work production and earnings. Those infected with soil-transmitted helminthes are among

the poorest people in the world in part because of the parasite trap, that is, that impoverished

people are more likely to have worms because of their unsanitary living conditions and the
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negative effects on work production and earnings often keep them in poverty [2–4]. Even

those who are not infected (or have been dewormed) but live in poverty are more likely to be

infected due to unsanitary living conditions moving them into the parasite trap. Furthermore,

soil-transmitted helminth infections are co-endemic with and have been shown to negatively

affect HIV, malaria, and tuberculosis [5–9]. Currently, the WHO recognizes four drugs, falling

into two classes: nicotinic acetylcholine receptor agonists (pyrantel and levamisole) and benz-

imidazoles (albendazole and mebendazole) for Mass Drug Administration. In practice, only

one drug, albendazole, is mainly used in mass drug administration (MDA) [10–11]. Alternate

drug used for treatment of filarial nematode infections in humans, but not typically for STHs

due to its poor efficacy in treating whipworm and hookworm, is the macrocyclic lactone in the

avermectin drug family, ivermectin [11–12]. Ivermectin activates glutamate-gated chloride

channels leading to nerve and muscle hyperpolarization and resulting worm paralysis [13–15].

The 2015 Nobel Prize in Physiology/Medicine was awarded to the discoverers of artemisinin

and ivermectin since ivermectin has been used to successfully treat lymphatic filariasis (ele-

phantiasis) and Onchocerciasis (river blindness) [16]. Nitazoxanide, a thiazolide, is another

drug that has been used in treating STHs given to patients in six doses for three days [17]. Nita-

zoxanide was discovered in 1984 because of its efficacy against tapeworms [18]. Nitazoxanide

was found to be effective in treatments against various bacterial infections and as an antiviral

agent [19]. Rather surprisingly, nitazoxanide was recently found to be effective in treating

STHs [20–23]. The primary drug used for MDA is albendazole because of its low cost of pro-

duction and wide efficacy against microfilariae and adult helminths. It is thought that albenda-

zole inhibits the assembly of microtubules, decreasing the uptake of glucose and synthesis of

ATP [24]. As is expected for any chemotherapeutic, resistance to this drug is already emerging

[25–29]. This problem calls for new drugs with different mechanisms of action. Incredibly, all

of the current drugs administered for the treatment of soil-transmitted helminth infections

were not originally developed in answer to human infections, but rather for the market in vet-

erinary use [30–31] and so it is likely that the very best drugs for human parasites have yet to

be discovered.

Sadly, because the people mostly affected by these STHs are the most impoverished in the

world, very little money has gone into drug discovery and design since, as estimated by Tufts

in 2014, the process of discovery, design, and clinical trials costs 2.6 billion dollars [32]. Thus

these diseases have been termed Neglected Tropical Diseases (NTD) by the WHO and Peter

Hotez. Even in academia the amount of money that goes toward anthelmintic research focused

on the most important STHs is abysmal. According to the 2015 G-Finder, in 2014 over a bil-

lion dollars was spent on HIV/AIDS and a little over 600 million on Malaria, while only 97.3

million dollars was spent on Helminth R&D [33]. The NIH lists funding in 2014 for cancer to

be upwards of 5 billion dollars, aging research nearly 2.5 billion, diabetes research near a bil-

lion dollars, asthma around 200 million dollars, and Alzheimer’s around 500 million dollars

[34]. The comparatively low funding level is contrast to the disease burden STHs cause, as dis-

ease due to these STHs is third behind HIV/AIDS and malaria in Years Lost due to Disability

(YLD) but far more prevalent than both [35]. The WHO describes YLD in this way, “YLD is

the years lost due to disability for people living with the health condition or its consequences”

and is calculated by the product of the number of incident cases, disability weight, and the

average duration of the case until remission or death in years [36].

The low amount of funding translates into a low amount of laboratories that can afford to

do anthelmintic study. Although multiple NGOs, such as the Bill and Melinda Gates founda-

tion, have begun to step in and donate their resources and bring attention to this problem, it is

obvious more funding and attention is needed. Furthermore, the way in which the money is
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utilized, that has been directed towards anthelmintic study, needs to be constantly reviewed to

ensure it is spent in the most efficient and productive ways.

One of the most cost-effective ways to screen for new drugs and to further develop and

study anthelmintics is to utilize the free-living nematode Caenorhabditis elegans. This round-

worm is a powerful model organism that is well characterized and cost-effective and has been

used in the past as a readily available laboratory model for studying veterinary anthelmintics

[37–41]. However, it is not clear that it is a good model for studying and identifying anthel-

mintic drugs. For example, in a comprehensive comparison of the effects of all major classes of

anthelmintics on major STHs of humans, related species, and one non-parasitic nematode

(Hu et al., 2013) showed that C. elegans did not respond to stratified treatment with albenda-

zole, whereas hookworms, whipworms, and Ascaris under similar treatment were negatively

impacted by at least one concentration [37]. This is significant because albendazole is consid-

ered the drug of choice for treatment in humans, and ideally a model for studying anthelmin-

tics should be similarly affected. In contrast, a review of anthelmintic drugs by Holden-Dye

and Walker (2014) concluded that in regard to C. elegans as a model parasite, the free-living

nematode was not appropriate for studying questions of parasitic life cycle; however, they also

concluded that the free-living nematode is an appropriate model for studying comparative

physiology and pharmacology for the phylum Nematoda [38,39]. These conflicting conclu-

sions require further investigation concerning the potential of C. elegans as a model parasite in

anthelmintic discovery and study.

In this study, to further investigate if C. elegans has potential to be a good model for anthel-

mintic study, we utilized the health rating system employed by Hu et al. (used for scoring para-

sites) to determine if we could tease out anthelmintic effects from drugs that are missed in a

binary, dead/alive, rating system. We also compare the binary dead/alive results (derived from

the health rating results) to previous work [37] to validate the use of a health rating scale.

Drugs selected for determining if C. elegans is a good model for anthelmintic study were the

following: albendazole (benzimidzole), pyrantel (nAChR agonist), ivermectin (macrocyclic

lactone), and nitazoxanide (thiazolide); four clinically-used drugs comprising all the major

classes of anthelmintics. L4 stage C. elegans, were treated with these drugs as this species has

been suggested and used for anthelmintic screening [37–39]. Intoxication was scored using a

relative health system (motility index score) which was then translated into motility (dead-

alive) for comparison with past work. In evaluating anthelmintic efficacy against nematodes in
vitro, motility has been the most common method used [37, 42–45]. This anthelmintic inhibi-

tion of nematode motility is used as a standard because in vivo anthelmintic paralysis of STHs

is thought to play an important role in parasite clearance [46]. Previous studies have found

that, with the exception of ivermectin, anthelmintic drugs have less efficacy on C. elegans than

on parasites when scored with the dead-alive scale. It is thought that this decreased efficacy is

due to the relative impermeability of the C. elegans cuticle [37, 47].

Within these health rating results, to truly be a good option in drug screening and study,

C. elegans must demonstrate a dose-dependent response, specifically to albendazole, but also,

ideally, to other anthelmintic drugs like pyrantel, ivermectin, and nitazoxanide. Finally, to

determine the variability of drug efficacy in a single species, we tested the effects of albendazole

on the Hawaiian strain (CB4856) of C. elegans and compared the efficacy with that of albenda-

zole on Bristol N2 C. elegans since compared to other C. elegans wild isolates, the Hawaiian

strain is considered to exhibit the highest genetic divergence from the N2 strain [48]. Here, we

report that the Bristol N2 C. elegans do respond in a dose dependent manner to albendazole,

ivermectin, pyrantel, and nitazoxanide. Furthermore, we find that the Hawaii C. elegans
strain (CB4856) is more sensitive to albendazole when compared to the Bristol N2 strain.
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Materials and methods

Ethics statement

Because unregulated animals were used in this study, ethics approval was not required.

Nematode maintenance

C. elegans wild-type strain N2 Bristol and wild-isolate strain Hawaii (CB4856) were maintained

on Nematode growth (NG) plates with Escherichia coli (E. coli) strain OP50 as food [49]. C. ele-
gans age was synchronized by chunking NG plates with starved C. elegans onto OP50 seeded

Enriched Nematode Growth (ENG) plates, bleaching the gravid adults according to the docu-

mented process after three days, and seeding synchronized first stage larvae (L1) onto OP50

seeded fresh ENG plates 44 hours before setting up an assay [50]. The C. elegans strains (N2

Bristol and Hawaiian CB4856) and E. coli OP50 were generous gifts from the Aroian Lab at

University of Massachusetts Medical School.

Reagents

Reagents used for maintenance and experimentation have been previously described [50, 51].

Most of the chemicals that were used in this study including NaCl (catalog no. BDH8014),

KH2PO4 (catalog no. P5379), K-citrate (catalog no. P1722), EDTA (catalog no. 1233508),

FeSO4 (catalog no. 215422), MnCl2 (catalog no. 244589), ZnSO4 (catalog no. 204986), CuSO4

(catalog no. 451657), MgSO4 (catalog no. M7506), and cholesterol (catalog no. C8667) were

purchased from Sigma-Aldrich; ethanol (catalog no. 861300) was bought from Carolina; and

K2HPO4 (catalog no. 7092) was purchased from Mallinckrodt.

Four drugs were utilized in this study: albendazole (Sigma-Aldrich, catalog no. A4673),

ivermectin (Sigma-Aldrich, catalog no. I8898), nitazoxanide, which was kindly provided by

Romark laboratories, and pyrantel pamoate (Sigma Aldrich, catalog no. P6210) in place of pyr-

antel tartrate (catalog no. P7674) which was used by Hu et al.; however, at the time of this

study, pyrantel tartrate was no longer sold by Sigma-Aldrich. Pyrantel pamoate is used both

for human treatment and veterinary medicine. 10 mg of fresh albendazole, pyrantel pamoate,

ivermectin, or nitazoxanide were dissolved in 20 μL 100% DMSO (Sigma-Aldrich, catalog no.

D8418) and subsequently diluted with 180 μL deionized water (reaching a stock concentration

of 50 mg/mL in 10% DMSO). Serial dilutions (10-fold) were completed with 180 μL of freshly

made stock 10% DMSO (90% deionized water) and 20 μL of drug from the next highest con-

centration. By adding the drug to the wells (10 μL for a final volume of 500 μL in each well),

the drug in DMSO was diluted another fifty-fold, bringing the final concentration of DMSO to

0.2% in all the wells. Every concentration (0.1, 1, 10, 100, and 1000 μg/mL), including the con-

trol (10 μL of 10% DMSO but not drug), was tested in triplicate for each assay.

In vitro assays

Using 24-well Polystyrene individually packaged Non-Tissue Culture Treated Plate (Falcon

351147), approximately 5–20 synchronized fourth-stage larvae (L4) C. elegans were added to

500 μL of special S Medium, OD = 3.0 OP50, and 8mM 5-Fluoro-2’-deoxyuridine (FudR)

(Sigma-Aldrich, catalog no. 343333) cocktail and varying concentrations of anthelmintic

drugs in triplicate. FudR is included in the wells to inhibit the production of viable eggs [52].

Well- plates were wrapped in damp paper towel to prevent evaporation and incubated at 25˚C.

Worm motility was scored daily on a 3-2-1-0 scale for seven days. “3” represents a worm with

vigorous movement similar to control with no drug; “2” represents a worm with whole-body

movements (seen without external stimulus) visibly slower than control; “1” represents a
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worm that was not moving on its own but moved when touched with an eyelash pick 3 times

over the course of a few seconds; “0” represents a worm that did not move even when prodded

3 times [37]. Each assay was performed at least three times independently. Assays with controls

exhibiting less than an 80% survival rate were not included in the overall average. The total

number of nematodes treated by drug and concentration are reported in Table 1.

Data analyses

Worm survival was calculated on a 1–0 scale. “1” represents a worm that was either moving

without stimulus, or moved after a stimulus with an eyelash pick by touching the worm 3

times over the course of a few seconds. “0” represents a worm that did not move, even after

stimulus with an eyelash pick, touching the worm 3 times, over the course of a few seconds.

We note that the most severe phenotype we scored was the failure of the nematodes to move

when prodded. This lack of movement and complete paralysis was scored as a 0 (for both the

health rating scale and the dead-alive scale) and the nematode was considered dead. However,

we did not test for recovery of these nematodes in a media absent of drug after the completion

of each day scoring and therefore cannot be certain that such nematodes, were, in fact, dead

(instead of completely paralyzed); the phenotype of complete paralysis of nematodes has been

used as a standard in anthelmintic studies [37, 42–45]. The triplicate wells from single assays

were combined to form one large experiment and then averaged. This produced an average

value for each drug concentration and day combination. Since assays were initially scored on a

health rating scale as described earlier, a corresponding dead-alive score was obtained by com-

bining the number of worms with a score of 3, 2, or 1 and calling them alive (thus a “1”). The

number of worms with a “0” score in the health-rating system is the same for the number of

worms in the 1–0 scoring (thus a “0”) and were called dead. These average values were graphed

with GraphPad Prism version 7.02 for Windows (GraphPad Software, La Jolla, CA, USA) to

show representative motility index score and percent survival. We note that potential subjec-

tivity could be introduced using the health-rating scale, in particular discerning a “3” from a

“2”. To evaluate the extent of subjectivity, we had 4 different people score multiple albendazole

experiments individually and found that the data from each person was nearly identical.

IC50, LT50, and IT50 values were also calculated with GraphPad Prism version 7.02 for Win-

dows. We selected day 4 (mid-point of the 7-day experiment) as the day to calculate and report

IC50 values (concentration where 50% of C. elegans are inhibited). Thus, a logarithmic trans-

formation followed by a nonlinear fit were performed on day 4 data. For 1–0 scoring, inhibited

was defined to be a score of 0 as previous work had done [37]. For 3–0 scoring, inhibited was

defined to be a score of 2, 1, or 0. For LT50 values (the day where 50% of C. elegans are dead,

score 0, at a given concentration), survival curves were constructed with the event being de-

fined as death (score 0). Similarly, corresponding to LT50 values, for IT50 values (the day where

50% of C. elegans are inhibited at a given concentration), survival curves were constructed

Table 1. Number of nematodes treated.

PYR NTZ IVM ALB (N2) ALB (Hawaii)

0 μg/mL 247 69 78 70 127

0.1 μg/mL 228 63 72 100 141

1 μg/mL 176 61 71 104 144

10 μg/mL 188 75 75 101 135

100 μg/mL 186 58 76 91 148

1000 μg/mL 140 54 51 116 144

https://doi.org/10.1371/journal.pone.0179376.t001
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with the event being defined as inhibition (score 2, 1, or 0). We note that a score of 0 was

included in the category of “inhibited” as previous work also included it for IC50 tests [37]. A

graphical representation of these IC50, LT50, and IT50 values presented in the tables can be

found in supporting information (S1, S2, S3, S4 and S5 Figs).

Chi-square test was performed using Microsoft Excel 2016 and R to compare the day 7

non-drug-induced death to drug-induced death to survival of Bristol N2 and Hawaii (CB4856)

strains treated with 1000 μg/mL albendazole.

Results

Effects of pyrantel on N2 strain: 1–0 scale vs. 3–0 scale

N2 C. elegans L4-staged were subjected to five doses of pyrantel pamoate (0.0 μg/mL, 0.1 μg/

mL, 1 μg/mL, 10 μg/mL, 100 μg/mL, and 1000 μg/mL) for seven days. Each day, relative health,

based on a motility index score (3–0), was observed and recorded (Fig 1B) and then the motil-

ity index score results were translated into a basic motility score (1–0) (Fig 1A) in order to

compare them to the work of Hu et al. [37] and to highlight the differences in scoring format.

Based on the basic motility score, in this study, pyrantel showed a higher efficacy at the three

highest concentrations than previous studies had documented, with survival below 10% at the

highest concentration [37]. Noticeable separation in efficacy occurred day 4 as opposed to day

1 in previous studies [37], but the responses to the lower doses were similar to those previously

reported showing survival above 75% [37] (Fig 1A). LT50 values were undefined for concentra-

tions below 10 μg/mL and defined as day 7 for 10 μg/mL, day 6 for 100 μg/mL, and day 5 for

1000 μg/mL (Table 2). The IC50 value on day 4 for 1–0 scoring (Table 3) was greater than

1000 μg/mL and this is greater than the previously reported 746.86 μg/mL [37]. When utilizing

the 3–0 rating system, negative effects were observed early (day 1), with a steady decline in

overall health of the nematodes at all concentrations in a stratified manner (Fig 1B). The IC50

value on day 4 for 3–0 scoring (Table 3) was 0.375 μg/mL. As opposed to LT50 values, which

were defined at higher concentrations only, IT50 values were defined at the lowest drug con-

centrations as day 4 for both 0.1 and 1 μg/mL, day 3 for 10 μg/mL, and day 1 for both 100 and

1000 μg/mL (Table 2). See S1 Fig for graphical representation of these values.

Effects of nitazoxanide on N2 strain: 1–0 scale vs. 3–0 scale

N2 C. elegans L4-staged were subjected to five doses of nitazoxanide (0.0 μg/mL, 0.1 μg/mL,

1 μg/mL, 10 μg/mL, 100 μg/mL, and 1000 μg/mL) for seven days. Each day the relative health,

based on the motility index score (3–0) was observed and recorded (Fig 2B). The motility

index score results were then translated into basic motility scores (1–0) (Fig 2A) in order to

compare to previous work [37] and to highlight the differences in scoring format. When utiliz-

ing the basic motility score, nitazoxanide displayed a comparable efficacy to that observed in

past studies [37]. At the highest concentration, lower than 25% survival was observed while all

other concentrations showed survival above 75% (Fig 1A). The IC50 value at day 4 for 1–0 scor-

ing (Table 3) was greater than 1000 μg/mL as had also been previously reported [37]. LT50 val-

ues were undefined at 0 μg/mL, 0.1 μg/mL, 1 μg/mL, 10 μg/mL, and 100 μg/mL, while the LT50

for 1000 μg/mL was defined to be day 5 (Table 2). The health-rating results (Fig 2B) showed an

early and steady health decline at every concentration. The corresponding IC50 value at day 4

for 3–0 scoring (Table 3) was less than 0.1 μg/mL. In contrast to the undefined LT50 values at

all concentrations, IT50 values were defined as day 3 for 0.1, 1, 10, and 100 μg/mL and as day 2

for 1000 μg/mL (Table 2). See S2 Fig for graphical representation of these values.
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Fig 1. Average intoxication of N2 C. elegans (L4 stage) using five doses of pyrantel pamoate (PYR). a). Dead-Alive (1–0)

scale. b). Health rating (3–0) scale. For comparative reference, the molar concentrations of each drug at 1000 μg/mL is indicated.
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Effects of ivermectin on N2 strain: 1–0 scale vs. 3–0 scale

N2 C. elegans L4-staged were subjected to five doses of ivermectin (0.0 μg/mL, 0.1 μg/mL,

1 μg/mL, 10 μg/mL, 100 μg/mL, and 1000 μg/mL) for seven days. Relative health was observed

and recorded each day using a motility index score (3–0) (Fig 3B). This data was then trans-

lated into a basic motility score (1–0) (Fig 3A) in order to compare to previous work [37] and

to highlight the differences in scoring format. The highest concentration caused a high per-

centage of complete paralysis while the lower concentrations caused paralysis at lower levels

(Fig 3A). This paralysis appears to shrink the nematodes, which remain motionless unless an

outside stimulus is introduced. Although many of the intoxicated worms are very small and

obviously sick, many do move when prodded. These results were comparable to past work,

however lower concentrations in the past showed a slightly lower percent survival [37] (Fig

Roundworms were scored daily for 7 days for motility. A score of 3 represented a worm with vigorous movement. A score of 2

represented a worm with whole body movements without external stimulus, but visibly slower than the control. A score of 1 represented

a worm with movement only after the introduction of external stimulus. A score of 0 represented a worm with no movement, even after

the introduction of external stimulus. To translate these scores into the binary dead or alive, a score of 3, 2, or 1 was considered a score

of 1 (alive) and a score of 0 was considered a score of 0 (dead). Data are the combination of at least three independent trials.

https://doi.org/10.1371/journal.pone.0179376.g001

Table 2. LT50 and IT50 values (days).

Pyrantel

0 μg/mL 0.1 μg/mL 1 μg/mL 10 μg/mL 100 μg/mL 1000 μg/mL

LT50 IT50 LT50 IT50 LT50 IT50 LT50 IT50 LT50 IT50 LT50 IT50

Bristol N2C. elegans U U U 4 U 4 7 3 6 1 5 1

Nitazoxanide

0 μg/mL 0.1 μg/mL 1 μg/mL 10 μg/mL 100 μg/mL 1000 μg/mL

LT50 IT50 LT50 IT50 LT50 IT50 LT50 IT50 LT50 IT50 LT50 IT50

Bristol N2C. elegans U U U 3 U 3 U 3 U 3 5 2

Ivermectin

0 μg/mL 0.1 μg/mL 1 μg/mL 10 μg/mL 100 μg/mL 1000 μg/mL

LT50 IT50 LT50 IT50 LT50 IT50 LT50 IT50 LT50 IT50 LT50 IT50

Bristol N2C. elegans U U U 2 7 1 6 1 5 1 5.5 1

Albendazole

0 μg/mL 0.1 μg/mL 1 μg/mL 10 μg/mL 100 μg/mL 1000 μg/mL

LT50 IT50 LT50 IT50 LT50 IT50 LT50 IT50 LT50 IT50 LT50 IT50

Bristol N2C. elegans U U U 5 U 4 U 4 U 3 U 3

Hawaii C. elegans U U U 4 U 4 U 2 U 2 U 2

U = undefined

https://doi.org/10.1371/journal.pone.0179376.t002

Table 3. IC50 values (μg/mL) at day 4.

Hu et al IC50 results 1–0 Scoring IC50 3–0 Scoring IC50

PYR (N2) 746.86 > 1000 0.375

NTZ (N2) > 1000 > 1000 < 0.1

IVM (N2) > 1000 > 1000 < 0.1

ALB (N2) > 1000 > 1000 1.4

ALB (Hawaii) No Data > 1000 0.147

https://doi.org/10.1371/journal.pone.0179376.t003
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Fig 2. Average intoxication of N2 C. elegans (L4 stage) using five doses of nitazoxanide (NTZ). a). Dead-Alive (1–0) scale. b).

Health rating (3–0) scale. For comparative reference, the molar concentrations of each drug at 1000 μg/mL is indicated. Roundworms

Health-rating and anthelmintics
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3A). The IC50 value at day 4 for 1–0 scoring was greater than 1000 μg/mL, the same as the pre-

viously reported value [37] (Table 3). The LT50 values were undefined for 0.1 μg/mL and

defined for the rest of the concentrations (Table 2) with day 7 for 1 μg/mL, day 6 for 10 μg/mL,

day 5 for 100 μg/mL, and day 5.5 for 1000 μg/mL (the 5.5 score was due to arriving at 50% sur-

vival exactly on day 5 for 1000 μg/mL). The health rating results (Fig 3B) showed a sudden

decrease in nematode health at all concentrations followed with steady and stratified further

decrease in relative motility. Ivermectin shows the strongest efficacy of all of the anthelmintics

tested due to the severe paralysis and shrinking of the nematodes until, in some cases, eventual

death (i.e. no further response to outside stimulus). The IC50 value on day 4 for the 3–0 scoring

was less than 0.1 μg/mL (Table 3). The IT50 value for 0.1 μg/mL was day 2, while day 1 was the

IT50 value for 1, 10, 100, and 1000 μg/mL (Table 2). See S3 Fig for graphical representation of

these values.

Effects of albendazole on N2 strain: 1–0 scale vs. 3–0 scale

N2 C. elegans L4-staged were subjected to five doses of albendazole (0.0 μg/mL, 0.1 μg/mL,

1 μg/mL, 10 μg/mL, 100 μg/mL, and 1000 μg/mL) for seven days. Relative health was observed

and recorded using a motility index score (3–0) (Fig 4B). These results were translated into a

basic motility score (1–0) (Fig 4A) in order to compare them to previous studies [37] and to

highlight the differences in scoring format. Similar to past work, the nematodes showed mini-

mal response to albendazole with percent alive scores above 80% at all concentrations, includ-

ing the control, for the duration of the experiment [37] (Fig 4B). The IC50 value at day 4 for

1–0 scoring was greater than 1000 μg/mL (Table 3), comparable to previous results [37]. LT50

values were undefined at all concentrations (Table 2). The health rating results show a mild

decrease in nematode health as compared to the other anthelmintics, producing a shallower

curve ending with motility index scores greater than 1 for all concentrations (Fig 4B). Yet, a

steady decrease in health at all concentrations was observed, with the higher concentrations

showing similar efficacy. Thus, in contrast to the dead-alive results, which showed no effect on

the albendazole treated nematodes, the health-rating results show a definitive effect on the

health of the albendazole treated nematodes (Fig 4A and 4B). The IC50 value at day 4 for 3–0

scoring was 1.4 μg/mL (Table 3). The IT50 values were defined to be day 5 for 0.1 μg/mL, day 4

for 1 and 10 μg/mL, and day 3 for 100 and 1000 μg/mL (Table 2). These values were in contrast

with the undefined LT50 values at all concentrations. See S4 Fig for graphical representation of

these values.

Effects of albendazole on Hawaii strain: 1–0 scale vs. 3–0 scale

Hawaiian (CB4856) C. elegans L4-staged were subjected to five doses of albendazole (0.0 μg/

mL, 0.1 μg/mL, 1 μg/mL, 10 μg/mL, 100 μg/mL, and 1000 μg/mL) for seven days. As an inter-

nal control, N2 worms were subjected to 0 μg/mL and 100 μg/mL. Relative health was observed

and recorded using a motility index score (3–0) (Fig 5B). These results were translated into a

basic motility score (1–0) (Fig 5A) in order to compare them to the N2 strain albendazole

results. Percent survival of Hawaii C. elegans was similar to that of the N2 C. elegans treated

with albendazole at all concentrations with an insignificant difference observed at 1000 μg/mL

were scored daily for 7 days for motility. A score of 3 represented a worm with vigorous movement. A score of 2 represented a worm

with whole body movements without external stimulus, but visibly slower than the control. A score of 1 represented a worm with

movement only after the introduction of external stimulus. A score of 0 represented a worm with no movement, even after the

introduction of external stimulus. To translate these scores into the binary dead or alive, a score of 3, 2, or 1 was considered a score of

1 (alive) and a score of 0 was considered a score of 0 (dead). Data are the combination of at least three independent trials.

https://doi.org/10.1371/journal.pone.0179376.g002
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Fig 3. Average intoxication of N2 C. elegans (L4 stage) using five doses of ivermectin (IVM). a). Dead-Alive (1–0) scale. b).

Health rating (3–0) scale. For comparative reference, the molar concentrations of each drug at 1000 μg/mL is indicated. Roundworms
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on day 7 (χ2 test, p = 0.15) when comparing drug-induced death to non-drug-induced death

to survival (Fig 5B). Like the IC50 value for albendazole treated N2 C. elegans, the IC50 value on

day 4 for 1–0 scoring of albendazole treated Hawaii C. elegans was greater than 1000 μg/mL

(Table 3). Again, like the albendazole treated N2 C. elegans, the LT50 values were undefined at

all concentrations (Table 2). Surprisingly, the IC50 value on day 4 for 3–0 scoring was 0.147 μg/

mL, ten-fold less than the comparable value for albendazole treated N2 C. elegans (Table 3).

IT50 values for 0.1 and 1 μg/mL were day 4, while for 10, 100, and 1000 μg/mL, the IT50 values

were all day 2 (Table 2). These IT50 values occur earlier than the corresponding albendazole

treated N2 C. elegans IT50 values, suggesting that Hawaii C. elegans are affected/inhibited

sooner than N2 C. elegans. See S5 Fig for graphical representation of these values.

Discussion

There are about 1.5 billion people infected with STHs worldwide. Those infected are typically

the most impoverished people in the world. The WHO only recognizes 4 drugs for MDA,

which only have 2 mechanisms of action, and resistance to the drugs has already been ob-

served. New drugs, drug derivatives, and drug combinations all will be useful in the battling

these infections. A robust model is needed to perform the discovery and testing. Ideally,

human STHs would be used for this process but thus far only two human STHs can be main-

tained in immune competent animals (Ancylostoma ceylanicum and Necator americanus in

hamsters) [53]. Next best would be STHs in animals that are closely related to human parasites;

however, both of these strategies are costly both in terms of time and resources. Another

option is to use the free-living nematode C. elegans. Although they are not STHs, there is pre-

cedence for using C. elegans in anthelmintic drug screening [37–41] because of its low cost and

ease to maintain, but it is not entirely clear that the roundworm is a good model for studying

and identifying anthelmintic drugs [37, 38, 41]. These conflicting conclusions require further

investigation concerning the potential of C. elegans as a model parasite in anthelmintic study.

In this study, to further investigate if C. elegans has potential to be a good model for anthelmin-

tic study we utilized the health rating system employed by Hu et al. (used for scoring parasites)

to determine if we could tease out anthelmintic effects from drugs that are missed in a binary

dead/alive rating system. We also compare the binary dead/alive results (derived from the

health rating results) to previous work [37] to validate the use of a health rating scale. Within

these health rating results, to truly be a good option in drug screening and study, C. elegans
must demonstrate a dose-dependent response, in general, but most importantly to albenda-

zole, the drug of choice for MDA. Also to determine the variability of drug efficacy in a single

species, we tested the effects of albendazole on the Hawaiian strain of C. elegans to compare

the efficacy with that of albendazole on N2 C. elegans.
Overall, in comparison to previous data [37], our data matched up quite well. However,

there were two observed dissimilarities evident from what was expected. C. elegans treated

with 1000 μg/mL of pyrantel pamoate experienced a delayed but similar effect (ending % alive)

as those previously treated with pyrantel tartrate [37]. Also, an increase in efficacy on C. elegans
treated with both 10 μg/mL and 100 μg/mL of pyrantel pamoate was observed compared to

those previously treated with pyrantel tartrate [37]; these differences are likely due to the use of

were scored daily for 7 days for motility. A score of 3 represented a worm with vigorous movement. A score of 2 represented a worm

with whole body movements without external stimulus, but visibly slower than the control. A score of 1 represented a worm with

movement only after the introduction of external stimulus. A score of 0 represented a worm with no movement, even after the

introduction of external stimulus. To translate these scores into the binary dead or alive, a score of 3, 2, or 1 was considered a score of 1

(alive) and a score of 0 was considered a score of 0 (dead). Data are the combination of at least three independent trials.

https://doi.org/10.1371/journal.pone.0179376.g003
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Fig 4. Average intoxication of N2 C. elegans (L4 stage) using five doses of albendazole (ALB). a). Dead-Alive (1–0) scale. b).

Health rating (3–0) scale. For comparative reference, the molar concentrations of each drug at 1000 μg/mL is indicated. Roundworms
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the pyrantel pamoate instead of the use of pyrantel tartrate, which is no longer available from

Sigma Aldrich. Although, this somewhat diminishes the comparison that can be made to the

Hu et al. paper, it is beneficial in that pyrantel pamoate is less toxic to mice than pyrantel tar-

trate, likely due to solubility (personal communication with Yan Hu). Besides this disparity,

the agreement between our dead-alive data and the data from Hu et al. (2013) suggests that

our health-rating results properly translate to the accepted dead-alive results expected in C. ele-
gans anthelmintic studies [37].

Through use of a health rating scale instead of a basic motility scale, several trends become

evident when analyzing the data. First, dose-dependent responses were observed for each

drug. Further, ivermectin produced the steepest inhibition over nearly all concentrations (Fig

3B). Over time, pyrantel and nitazoxanide displayed similar levels of inhibition as compared to

ivermectin (Figs 1B and 2B respectively). The inhibition in C. elegans treated with albendazole

was not as severe as C. elegans treated with ivermectin, pyrantel, or nitazoxanide, but impor-

tantly, a dose-dependent response showing decreased health was observed (Fig 4B).

The use of a health rating scale and the data analyzed with IC50 (Table 3) and IT50 (Table 2)

calculations further showed the efficacy of the anthelmintic drugs to inhibit C. elegans. IT50

results further support that ivermectin has the greatest efficacy against C. elegans, with day 2 as

the time for 50% of the nematodes to be inhibited at the lowest concentration while for other

drugs at the same concentration, 50% inhibition is not reached until day 3 or 4 (Table 2). All

IT50 values were defined at all concentrations while corresponding LT50 values were either

undefined or occurred later (Table 2) confirming that a health rating scale gives a more com-

prehensive view of anthelmintic efficacy than a dead-alive scoring system when studying

inhibition.

The treatment of Hawaii (CB4856) C. elegans with albendazole was compared to the treat-

ment of Bristol N2 C. elegans with albendazole. A Chi-square test on 1000 μg/mL day 7 percent

survival data showed that a greater number of Hawaii C. elegans died compared to N2 C. ele-
gans was not significantly different statistically speaking. However, we cannot rule out a bio-

logical difference leading to this apparent difference in efficacy that suggests that at the highest

concentration, albendazole has a somewhat greater efficacy against Hawaii C. elegans than

against N2 C. elegans. Further, the coupling of the health rating results (Fig 5B) and the IC50

(Table 3) and IT50 (Table 2) values show that the difference in albendazole concentration

needed to inhibit 50% of C. elegans was ten-fold different for the two strains, with the lower

concentration inhibiting 50% of the Hawaii C. elegans. Also, for 0.1, 10, 100, and 1000 μg/mL,

50% of the Hawaii C. elegans were inhibited sooner (day 4, day 2, day 2, and day 2 respectively)

than the N2 C. elegans at the same concentrations (day 5, day 4, day 3, and day 3 respectively).

This data suggests that Hawaii C. elegans are more sensitive to albendazole than N2 C. elegans,
and further work should explore the biological cause of this increased sensitivity. Furthermore,

although the increased sensitivity was only tested and observed with albendazole, and requires

further study with other anthelmintics, the data suggests that future work using C. elegans as a

model for anthelmintic drug study should potentially switch from the N2 strain to the Hawaii

strain. This study suggests that future anthelmintic study can use C. elegans and that when

doing so it is beneficial to utilize a health-rating system, whether it be the one presented here

or some other type of system, for example culturing C. elegans in CeHR axenic liquid medium

were scored daily for 7 days for motility. A score of 3 represented a worm with vigorous movement. A score of 2 represented a worm with

whole body movements without external stimulus, but visibly slower than the control. A score of 1 represented a worm with movement

only after the introduction of external stimulus. A score of 0 represented a worm with no movement, even after the introduction of external

stimulus. To translate these scores into the binary dead or alive, a score of 3, 2, or 1 was considered a score of 1 (alive) and a score of 0

was considered a score of 0 (dead). Data are the combination of at least three independent trials.

https://doi.org/10.1371/journal.pone.0179376.g004
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Fig 5. Average intoxication of Hawaii (CB4856) C. elegans (L4 stage) using five doses of albendazole (ALB). a). Dead-Alive (1–

0) scale. b). Health rating (3–0) scale. For comparative reference, the molar concentrations of each drug at 1000 μg/mL is indicated.
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and counting the replicated worm number [54]. For drug screening/discovery, however, we

cannot recommend this particular system because utilizing an eyelash pick for stimulation is

not suitable for large libraries during a screen. For screening purposes, observing some pheno-

type (size, color, movement, egg laying) in a way that can be very quickly accessed is ideal.

Other ways could include using pathway-specific drug screens using promoter::GFP fusions or

utilizing additional Caenorhabditis species. Between the dose-dependent response of C. elegans
to the four main anthelmintics and the agreement of the current dead/alive results with past

work [37], this study shows that by examining the relative health of C. elegans as opposed to

basic motility, C. elegans has the potential to be a great model for anthelmintic drug study.

Supporting information

S1 Fig. LT50, IT50, and IC50 for PYR. Graphical representations of the LT50 (purple) and IT50

(orange) values of increasing concentrations of Pyrantel on N2 C. elegans (A-F). Graphs corre-

spond to values in Table 2. Graphs obtained through analysis with GraphPad Prism. Graphical

representations of the IC50 values on day 4 of Pyrantel on N2 C. elegans. The mean values (of

the raw data) with SEM error bars are included. (G) corresponds to the 1–0 scoring value in

Table 3 and (H) corresponds to the 3–0 scoring value in Table 3. Graphs obtained through

analysis with GraphPad Prism.

(TIF)

S2 Fig. LT50, IT50, and IC50 for NTZ. Graphical representations of the LT50 (purple) and IT50

(orange) values of increasing concentrations of Nitazoxanide on N2 C. elegans (A-F). Graphs

correspond to values in Table 2. Graphs obtained through analysis with GraphPad Prism.

Graphical representations of the IC50 values on day 4 of Nitazoxanide on N2 C. elegans. The

mean values (of the raw data) with SEM error bars are included. (G) corresponds to the 1–0

scoring value in Table 3 and (H) corresponds to the 3–0 scoring value in Table 3. Graphs

obtained through analysis with GraphPad Prism.

(TIF)

S3 Fig. LT50, IT50, and IC50 for IVM. Graphical representations of the LT50 (purple) and IT50

(orange) values of increasing concentrations of Ivermectin on N2 C. elegans (A-F). Graphs cor-

respond to values in Table 2. Graphs obtained through analysis with GraphPad Prism. Graphi-

cal representations of the IC50 values on day 4 of Ivermectin on N2 C. elegans. The mean

values (of the raw data) with SEM error bars are included. (G) corresponds to the 1–0 scoring

value in Table 3 and (H)corresponds to the 3–0 scoring value in Table 3. Graphs obtained

through analysis with GraphPad Prism.

(TIF)

S4 Fig. LT50, IT50, and IC50 for ALB on N2. Graphical representations of the LT50 (purple)

and IT50 (orange) values of increasing concentrations of Albendazole on N2 C. elegans (A-F).

Graphs correspond to values in Table 2. Graphs obtained through analysis with GraphPad

Prism. Graphical representations of the IC50 values on day 4 of Albendazole on N2 C. elegans.
The mean values (of the raw data) with SEM error bars are included. (G) corresponds to the

1–0 scoring value in Table 3 and (H)corresponds to the 3–0 scoring value in Table 3. Graphs

Roundworms were scored daily for 7 days for motility. A score of 3 represented a worm with vigorous movement. A score of 2

represented a worm with whole body movements without external stimulus, but visibly slower than the control. A score of 1 represented a

worm with movement only after the introduction of external stimulus. A score of 0 represented a worm with no movement, even after the

introduction of external stimulus. To translate these scores into the binary dead or alive, a score of 3, 2, or 1 was considered a score of 1

(alive) and a score of 0 was considered a score of 0 (dead). Data are the combination of at least three independent trials.

https://doi.org/10.1371/journal.pone.0179376.g005
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obtained through analysis with GraphPad Prism.

(TIF)

S5 Fig. LT50, IT50, and IC50 for ALB on Hawaii (CB4856). Graphical representations of the

LT50 (purple) and IT50 (orange) values of increasing concentrations of Albendazole on Hawaii

C. elegans (A-F). Graphs correspond to values in Table 2. Graphs obtained through analysis

with GraphPad Prism. Graphical representations of the IC50 values on day 4 of Albendazole

on Hawaii (CB4856) C. elegans. The mean values (of the raw data) with SEM error bars are

included. (G) corresponds to the 1–0 scoring value in Table 3 and (H) corresponds to the 3–0

scoring value in Table 3. Graphs obtained through analysis with GraphPad Prism.

(TIF)
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