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PURPOSE. Recent retrospective clinical studies and animal experiments have suggested
that cerebrospinal fluid pressure (CSFP) is important in glaucoma, acting through the
translaminar pressure (TLP = IOP − CSFP), which directly affects the optic nerve head.
In this study, IOP and intracranial pressure (ICP; a surrogate of CSFP) were measured at
various body positions to quantify the determinants of TLP.

METHODS. We have developed an implantable wireless pressure telemetry system based
on a small piezoelectric sensor with low temporal drift. Telemetry transducers were
placed in the anterior chamber to measure IOP and in the brain parenchyma at eye
height to measure ICP. IOP was calibrated against anterior cannulation manometry, and
ICP/CSFP was calibrated against an intraparenchymal Codman ICP Express microsensor.
We measured IOP, ICP, and TLP = IOP − ICP continuously at 200 Hz in three male nonhu-
man primates (NHPs) in three trials; pressures were then averaged for 30 seconds per
body position. Relative change of IOP, ICP, and TLP from the supine (baseline) position
to the seated, standing, and inverted positions were quantified.

RESULTS. TLP changed significantly and instantaneously from the supine to seated (+14
mm Hg), supine to standing (+13 mm Hg) and supine to inverted (−12 mm Hg) positions
(P < 0.05). There was no significant TLP change for supine to prone. ICP showed greater
relative change than IOP.

CONCLUSIONS. TLP change due to body position change is driven more by ICP/CSFP than
IOP. IOP, ICP, and TLP variability, coupled with telemetry, should allow us to test the
hypotheses that IOP, ICP, or TLP fluctuations contribute independently to glaucoma onset
or progression.
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primate

I ntraocular pressure (IOP) is a primary risk factor for
both glaucoma onset and progression.1–4 In addition,

recent retrospective clinical studies and animal experiments
have suggested that cerebrospinal fluid pressure (CSFP)
is also important in glaucoma pathogenesis and progres-
sion.5,6 Damage to the visual pathways is generally thought
to occur in the laminar region of the optic nerve head
(ONH).7,8 Hence, it has been hypothesized that the translam-
inar pressure (TLP = IOP − CSFP), which directly affects the
biomechanics of the optic nerve head and contained lamina
cribrosa, is important in glaucoma pathophysiology. Unfor-
tunately, the lack of methods to accurately and continuously
monitor IOP and CSFP have impeded research into the role
of TLP in glaucoma.

Previous work has studied the glaucoma prevalence
related to IOP changes with body position, such as degrees
of tilt, the supine sleeping position and the lateral decubi-
tus position.9–24 Several of these reports suggest that posi-
tional changes that increase IOP also increase glaucoma
risk.10,15,17,21,24 Reports on CSFP variation with body posi-
tion used sensors placed remotely and calculated the hydro-
static pressure difference from the eyes and retrobulbar optic
nerve to quantify TLP, rather than placing sensors close to
the eye itself.25–28 Eklund and colleagues11 measured CSFP
via lumbar puncture and IOP via applanation tonometry to
estimate TLP in human patients in the seated, supine and
9° head-down tilt positions, and adjusted the measurements
for hydrostatic height differences using magnetic resonance
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TABLE 1. Animal Demographics

Number of Days of IOP and Number of Body
NHP Age (Years) Sex ICP Telemetry Monitoring Position Trials

150069 4.5 M 69 3
12.38 6.5 M 88 3*

150110 4.5 M 281 3
150172 4.5 M 0 0†

* NHP 12.38 was only used for body position testing.
† NHP 150172 was only used for hydrostatic indifference point testing.

imaging. Results from this human study reported TLP of 12.3
and 19.8 mm Hg in the supine and sitting positions, respec-
tively. Values for the standing and inverted positions were
not reported. Hand-held tonometers used in the aforemen-
tioned studies also have inherent measurement error, further
necessitating the need for accurate measures.29,30

Previous studies have reported changes in IOP, CSFP
(or intracranial pressure [ICP]) and TLP with body position
using snapshot measurements.9,11,14–17,19,21,22,31,32 These
studies used single timepoint measurements and did not
describe the time course of change in IOP, CSFP/ICP, and
TLP.11,31 Given that IOP changes on a second-to-second
timescale, continuous IOP measurement is necessary to
fully characterize IOP change over time.33–35 In addition,
results indicate that CSFP/ICP changes are greater than IOP
with positional change, and therefore TLP is likely more
affected by positional changes in CSFP/ICP than IOP. Pres-
sure measurements have not been measured continuously
for IOP and CSFP/ICP to quantify TLP, so the time course
of pressure changes have not been reported. Turner et al.33

reported continuous IOP changes with body position in
nonhuman primates (NHPs) equipped with wireless teleme-
try, with results showing the greatest increase in IOP in the
inverted position and greatest decrease in IOP in the seated
and standing positions.

The purpose of this study was to characterize the time
course and magnitude on IOP, ICP, and quantified TLP (IOP
− ICP) with body position change in three male NHPs instru-
mented with wireless IOP and ICP telemetry systems. The
relative change of IOP, ICP, and TLP from the supine (base-
line) position to the seated, standing, and inverted positions
were quantified in three trials. A second purpose of this
study was to characterize the hydrostatic indifference point
of CSFP in NHPs, which is the location in the spinal column
where CSFP is the same in the upright and supine posi-
tions. We used intraparenchymal measurements of ICP at the
height of the eyes as a surrogate for CSFP in the retrobulbar
optic nerve; previous studies have indicated these are equiv-
alent.36 The use of continuous wireless telemetry allows for
accurate quantification of both mean pressures and the time
course of pressure change with body position.

METHODS

Animals

All animals were treated in accordance with the ARVO State-
ment for the Use of Animals in Ophthalmic and Vision
Research under an approved Institutional Animal Care and
Use Committee protocol monitored by the University of
Alabama at Birmingham. Four male rhesus macaques, aged
4.5 to 6.5 years old (Table 1), with no ocular abnormali-
ties were used in this study, but only three of the four were

available for body position testing, and three were used for
hydrostatic indifference point testing. All animals were kept
on a 06:00/18:00 light-dark cycle and fed daily at approx-
imately 06:00 and 14:00, with water available ad libitum
through a continuous feed. Food and water intake were not
monitored.

TSE-Systems Stellar IOP, ICP and Arterial BP
Telemetry System

We have developed and validated an implantable pressure
telemetry system (Fig. 1) based on a small piezoelectric
transducer with low temporal drift that accurately measures
IOP in the anterior chamber, ICP (as a surrogate for CSFP)
in the parenchyma of the brain, and arterial blood pres-
sure (BP) in the lumen of a major artery (BP data are
not presented in this study).37 An in-depth description of
the surgical procedure and placement of both the wireless
telemetry implant and pressure transducers was described
in a recent study.37 In brief, the IOP transducer was placed
in the right eye and the ICP transducer was placed in the
right frontal lobe, ∼2.5 cm from the midline of the brain at
the same height as the IOP transducer when the animal is
upright (Fig. 1).37 The telemetry system wirelessly records
200 measurements of each physiologic pressure per second.

IOP and ICP Calibration

Anesthesia was induced with an intramuscular injection of
ketamine (3 mg/kg) with dexmedetomidine (50 μg/kg) and
then maintained using inhaled isoflurane (1%–3%) for all
procedures. NHPs were kept warm with a warming blanket
and systemically monitored for heart rate, SpO2, end tidal
CO2 volume, electrocardiography, and core body tempera-
ture, with documentation every 15 minutes during all proce-
dures.

As previously described, the IOP telemetry transducer
was calibrated every two weeks via anterior chamber cannu-
lation manometry with a 27-gauge needle placed through
the cornea at the limbus under slit-lamp biomicroscopy.37

Proparacaine hydrochloride (0.5% ophthalmic solution) was
applied to anesthetize the cornea before anterior chamber
cannulation. To assess the error in the IOP transducer read-
ing, absolute manometric IOP is elevated from 5 to 30 mm
Hg in 5 mm Hg steps, with the 15 mm Hg IOP level used for
error calculation. All IOP data are corrected for signal drift
between calibrations and transducer drift is approximately
2 mm Hg/month.

The ICP telemetry transducer was calibrated once a
month in the same session as the biweekly IOP telemetry
transducer calibration. For the purpose of this study, ICP and
IOP calibrations were performed immediately after the posi-
tional testing in the same session. As previously described,
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FIGURE 1. (A) TSE-Systems Stellar IOP/ICP/BP total implant system. (B) Top view of the IOP transducer and integrated scleral baseplate
for affixing the transducer to the sclera under Tenon’s capsule and conjunctiva. (C) Side view of the IOP transducer and integrated scleral
baseplate. (D) En face photograph of the piezoelectric IOP transducer in the anterior chamber. (E) Slit lamp photograph of the intraocular
placement of the piezoelectric IOP transducer in the anterior chamber relative to the cornea and iris. Reprinted from Jasien et al.37 with
permission.

the clinical gold-standard Codman ICP Express microsensor
(DePuy Synthes, Raynham, MA, USA) was inserted through
an indwelling custom titanium port in the cranium that
allows access to the left brain parenchyma (Fig. 2).37 ICP
was then measured by both the indwelling Stellar teleme-
try transducer and the adjacent Codman microsensor simul-
taneously at various body positions.37 The prone position
was used as the reference for all ICP calibration sessions
(Fig. 3).37 ICP transducer drift was similar to IOP trans-
ducer drift at approximately 2 mm Hg/month and calibrated
TLP was continuously quantified as IOP-ICP. All IOP and
ICP data are recorded with NOTOCORD-hem data acqui-
sition software (Instem, Stone, Staffordshire, UK) and all
pressure data are drift-corrected continuously between cali-
bration procedures via software post-processing assuming
linear drift between calibrations.

Body Position Testing

Before IOP and/or ICP calibration during the same session,
the NHPs were anesthetized as described above and then
moved manually from the baseline supine position, to the
prone, seated, standing, and inverted positions in turn
(Fig. 4). NHPs were returned to the baseline supine position
between each body position change, and each position was
held for 30 seconds after IOP, ICP, and TLP had stabilized.
The order of these positions was performed three times
within one session to obtain an average measurement for
each position for each NHP. One observer (JVJ) performed
all body position movements during waking hours to main-
tain consistency between positions across trials and animals.

Statistical Analysis

Mean relative changes in IOP, ICP, and TLP = IOP − ICP
were calculated across the three body position trials for each
NHP for each body position with supine as the baseline
position. Means for all NHPs were also calculated from all

FIGURE 2. (A) Oblique X-ray of an NHP with the stellar implant
(IOP and ICP transducers) and custom indwelling titanium ICP cali-
bration port installed. The IOP transducer is in the right eye and
the ICP transducer is in the right lobe of the brain, whereas the
calibration port is in the left lobe. The IOP and ICP transducers
and bottom of the screw post within the calibration port are all at
the same height when the animal is in the upright position. (B)
Photograph of the custom indwelling titanium ICP calibration port,
showing the bolt with central screw. Note that the screw is sealed to
the bolt with a sterile medical-grade silicone washer when installed.
Reprinted from Jasien et al.37 with permission.

sessions. A paired t-test was used to determine whether IOP,
ICP, and TLP change relative to the supine position were
different across body positions.
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FIGURE 3. Screenshot of the pressure telemetry signals acquired during a typical ICP transducer calibration procedure wherein the NHP is
moved from the prone position to positive 45° incline (head up tilt) to negative 45° decline (head down tilt) and back to prone. Arterial BP
(blue), IOP in the right eye (red), ICP from Stellar Telemetry (green), and ICP from the Codman microsensor (gold) are recorded at 200 Hz
during the calibration procedure; Y-axis scale is mm Hg for all signals. Note that all pressures responded nearly instantaneously to change
in body position. OPP, ocular perfusion pressure. Reprinted from Jasien et al.37 with permission.

FIGURE 4. Order of body positions changes, with the supine posi-
tion as baseline. Positions were held for 30 seconds after all pres-
sures had stabilized, and the NHP was returned to the supine base-
line position prior to moving to the next position. Adapted from
Turner et al.33 with permission.

RESULTS

Body Position Testing

TLP changed significantly from the supine to seated
(+14 mm Hg), supine to standing (+13 mm Hg) and supine
to inverted (−12 mm Hg) positions (P < 0.05) (Fig. 5 and
Table 2). There was no significant TLP change for supine
to prone. ICP showed greater relative change than IOP in
all positions (Fig. 6). IOP did not show a significant relative
change among any of the body positions tested herein.

Individual and mean relative change IOP, ICP and TLP
values for the three sessions for each animal and total mean
across all sessions are presented in Table 2. All pressures
change immediately with change in body position. Specif-
ically, the mean time required for ICP to change from the
supine baseline position to the seated, standing and inverted
positions was 2.4 ± 0.5, 2.7 ± 0.1 and 2.3 ± 0.4 seconds,
respectively, averaged across three trials in all NHPs. The
time course of IOP changes were similar at 2.3 ± 0.8,

2.4 ± 0.4 and 3.5 ± 0.1 seconds, respectively, although the
pressure changes were not statistically different from the
supine baseline position. It took similar amounts of time to
manually change the NHP’s body position, so the pressure
changes occurred simultaneous to positional change.

Intracranial Pressure Hydrostatic Indifference
Point Testing

The ICP hydrostatic indifference point (HIP) was calcu-
lated in all NHPs, which is defined as the point in the
spinal column where CSFP is the same when the NHP is
in either the lateral decubitus or sitting position. This is
valuable herein to understand the NHP ICP HIP relationship
to human CSFP HIP measurements with positional change.
The Codman ICP Express microsensor (DePuy Synthes) was
used for all HIP-related measurements in the same manner
as used during ICP calibrations described above.37 Anes-
thetized animals were secured on a custom tilt table in
the supine position with integrated shoulder and pelvic
supports. The table was manually tilted to +45° (head-up
tilt) in 15° increments, returned back to the supine position,
tilted to −45° (head-down tilt) in 15° increments, and again
returned to the supine position (Fig. 7). ICP measurements
were recorded continuously at 200 Hz during the tilt testing,
with stable ICP obtained for at least 30 seconds at each posi-
tion. Additional measurements were obtained in the seated
position in the same session to allow for HIP calculation per
Magnaes’ published method.25,26 ICP measurements at each
position were averaged over the 30-second stable period,
then converted to centimeters (cm) of water. To calculate the
CSFP in the lateral decubitus position, the CSFP measured
in the supine position was adjusted to be equivalent to
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FIGURE 5. Mean relative change of IOP, ICP and TLP (mm Hg) of three NHPs by change of body position with standard deviation and P
value (∗P < 0.01 and †P < 0.05).

TABLE 2. Relative Change of IOP, ICP, and TLP of Each NHP and Mean of All NHPs With Standard Deviation and P Value

NHP Supine to Prone Supine to Seated Supine to Standing Supine to Inverted

Relative Change in IOP
150069 −0.3 0.1 −0.9 8.1
150110 −0.5 −1.5 −1.7 15
12.38 −0.2 −0.3 −0.4 0.1
Mean −0.3 ± 0.2 −0.6 ± 0.8 −1 ± 0.7 7.7 ± 7.5

Relative Change in ICP
150069 −0.3 −10.8 −8.4 20.4
150110 −2.6 −13.3 −11.3 20.5
12.38 −3.3 −20.7 −20.8 17.4
Mean −2 ± 1.6 −15 ± 5.1† −13.5 ± 6.5† 19.4 ± 1.8∗

Relative Change in TLP (IOP − ICP)
150069 −0.1 10.9 7.5 −12.3
150110 2.1 11.8 9.7 −5.5
12.38 3.1 20.4 20.5 −17.2
Mean 1.7 ± 1.6 14.4 ± 5.2† 12.6 ± 7† −11.7 ± 5.9†

∗ P < 0.01.
† P < 0.05.

the lateral decubitus position using the hydrostatic column
height of the intraparenchymal ICP transducer from the
central spinal plane, such that it was functionally equivalent
to CSFP measured via lumbar puncture as in prior human
studies. The point in the spinal column at which CSFP is
zero in the sitting position, relative to the height position of
the pressure transducer, is simply the negative of the intra-
parenchymal ICP measurement (cm of water) in the sitting
position. Hence, the ICP (cm of water) in the sitting position
is simply added to the transducer position to identify the
zero-pressure location in the spinal column. The HIP was
calculated as the location in the spinal column where CSFP
is the same in the lateral decubitus and sitting positions,
expressed as the vertical height (cm) from the ICP trans-
ducer position in the frontal lobe (level with the centerline
of the eye; Table 3).

DISCUSSION

Results show that ICP changes much more than IOP with
body position, and thus ICP change drives TLP change to
a greater degree than IOP. Hence, TLP changes much more
than IOP with body position, and these changes occur very
rapidly with body position change. The rapid changes in IOP
and ICP with body position were about 2.7 and 2.5 seconds,
respectively, for each body position. The HIP was located
in the lower cervical/upper thoracic spine, 9.2 to 14.7 cm
from the eyes toward the tail, consistent with prior human
studies.25

IOP is a primary risk factor for glaucoma and damage
to the retinal ganglion cell axons is thought to occur at
the ONH. ONH biomechanics have been hypothesized to
play an important role in glaucoma pathophysiology, and
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FIGURE 6. A single body position trial in one NHP showing IOP (OD) (top, red trace) and ICP (bottom, green trace) change with body
position change from the supine baseline position. The insets show IOP (top, red trace) with the ocular pulse amplitude and ICP (bottom,
green trace) with the vascular pulse amplitude in ICP.

FIGURE 7. Continuous IOP and ICP during body tilt from the supine baseline to +45° and then to −45° in 15° increments, acquired
during HIP testing. (Top, green trace) IOP in the right eye (OD) measured in the anterior chamber with the indwelling Stellar telemetry
transducer; (Middle, cyan trace) ICP/CSFP measured intraparenchymally with the indwelling Stellar telemetry transducer; (Bottom, maroon
trace) ICP/CSFP measured intraparenchymally with the adjacent Codman ICP Express microsensor.

yet IOP is not the only mechanical pressure affecting this
region.38–42 Cerebrospinal fluid pressure surrounding the
retrobulbar optic nerve counteracts IOP, but only at the
ONH, although both experimental studies and numerical
simulations indicate this interplay is complex.43–48 IOP acts

on the entire corneoscleral shell and therefore IOP fluctua-
tions can expand or contract the scleral canal, directly affect-
ing the levels of in-plane mechanical stretch in the lamina
cribrosa. CSFP however, only acts on the retrolaminar optic
nerve and where the subarachnoid space abuts the peripap-

TABLE 3. Calculated CSFP HIP Measurements Expressed As Vertical Height From The Indwelling Intraparenchymal ICP Transducer

NHP

Spinal CSFP in
Lateral Decubitus
Position (cm of

water)

Intraparenchymal CSFP at
the Level of the Eyes in the

Sitting Position (cm of
water)

Zero CSFP in Sitting Position:
Vertical Distance from ICP
Transducer toward the Tail

(cm)

CSFP Hydrostatic Indifference
Point: Vertical Distance from

ICP Transducer toward the Tail
(cm)

150069 10.1 −4.6 4.6 14.7
150110 7.2 −2.0 2.0 9.2
150172* 9.2 −4.1 4.1 13.3

* NHP 150172 was used only for HIP testing, and not body position.
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illary sclera.39,43,45,47,49–51 Although IOP has been shown to
be important in glaucoma, TLP may be the more relevant
factor when considering biomechanical risk for the disease.

Eklund et al.’s11 results on positional changes in humans
showed that the largest calculated TLP change was observed
when moving from the supine to the seated position. Simi-
larly, Linden et al.31 studied the changes of IOP and ICP in
human patients with positional change and reported larger
changes in ICP than IOP measurements. Both these studies
showed that the calculated retrobulbar CSFP changed much
more than IOP with body position change which agree with
the results reported herein. The similarity in the direction
and relative magnitudes of IOP, ICP, and TLP changes seen
in this study and previous studies show that the NHP is
an appropriate model for positional testing and changes in
systemic pressure measurements.

The relative changes in IOP with body position are largely
consistent with our previously published work, with one
exception.33 IOP changes in NHP 12.38 were not consis-
tent with the other two animals, especially for the supine to
inverted position (Table 3), thus resulting in a large standard
deviation of the mean across the three animals. It is possi-
ble that IOP measurements in this animal are erroneous and
the error is related to implant failure that occurred shortly
after these measurements were taken. That said, the IOP data
from fellow eyes are consistent across all three body posi-
tion trials and IOP calibration data from the sessions before
and after the body position testing reported herein indi-
cated proper IOP transducer function in this NHP. Hence, we
elected to include the IOP measurements from this animal in
the analysis despite the inconsistencies with the other NHPs
and data from prior studies. There is no obvious explanation
for these results.

It should also be noted that ICP is the best surrogate
measure for both optic nerve subarachnoid space pressure
and retrolaminar tissue pressure. However, it has been previ-
ously shown that ICP is likely affected by orbital tissue pres-
sure and pia mater tension when ICP decreases below ∼3
mm Hg.49 Therefore it can be assumed that the interaction
between ICP and the orbital tissue pressure thus also affects
the true TLP when ICP levels are very low in the sitting
and standing positions. Due to this effect, it is reasonable
to conclude that the relative change in ICP and TLP from
the supine to the seated and standing positions we report
ignore the interaction of with orbital tissue pressure, lead-
ing to an overstatement of true TLP change. That said, ICP
tracks subarachnoid space pressure very well for ICP >3
mm Hg, so this effect would be limited to approximately
20% of the 15 and 13.5 mm Hg ICP changes we report for
body position change from supine baseline to seated and
standing positions, respectively. Also, it is unlikely that this
previously reported phenomenon49 would alter the reported
increases in ICP and TLP in the inverted position.

The study is limited by the following considerations. First,
the study was limited to a small sample size of three NHPs
due to the preliminary nature of the investigation. Hence,
the reported results may not translate to the larger popu-
lation of Rhesus macaques, although the results showed
significant differences between body positions and ICP and
TLP, showing that the results were consistent between trials
and across animals such that we had adequate statistical
power to detect effects. Also, these results may not trans-
late to the human population because of differences in eye
and body size, although similar changes in IOP, ICP/CSFP
and TLP with body position, and similar variability between

subjects, have been reported in patients.11,31 Similarly, the
hydrostatic indifference point calculation was also limited in
sample size, although the results are consistent with those
of humans in terms of the location of the HIP between
the lower cervical spine and the upper thoracic spine in
both NHPs and humans.25 Second, the adolescent age of the
NHPs is a limiting factor, in that the reported results may
not directly translate to older NHPs or humans in whom
glaucoma would be prevalent. However, the magnitude of
TLP change due to body position is much more likely to
be driven by physics (cephalad fluid shifts) than any age-
related physiological phenomenon. However, we report the
time course and magnitude of TLP change with body posi-
tion in adolescent NHPs, as well as the location of the HIP,
and future positional studies should be performed in older
NHPs. Third, the tilt table is unable to position animals in the
upright (seated/standing) or inverted positions, so positional
testing was done manually. However, the tilt table was used
to accurately assess and measure the HIP of three animals,
two of which were included in this body position study. A
future study using precisely controlled angular tilt in a larger
number of animals will be performed. Finally, the third NHP
(NHP 150172) used for the HIP testing was not included in
the body position analyses because he did not have a work-
ing IOP transducer. Similarly, NHP 12.38 was not used for
HIP testing because his telemetry implant failed shortly after
the body position testing was performed. There is no reason
to suspect that this biased the reported results in any way.

Body position testing in NHPs showed that TLP change
due to body position change is driven more by ICP/CSFP
than IOP, suggesting that ICP/CSFP variability is an impor-
tant driver of ONH and laminar biomechanics. Natural IOP,
ICP, and TLP variability, coupled with telemetry, should
allow us to test the hypotheses that IOP, ICP, or TLP fluc-
tuations contribute independently to glaucoma onset or
progression.
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