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Abstract: Multi-modal fusion can achieve better predictions through the amalgamation of infor-
mation from different modalities. To improve the performance of accuracy, a method based on
Higher-order Orthogonal Iteration Decomposition and Projection (HOIDP) is proposed, in the fusion
process, higher-order orthogonal iteration decomposition algorithm and factor matrix projection are
used to remove redundant information duplicated inter-modal and produce fewer parameters with
minimal information loss. The performance of the proposed method is verified by three different
multi-modal datasets. The numerical results validate the accuracy of the performance of the pro-
posed method having 0.4% to 4% improvement in sentiment analysis, 0.3% to 8% improvement in
personality trait recognition, and 0.2% to 25% improvement in emotion recognition at three different
multi-modal datasets compared with other 5 methods.

Keywords: multi-modal fusion; tensor; iteration decomposition; dimensionality reduction

1. Introduction

The multi-modal fusion technique turns up to be an interesting topic in AI technology
fields. It integrates the information in multiple modalities and therefore is expected to per-
form better prediction than the case using any unimodal information [1]. Nowadays it has
been applied in a broad range of applications, such as multimedia event detection [2,3], sen-
timent analysis [1,4], cross-modal translation [5–7], Visual Question Answering (VQA) [8,9],
etc.

The multi-modal fusion techniques can be typically divided into three approaches,
which are the early fusion [10], the late fusion [11] and the hybrid fusion [12]. The early
fusion approach extracts the representation of features from each model and then fuses
them at the feature level [10]. This approach is more suitable for sentiment analysis.
In contrast, the late fusion approach trains the different models at first and then merges
them at the decision level [13]. This approach, however, is good at emotion recognition.
To take advantage of these two solutions, the hybrid fusion approach was subsequently
proposed [14]. Most of the abovementioned methods use simple and straightforward ways
to integrate the information parameters, e.g., by merely concatenating or averaging the
multi-modal vectors, which cannot make use of the dedicated interrelationships among
the multiple models at all [15].

Recently, by leveraging the tensor product representations, many researchers have
geared towards achieving rich dynamic interactions in both intra-modality and inter-
modality directly to boost the performance [1,15–18]. Zadeh [16] proposed a tensor fusion
network (TFN) which calculates the interaction between different modalities by the cross-
product of tensor. Unfortunately, such representations suffer from an exponential growth
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in feature dimensions and resulting in high cost training process. To tackle this problem,
an efficient decomposition method (LMF) is proposed [17] which leads to low-rank tensor
factors and much less computational complexity, meanwhile, preserves the capacity of
expressing the interactions of modalities. However, the method is still prone to parametric
explosions once the features get too long. Meanwhile, it also ignores the local dynamics of
interactions that are crucial to the final prediction [15].

Motivated by this problem, in this paper, we make use of higher-order orthogonal
iteration decomposition and projection to our tasks. It also ensures that the local dynamics
of interactions are preserved with reasonable computational and memory costs [19,20].

The main contributions of our paper are given below:

(1) A tensor fusion method for multi-modalities prediction is proposed based on the
higher-order orthogonal iteration decomposition and projection. It can remove the
redundant information of duplicated inter-modal while producing fewer parameters
with minimal information loss.

(2) The proposed method can tradeoff the dimensionality reduction ratio and the error
rate well. Meanwhile, it guarantees that the new tensor is closest to the original tensor
in the case of maximal dimension reduction.

(3) The performance of the proposed method has been verified through the evaluation
processes on three common available multi-modal task datasets.

2. Relevant Mathematical Notations

To make the following algorithm description neat and clearer, some tensor related
notations and operations are given at first:

T : a tensor, denoting a higher-order extension of vectors and matrices in this paper.
T(n): a n-mode unfolded matrix
‖T ‖: the Frobenius norm of a tensor T
×n: the n-mode product of a tensor
⊗: the Kronecker product
Matricization: also known as unfolding or flattening, is the process of reordering

the elements of an N-way array into a matrix. The n-mode matricization of a tensor
T ∈ RI1×I2×...IN is denoted by T(n) ∈ RIn×(I1 I2···In−1 In+1 ...IN). It arranges the n-mode fibers
to be the columns of the resulting matrix [21] as shown in Figure 1:

Figure 1. An n-mode unfolding of the N-order tensor.

Tensor Multiplication: The n-mode product of a tensor T ∈ RI1×I2×...IN with a matrix
U(n) ∈ RJn×In is denoted by T × nU(n) and is of size I1 × . . .× In−1 × J × In+1 × . . .× IN ,
elementwise, we have

(
T × nU(n)

)
i1,...,in−1,j,in+1,...,iN

=
In

∑
in=1

ti1,i2,...,iN · ujin (1)

Singular Value Decomposition (SVD): A real matrix A ∈ Rm×m can be expressed as
the product

A = UΣVT (2)
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where U and V are orthogonal matrices and Σ is a diagonal matrix.
Tucker’s Tensor Decomposition (Tucker decomposition): Tucker decomposition is

higher order SVD. Which approximates tensor T ∈ RI1×I2×...IN with the core tensor
G ∈ RJ1×J2×...JN and N factor matrices U(n) ∈ RIn×Jn(n = 1, 2, . . .).

T = G × 1U(1) × 2U(2), . . . ,×NU(N) + ε, T ∈ RI1×I2×....IN (3)

where ε denotes an arbitrarily small positive real number.

3. Methodology

In this section, a multi-modal fusion method based on Higher-order Orthogonal
Iteration Decomposition and Projection (HOIDP) is proposed. Similar to many other multi-
modal prediction methods, the new method is composed of feature extraction and multi-
modal fusion, network model training, and generating prediction task stages. The main
contribution of this paper is mainly in the first stage. In another word, it belongs to an
early fusion method.

As shown in Figure 2, three modalities, i.e., the audio, the text, and the video inputs,
are used in our algorithm presentation as well as our following experiments. At first,
we obtain the three unimodal representations I1, I2 and I3, which are the outputs of the
three sub-embedding networks fa, fl , and fv of the audio, the text, and the video input,
respectively, with the unimodal feature as their inputs. Secondly, we put these unimodal
representations into a tensor T using the Kronecker product and then perform higher-order
orthogonal iteration decomposition and projection to get tensor Z . In the end, we put the
feature tensor Z into a deep neural network to generate the prediction tasks. The detailed
algorithm is introduced in the following subsection.

Figure 2. Overview of multi-modal fusion model structure.

3.1. Multi-Modal Fusion Based on Tensor Representation

Tensor representation is an effective approach for multi-modal fusion. We define N
modalities as T1, T2, . . ., and TN which are column vectors of sizes I1, I2, . . ., and IN . We rep-
resent a N-modal tensor fusion approach by the Kronecker product in mathematical form.

T = T1 ⊗ T2⊗, . . . ,⊗TN , T ∈ RI1×I2×...IN (4)

Equation (4) can capture multi-modal interactions effectively.
The input tensor T ∈ RI1×I2×...IN then goes through a linear layer f (·) to produce a

vector representation h as shown in Equation (5).

h = f (T ,W , b) = T · W + b, h, b ∈ Rdh (5)
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where f (·) is a fully connected deep neural network, and W is the weight and b is the
bias. The weightW is conditioned on the feature tensor T . Since the tensor T is higher
dimensional and results increasing computational complexity, a higher-order orthogonal
iteration decomposition is proposed in order to improve performance and reduce the data
redundancy and parameter complexity in follow subsection.

3.2. Higher-Order Orthogonal Iteration Decomposition

We use the Tucker decomposition method to decompose the N-order tensor
T ∈ RI1×I2×...IN using (3). The solution of the core tensor and factor matrix can be ob-
tained by solving the following optimization problem:

arg min
∥∥∥X− G × 1U(1) × 2U(2), . . . ,×NU(n)

∥∥∥2

F
(6)

We adopt a higher-order orthogonal iteration decomposition algorithm to solve the
above optimization problem to get the core tensor G and the factor matrix U(n). The core
process is described in detail as the following steps:

Step 1: The n-mode unfolded matrix T(n)(n = 1, 2, 3, . . . , N) of tensor T is cal-
culated, and the singular value decomposition of the n-mode unfolded matrix is car-
ried out respectively to obtain T(n) = U(n)D(n)V(n)T

, let the left singular value matrix
U(n)(n = 1, 2, 3, . . . , N) be the initial factor matrix U(n)

(k) (n = 1, 2, 3, . . . , N; k = 0).

Step 2: Set k = k + 1 and perform the operations: B(n)
(k) = T ×1 U(1)T

(k−1), . . . ,×n−1

U(n−1)T

(k−1) ×n+1 U(n+1)T

(k−1) , then perform the singular value decomposition of the n-mode

unfolded matrix B(n)
(k) to obtain B(n)

(k) = UDVT , and finally let U(n)
(k) = U.

Step 3: Calculate the core tensor of the k-th iteration by using the factor matrix.
The core tensor of each iteration is calculated until the convergence condition is satisfied.

Algorithm 1 shows the process.

Algorithm 1 The higher-order orthogonal iterative decomposition algorithm.

Input: the N-order tensor T ;
Output: the core tensor G and the factor matrix U(n);

1: Initialize the factor matrix U(n)
(0) :

Calculated T(n) = U(n)D(n)V(n)T
by Equation (2);

U(n)
(k) ← U(n); k = 0.

2: Update factor matrix:
k = k + 1;
B(n)
(k) = T ×1 U(1)T

(k−1), . . . ,×n−1U(n−1)T

(k−1) ×n+1 U(n+1)T

(k−1) ;

B(n)
(k) = UDVT ;

U(n)
(k) = U.

3: Compute the core tensor of the k-th iteration:

G(k) = T × 1U(1)T

(k) × 2U(2)T

(k) ×, . . . ,×nU(n)T

(k) ;

4: if
∣∣∣G(k) − G(k−1)

∣∣∣
F
≥ ε then

5: Go to Step 2;
6: else
7: Return G, U(n) ;
8: end if
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3.3. Factor Matrix Projection

Through the above algorithm, we obtain the core tensor and matrix factors of the
tensor T . Since the factor matrix U(n) represents the principal components of the tensor in
each mode, the column vector of the factor matrix represents the principal components
in this mode, and the columns are arranged in descending order according to the energy
magnitude - the importance degree of features. Therefore, similar to the singular value
decomposition, the factor matrices U(n) are selected such that they perform projection
to the original tensor T ∈ RI1×I2×...IN with the front columns J1, J2, . . . , JN of each factor
matrix, as shown in (7).

Z = T × 1U(1)T
(1 : J1, :)× 2U(2)T

(1 : J2, :), . . . ,×NU(N)T
(1 : JN, :) (7)

We can get an new tensor Z ∈ RJ1×J2×...JN , which is the order of low dimensions in
the new eigenspace compared to the original tensor T ∈ RI1×I2×...IN .

Let us replace T with Z in Equation (5) and since weightW conditioned on feature
tensor Z , so we also replaceW with W̃ .

h = f (T ,W , b) = T · W + b = Z · W̃ + b̃, h, b̃ ∈ Rdh (8)

In practice, we flatten tensors Z and W̃ for reducing the last operation to matrix
multiplication.

In this paper, we consider the number of modalities to be 3. In Figure 3, tensor
T ∈ RI1×I2×I3 is decomposed into a core tensor G ∈ RR1×R2×R3 and three factor matrices
U(1) ∈ RI1×R1 , U(2) ∈ RI2×R2 , and U(3) ∈ RI3×R3 , the three factor matrices are then
projected on the front columns J1, J2, and J3. This process can be used for both compression
and feature extraction of higher-order data.

Figure 3. The process of tensor decomposition and projection.

4. Experimental Methodology

To verify the improvement of the method, we compare our method with DF [22],
MARN [23], MFN [24], TEN[16], and LMF [17] in sentiment analysis, personality trait
recognition, and emotion recognition at three different multi-modal datasets.

4.1. Datasets

Experiments were performed on three multi-modal data sets CMU-MOSI [25], POM [26],
and IEMOCAP [27]. Each data set is composed of three modalities: language, video, and au-
dio. The CMU-MOSI includes a collection of 93 comment videos from different film reviews.
Multiple opinion clips and emotion annotations consist in each video and are annotated in
the range [−3,3], the two thresholds represent highly negative and highly positive respec-
tively. The POM consists of 903 review videos from different movies. Each video has the
characteristics of the speaker: self-confidence, enthusiasm, pleasant voice, dominant, credible,
vivid, professional, entertaining, introverted, trusting, relaxed, extroverted, thorough, ner-
vous, persuasive, and humorous. IEMOCAP contains 151 videos that are designed to identify
emotions displayed in human interactions, such as voice and gesture. The audio-visual data
is recorded for approximately 12 h by 10 actors in a two-person conversation. Ten actors were
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asked to complete three selected scripts with clear emotional content. The dataset contains 9
emotional labels which include anger, happiness, sadness, frustration, and neutral states.

The three datasets include multiple information which has been divided into training,
validation, and test sets to evaluate the generalization of the model in this paper. And it is
ensured that there are no identical speakers between training sets and test sets. The data
split for the three datasets is shown in Table 1.

Table 1. The speaker-independent data splits for training, validation, and test sets [17].

Dataset CMU-MOSI IEMOCAP POM
Level Segment Segment Segment

Train 1284 6373 600
Valid 229 1775 100
Test 686 1807 203

4.2. Multimodal Data Features

Each data set is composed of three modalities, i.e., language, video, and audio. We
perform word alignment using P2FA [28] to reach alignment across modalities. The audio
and video features can be obtained by calculating the average of feature values in the word
time interval [29].

The experiment process of the information is as follows.

• Language: pre-trained Glove word embeddings [30] are used to embed a single word
sequence transcribed from video clips into the word vector sequence of spoken text.

• Visual: Facet library is applied for extracting visual features of each frame (sampling at
30 Hz), including head pose, 20 facial action units, 68 facial landmarks, gaze tracking,
and HOG features [31].

• Audio: the COVAREP acoustic analysis framework [32] is applied for extracting a set
of low-level audio features.

4.3. Model Architecture

Three unimodal sub-embedding networks are used to extract representations for each
modality [17]. For visual and audio modalities, a simple 2-layer feed-forward neural network
is used as a sub-embedding network. And for language, we use a long short-term memory
network [33] to extract representations. The model architecture is illustrated in Figure 1.

In this paper, the models are tested using five-fold cross-validation which was pro-
posed by CMU-MOSI. All experiments are performed without the information of speaker
identity, while no speaker is repeated in the train and test sets, to make the model universal
and independent of speaker information. The hyper-parameters are chosen by using grid
search which is based on the performance of the model on the validation set. We trained
our model using the Adam optimizer with a learning rate of 0.0003. The subnetworks fa, fl
and fv are regularized by using dropout on all hidden layers with p = 0.15 and L2 norm
coefficient as 0.01. The train, validation, and test folds are the same for each of the models.
The models are implemented using Pytorch.

4.4. Evaluation Metrics

Based on the provided tags, multiple evaluation tasks are performed during our
evaluation consisting of multi-category classification and regression. The multi-category
classification task is applied to three multi-modal datasets, and the regression task is
applied to the POM and CMU-MOSI. For the binary and multi-category classification,
the F1 score and the average accuracy (ACC) are used to represent model performance. F1
score can be regarded as a weighted average of precision and recall and can be expressed as

F1− score = 2
precision · recall

precision + recall
. (9)
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It has a maximum value of 1 and a minimum value of 0. Similarly, for regression tasks,
mean absolute error (MAE) and the correlation (Corr) between prediction and true scores
are used to express performance. All these indicators show better performance with the
higher values but except for MAE.

5. Experimental Results and Discussion

Based on the research questions introduced in Section 3, we present and discuss the
results from the experiments in this section.

5.1. Comparison with the State-of-the-Art

In the experiment, we compared our model with 5 methods. The Deep Fusion (DF) [22]
proposed a concatenation of the deep neural model for each modality followed by a joint
neural network. The Multi-attention Recurrent Network (MARN) [23] used a neural
component called the Multi-attention block (MAB) which models the interaction between
modalities through time and storing them in the Long-short Term Hybrid Memory (LSTM).
The Memory Fusion Network (MFN) [24] was proposed for multi-view sequential learning.
The Tensor Fusion Network [16] combined each modality into a tensor by computing
the outer product. The Low-rank Multi-modal Fusion (LMF) [17] performed the tensor
factorization with the same low-rank for multi-modal fusion.

In Table 2, the MAE, Corr, Acc-2, Acc-7, and F1 are presented. The accuracy of the
proposed method is marked improvements in CMU-MOSI and POM. It is also marginally
better than the LMF method in Happy and Angry recognition.

Table 2. Results for Sentiment Analysis on CMU-MOSI, personality trait recognition on POM, and emotion recognition
on IEMOCAP.

Dataset CMU-MOSI POM IEMOCAP
Metric MAE Corr Acc-2 F1 Acc-7 MAE Corr Acc F1-Happy F1-Sad F1-Angry F1-Neutral

DF 1.143 0.517 72.3 72.1 26.6 0.869 0.144 34.1 81.1 81.2 65.5 44.0
MARN 0.967 0.624 77.1 77.0 34.7 - - 39.5 83.6 81.4 84.5 65.8
MFN 0.966 0.632 77.5 77.3 34.3 0.805 0.349 41.7 84.0 82.2 83.7 69.3
TFN 0.972 0.634 73.9 73.4 32.2 0.886 0.093 31.6 83.6 82.8 84.3 65.4
LMF 0.912 0.668 76.4 75.7 32.8 0.794 0.396 42.7 85.9 85.9 89.1 71.7

OURS 0.922 0.663 76.8 75.8 32.0 0.801 0.395 43.1 86.1 85.3 89.2 71.1

5.2. Computation Accuracy Analysis

The main function of the HOIDP method can achieve the purpose of dimensionality
reduction. In this process, the core tensor and factor matrix are obtained by decomposing
the original tensor firstly, and then the core tensor with the factor matrix are combined
which have been updated by the HOIDP, finally, it forms a projection of the original tensor.

We verified whether the new tensor can replace the original tensor by calculating its
error rate. The error rate is measured in norms is shown below:

δ =
‖T − Z‖F
‖T ‖F

(10)

where ‖T −Z‖F and ‖T ‖F are Frobenius Norms. Since the new tensor is composed of the
core tensor and the projection of the updated factor matrix, the dimensionality reduction
ratio is defined to measure the similarity between the new and the original tensor as

ξ =
Nnz(G) + ∑N

i=1 Nnz

(
U(i)(1 : Ji, :)

)
Nnz(T )

(11)
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where Nnz is a function that expresses the number of non-zero matrix elements. The di-
mensionality reduction ratio is generated by calculating the ratio of the non-zero elements
in the core tensor and the updated matrix to non-zero elements in the original tensor. This
dimension reduction ratio can effectively represent the degree of dimensions reduced.

We use (δ, ξ) to reflect the relationship between the error rate and the dimensionality
reduction which is shown in Figure 4. The abscissa is the number of iterations and the
ordinate is the ratio value. We set the error rate to 0.3%, 0.7%, 1%, 1.5%, 2%, 3%, 4.1%, 6%,
8.2%, 10%, 11.9% and 14.2% successively. The larger the error rate, the greater difference
between the new and the original tensor, and the lower similarity between them.

Figure 4. The relationship between dimensionality reduction ratio and error rate.

It can be seen from Figure 4 that the lower the dimensionality reduction ratio, the higher
is the error rate. It means that we cannot blindly pursue a low dimension in the process of
dimensionality reduction. It can achieve a balance between the dimensionality reduction
ratio and error rate. In the experimental process, we found that when the number of itera-
tions of tensor decomposition is 10, the error rate is 11.9%, and the dimension reduction
ratio is 39.5%. The ACC achieved higher performance on CMU-MOSI and POM data sets
as shown in Figure 5, and the prediction results are better when performing the task.

Figure 5. (a) The relationship between error rate and ACC. (b) The relationship between dimension-
ality reduction ratio and ACC.

The values of the dimensionality reduction ratio and error rate directly affect the
accuracy of feature extraction of multi-modal data, and the evaluation metrics. Therefore,
we should ensure that the new tensor is closest to the original tensor in case of maximum
dimensionality reduction, and maintain the balance between dimensionality reduction and
error according to the different requirements.

Furthermore, to evaluate the computational complexity of HOIDP, we measured the
training and test speeds of HOIDP and compared them with TFN and LMF [17] as shown
in Table 3. Here we set the dimension reduction error rate to 11.9% and the dimension
reduction rate to 39.5% as it can achieve quite a significant increase in performance.
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Table 3. The comparison of training and testing speeds of HOIDP with the TFN and LMF.

Model Training Speed (IPS) Testing Speed (IPS)

TFN 340.74 1177.17
LMF 1132.82 2249.90

OURS 1132.42 2253.14

The models are executed in the same environment. The data represents the average
frequency value of data point inferences per second (IPS) respectively.

6. Conclusions

In this paper, a multi-modal fusion method based on higher-order orthogonal iterative
decomposition is proposed, the method can remove the redundant information and leads
to fewer parameters with minimal information loss. In addition, we can trade off the
dimensionality reduction ratio and the error rate well according to the requirements.

Experiments result show that the method improves the accuracy, the Happy and Angry
recognition. It is compared to the other methods and provides the same benefits as the
tensor fusion method. It is also immune to a large number of parameters. Furthermore, it
can be seen that the HOIDP approach is more efficient and achieves a higher dimensionality
reduction effect while maintaining a lower error rate.
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