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Prognostic Impact of the Findings 
on Thin-Section Computed 
Tomography in stage I lung 
adenocarcinoma with visceral 
pleural invasion
Mei Yuan1, Jin-Yuan Liu2, Teng Zhang1, Yu-Dong Zhang1, Hai Li3 & Tong-Fu Yu1

Visceral pleural invasion (VPI) in stageI lung adenocarcinoma is an independent negative prognostic 
factor. However, no studies proved any morphologic pattern could be referred to as a prognostic factor. 
Thus, we aim to investigate the potential prognostic impact of VPI by extracting high-dimensional 
radiomics features on thin-section computed tomography (CT). A total of 327 surgically resected 
pathological-N0M0 lung adenocarcinoma 3 cm or less in size were evaluated. Radiomics signature 
was generated by calculating the contribution weight of each feature and validated using repeated 
leaving-one-out ten-fold cross-validation approach. The accuracy of proposed radiomics signature for 
predicting VPI achieved 90.5% with ROC analysis (AUC, 0.938, sensitivity, 90.6%, specificity, 93.2%, 
PPV: 91.2, NPV: 92.8). The cut-off value allowed separation of patients in the validation data into high-
risk and low-risk groups with an odds ratio 12.01. Radiomics signature showed a concordance index 
of 0.895 and AIC value of 88.9% with regression analysis. Among these radiomics features, percentile 
10%, wavEnLL_S_2, S_0_1_SumAverage represented as independent factors for determining VPI. 
Results suggested that radiomics signature on CT exhibited as an independent prognostic factor in 
discriminating VPI in lung adenocarcinoma and could potentially help to discriminate the prognosis 
difference in stage I lung adenocarcinoma.

Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide1. Surgical resection is the 
treatment of choice for early stage NSCLC. Visceral pleural invasion (VPI) in NSCLC is known as a poor prog-
nostic factor with worse survival and an important stage descriptor2,3. Patients with tumor invasion beyond the 
elastic layer (PL1), and those across the pleura with exposure on the visceral pleural surface (PL2) are combined 
to define VPI. In the eighth edition of TNM classification, T1 tumors were upstaged to T2 category in the pres-
ence of VPI because of its significant different prognosis4.

Multiple studies5–7 evaluated 2D and 3D CT image features in the assessment of VPI in NSCLC. Ebara et al.7 
differentiated parietal from visceral pleural invasion in peripheral lung cancer that abutted to the pleura by using 
the ratio of tumor-pleura interfacial area to tumor size on three-dimensional CT images with accuracy of 77%. 
Hsu et al.5 evaluated three types of pleural tags that did not abut to the pleura, and showed that the presence of 
type 2 pleural tags (one or more linear pleural tag with soft tissue component at the pleural end) can help to make 
early diagnosis of VPI with accuracy of 71%. However, in clinical, the relations of tumor to adjacent pleura are 
more complicated than pleural tags and abutting. Moreover, the classifications of adjacent pleural morphologic 
patterns are partly inconsistent among different studies5,6.

Although most studies evaluated the morphologic changes of VPI on CT images, till now, no studies proved 
any morphologic pattern could be referred to as a prognostic factor. Besides the unsatisfactory diagnostic 

1Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China. 
2Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China. 
3Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China. Mei 
Yuan, Jin-Yuan Liu and Teng Zhang contributed equally to this work. Correspondence and requests for materials 
should be addressed to T.-F.Y. (email: njmu_ytf@163.com)

Received: 4 May 2017

Accepted: 2 March 2018

Published: xx xx xxxx

OPEN

mailto:njmu_ytf@163.com


www.nature.com/scientificreports/

2Scientific RePorTS |  (2018) 8:4743  | DOI:10.1038/s41598-018-22853-1

accuracy in previous studies, few studies investigated why in the similar distance to pleura, or even much more 
distant to pleura, some peripheral NSCLC have VPI, while others not. Is it corresponding to the potential malig-
nant characteristics of primary tumors, such as the predominant subtypes, pathological grades or some potential 
malignant features on CT? It remains unclear whether certain prognostic impact could be used to discriminate 
VPI from the early stage NSCLC with 3 cm or less in size. Thus, our study was designed to integrate comprehen-
sive information to evaluated potential malignant characteristics and prognostic factor for discriminating VPI in 
early-stage NSCLC.

Recent advances in radiomics enable the noninvasive evaluation of tumor internal heterogeneity by extract-
ing and analyzing a large amounts of advanced quantitative imaging features from medical images. These 
high-dimensional extracted features, termed as radiomics features, could obtain a comprehensive characteriza-
tion and detect potential malignant features of tumors with complex components8. The selection and integration 
of radiomics database could return a result with information about the phenotype of tumor, or clinical outcome, 
etc, and presents as a predicting biomarker, which was termed as radiomics signature9–11. Here, we hypothesize 
that a large number of extracted radiomics features coupled with appropriate statistical analysis may be able to 
detect the potential malignant characteristics of NSCLC with VPI.

As for NSCLC, squamous cell carcinoma and adenocarcinoma showed significantly different biological behav-
iors and prognosis12,13. Moreover, tumors greater than 3 cm with or without VPI showed significant different 
prognosis with tumor 3 cm or less in size. In order to avoid confusion and complexity, our study only evalu-
ated the prognostic impact of lung adenocarcinoma which accounts for the most common subtypes of periph-
eral lung cancer and tumor size within 3 cm. Therefore, the purpose of the study was to identify the ability of 
multi-feature-based radiomics combined with pathological findings in differentiating the phenotypes of stage I 
lung adenocarcinoma with visceral pleural invasion.

Results
Clinical and Histopathological Findings.  The final cohort was comprised of 327 patients (129 men, mean 
age, 62.8 years ± 13.44; 198 women, mean age, 60.3 years ± 10.83). Among them, 192 patients were diagnosed as 
stage IA without elastic layer invasion VPI (−) and 135 patients were stage IB with VPI (+) (81 PL1 and 54 PL2). 
With regard to the relation of predominant subtypes to VPI, patients with VPI (−) occurred most often in lepidic 
predominant adenocarcinoma (LPA) (78 of 100 [78%]), while VPI (+) occurred frequently in micropapillary 
(MP) (17 of 22 [77.3%]) and solid predominant subtypes (9 of 9 [100%]). The details of pathological characteris-
tics are shown in Table 1.

With regard to pathological grades, most patients were grade II (259 of 327 [79.2%]) with no difference 
between PL0 and PL1, PL2. For grade I (0 of 43 [0%]), patients were less frequent with VPI (+), while patients 
with grade III (20 of 25 [79.2%]) were more frequent with VPI (+).

There were no significant differences for age, sex, smoking status between stage IA and stage IB with VPI (+).

Construction of the Radiomics Signature.  Figure 1 illustrated the top 19 best attributing radiomics 
features, with total weights 93.3% when accumulating these top 19 ranked features. Among them, five high-
est ranked radiomics features were Percentile 10%, WavEnLL_S_2, S_0_1_SumAverage, 45dgr_GLevNonU, 

Variable Total T1a-cN0M0 Stage IA T2N0M0 Stage IB Χ2

Sex

Male 129 73 56

Female 198 119 79

Smoking status

Yes 154 84 70

No 173 108 65

Tumor size 1.51 cm(0.5–3.0) 1.35 cm (0.5–2.8) 1.72 cm (0.8–3.0)

Pathological grade for NSCLC

LPA 100(30.6%) 78(78%) 22(22%) P = 0.000↑

Acinar 150(45.9%) 86(53.3%) 64(42.6%)

Papollary 27(8.26%) 15(55.6%) 12(44.4%)

MP 22(6.73%) 5(22.7%) 17(77.3%) P = 0.009↑

Solid 9(2.75%) 0(0%) 9(100%) P = 0.000↑

Mucinous 19(5.81%) 8(42.1%) 11(57.9%)

Pathological grade

Grade I 43(13.1%) 43(100%) 0(0%) P = 0.000↑

Grade II 259(79.2%) 144(55.6%) 115(44.4%)

Grade III 25(7.65%) 5(20%) 20(80%) P = 0.003↑

Table 1.  Summary of pathologic characteristics of included lesions. Note. -Unless otherwise specified, data are 
number of lesions. *TNM stage is based on the eighth edition of the Union for International Cancer Control 
and American Joint Committee on Cancer TNM classification for lung cancer. LPA = lepidic predominant 
adenocarcinoma; MP = micropapillary. ↑Χ2 analysis showed significant difference with P < 0.05.
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S_3_3_Contrast, with total weights to 89.0%. The diagnostic performances of top-five best features by ROC curve 
analysis were illustrated in Table 2; Fig. 2. Univariate logistical analysis revealed that top four-best performing 
features showed significant difference between VPI (+) and VPI (−) (Table 3).

Validation of the Radiomics Signature.  The workflow for radiomics signature generating was illustrated 
in Fig. 3. When using SVM for confirming the diagnostic performance in the validation cohort, the accuracy 
for predicting VPI (+) from VPI (−) achieved 90.5% with ROC curve analysis (AUC, 0.938, sensitivity, 90.6%, 
specificity, 93.2%, PPV: 91.2, NPV: 92.8, +LR: 13.4, −LR: 0.101). The optimum cut-off value generated by ROC 
analysis after modeling by SVMs was 1.003 with Pi value of 0.787. Accordingly, patients in the validation data 
were classified into high-risk and low-risk groups. The regression analysis modeled by SVM showed that the 
radiomics signature showed significant difference between VPI+ and VPI− groups with P = 0.000 and odds ratio 
12.01. AIC value achieved 88.9% and concordance index was 0.895 in the validation cohort.

When validating each of five-best performing features, percentile 10%, wavEnLL_S_2, S_0_1_SumAverage 
showed to be independent factors in stratifying patients into high-risk and low-risk groups in the validation data 
set with wilcoxon signed-rank test. However, when compared with multiple radiomics features based signature, 
each of the prognostic radiomics feature showed significantly lower Az value and concordance index (Tables 2 
and 3; Fig. 2).

Discussion
Our study showed that visceral pleural invasion occurred significantly more often in MP and solid predominant 
subtypes and less frequently in lepidic predominant adenocarcinoma. For acinar subtype, it did not show pre-
dominance. Most of the patients included in the present study were grade II (259 of 327 [79.2%]) and showed 

Figure 1.  The contributions of top 19 radiomics features in the radiomics signature according to PCA analysis.
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no predominance between stage IA and stage IB. Multi-feature-based radiomics signature was identified to be 
an independent factor for estimating peripheral lung adenocarcinoma with VPI (+) with accuracy of 90.5%. In 
addition, with the cut-off value generated by ROC analysis, patients were successfully stratified into high-risk 
and low-risk groups, which enabled us to evaluate the risk stratifications in a quantitative and non-invasive way.

The patients with visceral pleural invasion were proved to be an independent adverse prognostic factor with 
potency to invade lymphangion, blood vessels and develop into metastatic disease (lymph node or distant metas-
tasis). Evaluating the morphologic manifestation of lung adenocarcinoma with VPI on CT images is insufficient, 

Stage IA (n = 192) Stage IB (n = 135) P value Cutoff value Auccary % Az SEN (%) SPE (%)

Radiomics signature 0.791 1.217 0.000↑ >1.003 90.5 0.938‡ 90.6 93.2

Percentile 10% −420 ± 136 −211 ± 104 0.000↑ >−311 80.1 0.818 73.5 81.0

WavEnLL_S_2 1378 ± 621 3075 ± 522 0.000↑ >2061.1 79.8 0.856 79.5 80.8

S_0_1_SumAverage 19.20 ± 10.11 30.65 ± 6.07 0.000↑ >24.74 81.2 0.832 78.2 83.7

45dgr_GLevNonU 20.73 ± 15.11 98.7 ± 40.3 0.001↑ >49.70 72.4 0.794 70.9 78.7

S_3_3_Contrast 14.41 ± 6.36 10.01 ± 5.78 0.007↑ ≤7.35 65.1 0.606☨ 51.7 70.1

Table 2.  Effectiveness of SVM-based Radiomics Signature in Discriminating Stage IA and Stage IB NSCLC. 
Note. -Unless otherwise indicated, data are mean ± standard deviation. Az = area under the receiver operating 
curve; SEN = sensitivity; SPE = specificity. ↑P < 0.05 between stage IA and stage IB NSCLC with Mann–
Whitney U test. ‡Multiple radiomics features-based signature showed significantly higher Az value when 
compared with top-five performed radiomics features. ☨S_3_3_Contrast showed significantly lower Az value 
than other top-four radiomics features.

Figure 2.  ROC analysis of the diagnostic ability of radiomics signature for distinguishing stage IA lung 
adenocarcinoma from stage IB with visceral pleural invasion. It showed that multiple radiomics features based 
signature had significantly higher accuracy than single best-performing features, all P < 0.05.

Analysis model Odds Ratio P value

Model-fitting information

AIC (%) Concordance Index

Univariate analysis of Prodominant Subtype 0.623 0.640 56.7 0.55

Univariate analysis of single radiomics-based factor

Percentile 10% 3.914 0.000† — —

WavEnLL_S_2 3.181 0.002† — —

S_0_1_SumAverage −2.145 0.033† — —

45dgr_GLevNonU 3.042 0.003† — —

S_3_3_Contrast 1.622 0.106 — —

Multivariate analysis of radiomics features

Radiomics signature 12.01 0.000 88.9 0.895↑

Percentile 10% 7.513 0.000‡ 78.3 0.745

WavEnLL_S_2 2.714 0.007‡ 70.1 0.641

45dgr_GLevNonU 4.22 0.000‡ 68.7 0.670

Table 3.  Prognostic Models for Predicting NSCLC with Visceral Pleural Invasion. Note.-AIC = Akaike 
information criterion. †Potential significances were identified in four-best performing radiomics features with 
univariate analysis, ‡Percentile 10%, WavEnLL_S_2, 45dgr_GLevNonU showed to be independent factors 
with multiple regression analysis. ↑Multiple radiomics features-based signature showed significantly higher 
Concordance Index than single radiomics features.
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because till now, no studies demonstrated any morphologic pattern could be referred to as a prognostic factor. 
Apart from the CT morphologic changes, few studies integrated comprehensive information to evaluated poten-
tial malignant characteristics and prognostic factor for the patients with VPI. To the best of our knowledge, we 
are the first researcher to report on the investigation of prognostic factor for predicting VPI in the early-stage 
lung adenocarcinoma. By analysis of the predominant subtypes of 327 stage I adenocarcinoma, we found that 
patients with VPI occurred significantly more often in MP and solid subtypes, which proved to be with poor 
prognosis14,15. However, the sample size for MP and solid subtypes are limited in stage I lung adenocarcinoma. 
With regard to the pathological grade, most of the patients were grade II with no predominance between stage IA 
and IB. The predictive value of the predominant subtypes and pathologic grade to discrimination between VPI 
(+) and VPI (−) appeared to be limited.

The extraction of advanced radiomics signature allowed us to quantitatively assess the heterogeneous internal 
features of lung adenocarcinoma with different tumor phenotypes on a macroscopic tissue scale by converting 
imaging data into high dimensional quantitative descriptors13. Intratumor heterogeneity calculated by radiomics 
has been suggested to correlate with worse clinical outcome, greater risk for lymph node involvement and distant 
metastasis8,13,16, and should be able to demonstrate the potential malignant characteristics of primary lung adeno-
carcinoma with VPI. Consistent with the hypothesis, the present study showed that integrated radiomics cut-off 
value of the patients in stage IB lung adenocarcinoma with VPI (+) was significantly higher than the patients in 
stage IA VPI (−), and the radiomics signature was validated as a prognostic factor in the validation data. These 
findings supported that radiomics signature may infer the tumor phenotypic characteristics in stage I lung ade-
nocarcinoma and discriminate the potential malignant characteristics of primary adenocarcinoma with VPI.

The radiomics signature included five-best performing radiomics features: percentile 10%, wavEnLL_S_2, 
S_0_1_SumAverage, 45dgr_GLevNonU, S_3_3_Contrast, which represented intratumor heterogeneity within 
different radiomics feature groups. All features showed significant difference between stage IA and IB with VPI, 
which are partly consistent with results of recent studies on prognostic stratification16. Among them, percentile 

Figure 3.  Workflow of radiomics signature generation. Radiomics features were extracted from segmented VOI 
on CT scanner, quantifying tumor shape, intensity, texture and wavelet features. After prioritize the features on the 
basis of reproducibility, redundancy, feature selection and classification, radiomics signature were generated by 
integrating multiple radiomics features. The cut-off value was generated by ROC analysis after modeling by SVM.
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10%, wavEnLL_S_2, S_0_1_SumAverage were identified as independent factor in the validation data set with 
wilcoxon signed-rank test. Among them, percentile 10% represents the point at which, 10% of the voxel values 
that form the histogram are found from the left. WavEnLL_S_2, which is a label for wavelet feature, is the energy 
of wavelet coefficients in subband LL. S_0_1_SumAverage is one of the labels for the co-occurrence matrix fea-
tures: values in parenthesis represent coordinates, containing information about distance and direction between 
pixels. All these features represented intratumor heterogeneity within different radiomics groups. However, when 
compared the diagnostic performance of single radiomics-based factor with multiple radiomics features-based 
signature, radiomics signature showed significantly higher in Az value and concordance index, indicating that 
high dimensional radiomics factors should be integrated to select valuable biomarkers for phenotypic character-
istics, which is similar to genomics.

Our study has several limitations. Firstly, the sample size is relatively small and lack of an external valida-
tion. Secondly, although radiomics demonstrated the intratumor heterogeneity within invasive adenocarcinoma, 
whether these macroscopic imaging features have underlying biologic relevance is not clear and should be inves-
tigated further. Thirdly, disease free survival in the study is based on the previous studies. We did not evaluate 
the difference of 5-year disease-free survival rate between stage IA and stage IB with VPI (+) in lung adenocar-
cinoma, because the median follow-up time is short considering that treatment failures may occur up to several 
years. The survival rate is insufficient for statistics. Further validation should be done according to the survival.

In conclusion, a multi-feature-based radiomics signature by thin-section CT was designed to identify 
tumor-phenotypes of lung adenocarcinoma with visceral pleural invasion. The new radiomics biomarker exhib-
ited as an independent prognostic factor in discriminating VPI and may provide a non-invasive opportunity for 
evaluating the prognosis in early-stage lung adenocarcinoma.

Materials and Methods
Patients.  This study was approved by the institution of the First Affiliated Hospital of Nanjing Medical 
University (Nanjing, China) and all methods were carried out in accordance with the approved guidelines. All 
subjects provided written informed consent to participate in the study. We systematically reviewed 739 patients 
with peripheral lung adenocarcinoma who underwent chest CT scans with thin-section (1.0 mm) images from 
the period of January 2014 to December 2016. Inclusion criteria were as follows: (a) all the patients underwent 
surgical resection and diagnosed by pathologic examination; (b) pathological-N0M0 peripheral lung adenocarci-
noma 3.0 cm or less in greatest dimension according to the eighth edition of TNM staging system4; (c) thin-sec-
tion CT scan was performed within 90 days before surgery; (d) available results for clinical data, including age, 
sex, smoking history, et al. A total of 327 Asiatic patients met all the inclusion criteria and 412 patients were 
excluded because of one or more of the following: (a) CT scan with intravenous administration of contrast mate-
rials (n = 180); (b) unsatisfactory imaging quality due to respiratory artifact during examination (n = 41); (c) 
pathological invasion to parietal pleura (PL3) (n = 50); (d) tumor size >3 cm (n = 100); (e) associated with sep-
arate tumor nodule as the primary tumor or directly invades any of the following structures: chest wall, phrenic 
nerve, parietal pericardium, diaphragm, mediastinum, heart, great vessels, trachea, recurrent laryngeal nerve, 
esophagus, vertebral body, and carina (n = 41).

CT scanning.  All the patients underwent unenhanced chest CT with 64-silce (Definition) or 128-slice 
(Definition AS+; Siemens, Malvern, Pa) row CT scanner with 1.0 mm slice-thickness and 0.8 mm reconstruc-
tion interval. The protocol was as follows: 100–120 kVp, mAs were set based on CARE Dose4D for exposure 
dose reduction. All images were reconstructed with a high-kernel (b60) with 512 × 512 matrix. Window settings: 
standard lung (window width, 1500 HU; window level, −600 HU) and mediastinum (window width, 350 HU; 
window level, 50 HU).

A pathologist with 10 years experiences who was blinded to the imaging findings evaluated the histopatho-
logic patterns and T, N descriptors according to eighth edition TNM staging system4. Elastic stains were per-
formed to clarify the status of VPI when initial hematoxylin and eosin stained slides showed that the tumors were 
adjacent to the pleura. VPI was classified according to the eighth edition of TNM classification: PL0 (T1) as lack 
of pleural invasion beyond the elastic layer, PL1 (T2) as invasion beyond the elastic layer, PL2 (T2) as invasion to 
the surface of the visceral pleura and PL3 (T3) as invasion of the parietal pleura. The differences in survival were 
statistically significant between PL0 and PL1, PL2 for either ≤3 cm or >3 cm in size. However, there were no sta-
tistically significant differences in survival between PL1 and PL23. Thus, in the present study, PL1 and PL2 were 
combined into VPI (+) group and were upstaged to T2a in those lesions ≤3 cm in size, and PL0 were classified 
into VPI (−) group. We evaluated the difference of histopathological and CT radiomics features between these 
two groups.

Segmentation and morphological features extraction.  Each nodule was automatic segmented by 
running on lungCAD software (Siemens SOMATOM Force CT). Firstly, two thoracic radiologists (author 2 and 
author 3 with 8-years and 6-years of experience in chest imaging, respectively) who were blinded to the patho-
logic result independently placed the longest diameter of the lesion. Secondly, precise edge of the entire-tumor 
volume of interest (VOI) was autosegmented by lungCAD. Visually identified mismatching, blood vessels and the 
chest wall adjacent to the margin of nodule were manually adjustment. Three-dimensional longest diameter and 
other 7 morphological features were computed separately by lungCAD (Fig. 4).

Radiomics features extraction and selection.  A total of 308 radiomics features were extracted and 
quantified by using AnalysisKit (GE Healthcare, China) for tumor phenotypes from whole VOI segmented previ-
ously. Two experienced radiologists who performed lesion segmentation independently extracted these features. 
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Radiomics features are divided into four groups: I) shape, II) tumor intensity, III) texture, IV) wavelet features. 
Tumor intensity was estimated by using histogram analysis with 9 features. Then, 271 texture features, derived 
from the gray level co-occurrence (GLCM) and run length matrices (GLRLM), were extracted from CT scans. 
Finally, the coiflet wavelet transformation was used to compute 20 wavelet features, which are the transformed 
domain representations of the intensity and textural features.

Feature selections on the basis of reproducibility and redundancy were performed to prioritize these 
high-dimensional features. Firstly, concordance correlation coefficient (CCC) was used to test the reproducibility 
and stability of each imaging feature. Top 100 most stable features with CCC value ≥0.9 were kept. The equation 
is described as:

ρ =
ρσ σ

σ + σ + μ − μ

2

( ) (1)
c

x y

x
2

y
2

x y
2

where μx and μy are mean values of variance x and y; σx, σy are mean squares; andρrepresents the correlation 
coefficient of x and y.

Then we removed redundant features with nearest neighbor distance <0.05. Eighty-three features were kept 
after adjusting redundancy.

Feature Selection and Classification.  In the present study, we implemented a robust recursive feature 
elimination (RFE) method based on SVM for feature selection. The RFE-SVM was performed to create an inte-
grated radiomics data and returned a result with ranking features by recursively training on SVM. An iterative 
method was performed and the feature with smallest ranking score (contribution weight ω) was removed until 
cumulative ω of all desired features reached 80%.

SVM with radical basis function (RBF) kernel was applied for separating the labeled training data into two 
classes. The SVM classifier is considered as a supervised learning task, which projects the data into multidimen-
sional space to separate two classes with a hyperplane. For SVM with RBF kernel, the equation is described as:

= −γ −k(x, x ) exp( x x ) (2)i i
2

where x and xi are two input vectors, and Gamma (γ) controls the shape of the hyperplane.
As patient numbers were relatively small, SVM classifiers were trained (cohort 1) and validated (cohort 2) 

using repeated (10 repeat iterations) and leaving one out ten-fold cross validation approach, in which, except 
one fold for validation(cohort 2), the other nine folds were applied for training (cohort 1). This procedure was 
repeated until each case in the database was used once in the validating set.

Figure 4.  Example computed tomography (CT) images in a patient with stage IB lung adenocarcinoma. Axial 
longest diameter of the lesion was placed manually and the contour of entire-tumor volume of interest (VOI) 
was automatic segmented by LungCAD. Morphological features were extracted from the defined tumor contour 
on CT images.
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As the direct output value of classifiers does not show probabilities of VPI, we converted the output values to 
the probabilities (Pi) by applying a sigmoid function as follows:

=
+ −Pi

e
1

1 (3)x

where x is the output value of classifiers. The value of Pi, which indicates the probabilities that the target lesion 
has VPI, was also termed as radiomic signature, as it integrated a multi-feature based radiomics information and 
indicated a cut-off point for the probability of VPI phenotype.

Performance Evaluation and Statistical Analysis.  We validate the predictive performance in the vali-
dation cohort using Receiver Operating Characteristic (ROC) regression curve and quantified by using the areas 
under the ROC curves (AUC), referring to the method of DeLong et al.17. Diagnostic accuracy, sensitivity, speci-
ficity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (+LR) and pos-
itive likelihood ratio (−LR) were calculated. Regression model of radiomics signature was generated and Akaike 
information criterion (AIC) was used as a measure of goodness of fit. Concordance index was used to assess the 
prognostic capability of radiomics signature (concordance index, 0–1).

Univariate and multivariate logistic regression analysis was used to determine the prognostic factor of radiom-
ics and significant radiomics features. Wilcoxon signed-rank test was used to validate the performance of single 
best-performing feature.

All statistical analyses were performed with statistical packages (SPSS 17.0 Chicago, III; MedCalc software, 
version 8.2.0.1, Mariakerke, Belgium). Standard PCA was completed by SPSS software (PASW Statistics 22.0; 
SPSS Inc., Chicago, IL, USA). P < 0.05 was considered to indicate a statistically significant difference.
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