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Duloxetine (DLX) has been approved for the successful treatment of psychiatric diseases, including major depressive disorder,
diabetic neuropathy, fibromyalgia and generalized anxiety disorder. However, since the usage of DLX carries a manufacturer
warning of hepatotoxicity given its implication in numerous cases of drug-induced liver injuries (DILI), it is not recommended for
patients with chronic liver diseases. In our previous study, we developed an enhanced human-simulated hepatic spheroid (EHS)
imaging model system for performing drug hepatotoxicity evaluation using the human hepatoma cell line HepaRG and the support
of a pulverized liver biomatrix scaffold, which demonstrated much improved hepatic-specific functions. In the current study, we
were able to use this robust model to demonstrate that the DLX-DILI is a human CYP450 specific, metabolism-dependent, oxidative
stress triggered complex hepatic injury. High-content imaging analysis (HCA) of organoids exposed to DLX showed that the
potential toxicophore, naphthyl ring in DLX initiated oxidative stress which ultimately led to mitochondrial dysfunction in the
hepatic organoids, and vice versa. Furthermore, DLX-induced hepatic steatosis and cholestasis was also detected in the exposed
EHSs. We also discovered that a novel compound S-071031B, which replaced DLX’s naphthyl ring with benzodioxole, showed
dramatically lower hepatotoxicities through reducing oxidative stress. Thus, we conclusively present the human-relevant EHS model
as an ideal, highly competent system for evaluating DLX induced hepatotoxicity and exploring related mechanisms in vitro.
Moreover, HCA use on functional hepatic organoids has promising application prospects for guiding compound structural
modifications and optimization in order to improve drug development by reducing hepatotoxicity.
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INTRODUCTION
Depression has become a significant public health problem in
most countries. While its current therapeutic management is
mainly based on the use of antidepressants and psychological
treatments [1, 2]. Most antidepressants are known to cause
adverse reactions, which is the most common reason for
discontinuing treatment. Several antidepressants are associated
with the increased risks of hepatotoxicity, especially in elderly
patients and those who are on daily multi-drug regiments [3–5],
e.g., nefazodone, which has been withdrawn from the market due
to life-threatening liver injury, including fulminant liver failure and
death [6, 7]. As such, there is an urgent need for discovering new
antidepressants with better effects and lower collateral damage.
Duloxetine (DLX) is one of the most commonly prescribed

antidepressants. In addition to its use as the treatment of major
depressive disorders, it is also one of the few antidepressants
approved for use outside of psychiatric disorders, such as for
management of diabetic peripheral neuropathic pain, fibromyalgia

and generalized anxiety disorder [8–10]. As the demand for DLX in
clinical applications increases, concerns for DLX-induced liver injuries
(DLX-DILI), including hepatocellular, cholestatic, and mixed hepatic
injury have also been raised, especially in patients with pre-existing
liver dysfunction [11, 12], Individuals with hepatic cirrhosis exhibit a
three-fold increase in AUC and t1/2 of DLX when compared with that
of healthy individuals [13]. The reported DLX-DILI were concomitant
with elevated aspartate transaminase (AST) and alanine transami-
nase (ALT) enzyme levels [14]. Alarmingly, cases of DLX-involved
fulminant hepatic failure and death have even been reported
[15–17]. In 2005, a ‘Dear Health Care Professional’ letter in the US
provided updated language on the issue of hepatotoxicity as it
relates to the DLX safety profile [11]. As stated, even if liver toxicity
occurs, the antidepressant activity of DLX is still very valuable. As
such, further investigations into the molecular mechanism of DLX-
DILI is urgently needed both to better instruct patients in using the
drug more safely and scientifically, and in directing pharmaceutical
researchers to develop safer and more efficient antidepressants.
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The recent development of innovative technologies brings
more opportunities for using DILI prognosis and evaluation as a
high sensitivity, low cost high throughput screening tool [18, 19].
With the help of molecular imaging, high-content screening, and
cellular phenotype on suitable human hepatic cell models, most of
the DILI related molecular pathways can be uncovered, the extent
of which even includes reactions on a tissue and organ level, and
further allows the prediction of the drug toxicity resulting from
molecular initiation or other pathways [20–22]. We previously
developed a simple but robust human-specific enhanced hepatic
spheroid (EHS) platform based on native liver ECM scaffold with
multiparametric readouts to analysis the hepatotoxicity and
possible mechanisms induced by antidepressants [23, 24]. The
EHS platform was based on HepaRG cells, which have been
emerged as a potential alternative cell to primary cultures of
human hepatocytes for drug hepatotoxicity assessments [25, 26].
In the present study, we used the EHS platform to analyze

features of DLX-DILI and to characterize the mechanisms involved
in the initiation and progression of hepatic lesions. We demon-
strated that the DLX induced oxidative stress is the primary event
that leads to the dysfunction of the mitochondria, resulting in
steatosis and cholestasis. DLX has been reported to be highly
bound to plasma proteins and is extensively metabolized in the
liver through mechanisms in phase I (CYP1A2, CYP2D6) and phase
II metabolism [27]. However, due to differences in specificity
between human and animals, it is hard to accurately predict DILI
in human beings by using the rodent models [28, 29]. Thus, when
extrapolating metabolism data of DLX from animal models to
humans, extra care should be applied.
Using DLX as a lead compound, we modified and synthesized a

series of chemical compounds with novel structures e.g., in order to
replace the naphthyl ring with 1H-indole. We found that one of the
compounds, S-071031B, by replacement of naphthyl ring with
benzodioxole, (±)-3-(benzo[d] [1, 3] dioxol-4-yloxy)-N-methyl-3-
(thiophen-2-yl) propan-1-amine, showed potent antidepressant
activity [17, 30]. Interestingly, this was consistent with the fact that
some other types of drugs, e.g., biphenyldicarboxylate, bicyclol,
sesamol, and schisandrin C, which demonstrate protective effects
against liver injury, also have a benzodioxole group. S-071031B
treatment resulted in lower hepatotoxicity when compared with
that of DLX [31]. This replacement of the naphthyl ring structure in
DLX results in a promising new compound that can be used as an
even safer and powerful alternate antidepressant to treat depression
in the future. However, the mechanism of DLX-DILI is currently
unclear. Here we use a simple but robust platform, which combines
both enhanced human hepatic spheroid and HCA imaging
technology to explore the DLX-DILI and its related mechanisms.

MATERIALS AND METHODS
More detailed methods are available in the online supporting information.

Preparation of EHS model
The EHS were prepared as reported previously. The liver extracellular
matrices, which were obtained from the native rat liver using the
previously described perfusion decellularization method, were used as
additives to bioactivate the hepatic spheroids [23, 32]. Briefly, cells were
seeded at a density of 400 cells/well in 100 μL culture medium
supplemented with pulverized liver extracellular matrices at the protein
concentration of 2.5 μg/mL, in round-bottomed 96-well plates with ultra-
low attachment surface (Costa, Corning). The culture medium was partially
(100 μL) replaced by fresh medium every other day. After 14 days, the
prepared spheroids were used for the following experiments.

Multiparametric assays of HepaRG cells under DLX treatment
by HCA
The HepaRG spheroids were incubated with DLX in a series of increasing
concentrations, ranging from 0.008 to 1mM for 4 h and 24 h, respectively.

Then, HepaRG spheroids were washed and stained with selected
fluorescence probes (Table S3) to measure and assess DLX induced
alterations of cellular function. After staining, the images of spheroids were
acquired using an Operatta High-Content Imaging System (PerkinElmer),
with a 10* Plane Fluor objective. A stack of 20 planes separated by 5 μm
was acquired, starting at the well bottom and covering the lower half of
each spheroid. All individual images were saved and used for automated
quantitative analysis using Harmony®4.1 High-Content Imaging and
Analysis Software. Data generated from each treatment were normalized
to the control spheroids, those without drug treatment.

Cytotoxicity assay
HepaRG spheroids were exposed for 4 h, 24 h or every second day from
day 14 to day 21 in medium respectively. Cells were exposed to a range of
concentrations from 0.008 to 1mM of DLX. All the test agents were
prepared as stock solutions in tissue culture-grade dimethyl sulfoxide
(DMSO) and the final concentration of DMSO in media was 0.1%. The cells
were incubated with 20 μL 0.1% Alamar blue reagent for 2 h for the
viability measurements, and the fluorescent intensities were measured
using the microplate reader (Ensight, PerkinElmer) at wavelengths 530 nm
for excitation at 590 nm for emission. Spheroids treated with 0.1% DMSO
were used as control. To test the effect of CYP inhibitors on DLX and
S-071031B cytotoxicity, spheroids were pretreated with QD (2 μM), ANF
(0.5 μM), ABT (1 mM) or ATI (30 μM) for 4 h. The cytotoxicity of cells co-
treated with DLX and NAC (10mM) or GSH (10mM), or treated with
S-071031B was tested as in the method described above. To assess the
cytotoxicity of DLX after pretreatment, spheroids were pretreated with LPS
(1 μg/mL, 2 μg/mL), H2O2 (25 μg/mL, 50 μg/mL), CCl4 (0.2%, 0.4%) or
Ethanol (600mM, 800mM) for 4 h.
To assess cholestatic cytotoxicity, a mixture of five BAs was used (Table S2).

The stock was prepared in DMSO according to the relative concentration of
each BA found in normal human plasma. Spheroids were treated with
different compounds in the presence or absence of the BA mixture, and cell
viabilities were tested as described above. The CIx is defined as the ratio
between the IC50-value of co-exposure to drug plus BAs and the IC50-value
of drug alone. Compounds with a CIx ≤ 0.80 were considered to have
cholestatic risk, according to cholestatic risk classification [33].

In vivo CCl4-induced hepatotoxicity in rats
The CCl4-induced hepatoxicity test was performed as previously described
with minor modifications [34]. The male Sprague-Dawley rats were
purchased from Vital River Company (Beijing, China), and raised under
standard pathogen free conditions in the Laboratory Animal Center of the
Academy of Military Medical Sciences. All animal experiments were
performed in accordance with the principles of care and use of laboratory
animals. The SD rats (male, 7–8 weeks old) were randomly divided into six
groups (ten rats per group). Rats were injected with CCl4 (0.5 mL/kg, i.p.,
dissolved in corn oil) on day 1, 4 and 7, and co-treated orally with vehicle
(corn oil), S-071031B (20, and 40mg/kg) or DLX (20, and 40mg/kg) daily
consecutively for 7 days. Rats in control group were injected with the
vehicle, instead of CCl4, on day 1, 4, and 7, and co-treated orally with
distilled water daily for 7 days. Twenty-four hours after the last injection of
CCl4, rats were anesthetized and blood samples were collected from the
abdominal aorta. Plasma was separated by centrifugation at 3000 rpm for
15min at 4 °C and used for assays of LDH, ALT, AST and ALP. After
collection of blood, left liver tissue was fixed in 10% formalin. The fixed
livers were dehydrated, embedded in paraffin, and then sliced to obtain a
thickness of 5 μm and stained by standard H&E protocol to check
pathological changes of different treatment groups.

Statistical analysis
All experiments were carried out in triplicate unless otherwise indicated.
Error bars represent standard deviations. Data are presented as mean
value ± SD from three independent measurements. Graphs were plotted
using origin 9.0 software. Student’s t test was carried out to compare the
difference between two groups, other data were analyzed using one-way
analysis of variance (ANOVA) followed by Dunnett’s test.

RESULTS
DLX caused GSH depletion and ROS generation in EHS model
The spheroid culture system was developed by using human
hepatoma HepaRG cells supported by a pulverized liver biomatrix
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scaffold. The biomatrix scaffolds were decellularized from the rat
liver, containing most of liver tissue-specific extracellular matrix
(ECM) components and matrix-associate regulators, including
soluble cytokines and growth factors, which can provide the
native structural and functional supports for cell culture in vitro.
The results indicated that the HepaRG spheroids could be
maintained more than 4 weeks, and kept more powerful
hepatic-specific functions, especially those of phase I and II
metabolic enzymes and transporters so as to simulate the drug
induced human-specific hepatotoxicity in vitro (Fig. S1).
DLX induced dose-time-dependent toxicity could be found in

both DLX-exposed EHSs and 2D monolayer cultured cells.
However, more severe cell damage was found to be detected in
EHS models of lower concentration, with single dose for 4 h or for
24 h. Given the fact that spheroids can survive more than 4 weeks
with stable cell viabilities maintained, the EHS model allows for
long-term drug exposure. We have found that with repeated
dosing of DLX, the cell viability of EHS further decreased (Fig. 1A).
DLX contains a naphthalene structure, which is easily activated by
CYP2D6 and CYP1A2 [35], and attacked by the sulfhydryl group of
glutathione (GSH) to form adducts, which may cause the depletion
of GSH and result in an overall decrease in cell viability (Fig. S2).
The enzyme activities of CYP2D6 and CYP1A2 of the cells in EHS
model were much higher than those under 2D culture (Fig. 1B and
Table S1), demonstrating the higher CYPs enzyme activities
experienced in EHS models was related to the sensitivity of cells
in response to DLX. Furthermore, with the co-treatment of specific
inhibitors, Quinidine (QD) to CYP2D6, α-Naphthoflavone (ANF) to
CYP1A2, or 1-aminobenzotriazole (ABT) and atipamezole (ATI) the
broad-spectrum CYPs enzyme inhibitors, the cell viability was
increased in correlation with decreasing DLX-induced cell damage
(Fig. 1C). As speculated, DLX directly caused the GSH depletion in
the EHS model. And the GSH content recovered following the
spheroids after co-treatment with CYPs enzyme inhibitors (Fig. 1D
and Fig. S3). These results indicate that hepatotoxicity caused by
DLX may be CYP-dependent manner.
Subsequently, we found that DLX induces GSH depletion

quickly even at the lowest dose of 0.01 mM, and in addition,
generated reactive oxygen species (ROS) later on (Fig. 1E), results
comparable to that of the positive drug, diethyl maleate (DEM), a
thiol-reactive α, β-unsaturated carbonyl compound, which
depletes GSH in exposed cells [36]. L-buthionine-S, R-sulfoximine
(BSO), an inhibitor of γ-glutamylcysteine synthetase [37], can also
inhibit GSH biosynthesis. DLX significantly enhanced the cell
toxicity in the presence of BSO, further demonstrating that GSH
depletion induced oxidative stress potentially plays an important
role in DLX-DILI (Fig. 1F). Subsequently, the antioxidant N-Acetyl-L-
cysteine (NAC) was used to test whether the antioxidant could
combat the DLX triggered oxidative stress. The palliative cytotoxic
effects of DLX, or with NAC protection after single or repeated
dose exposure were evaluated, and the DLX-induced cytotoxicity
was effectively reduced. In addition, the supplement of exogenous
GSH also reduced the DLX-induced toxicity as shown by
increasing IC50 values (Fig. 1G). As expected, the GSH and ROS
concentrations almost reached the control levels following co-
incubation with NAC (Fig. 1H). The expression of the antioxidant
enzyme superoxide dismutase (SOD), and manganese superoxide
dismutase (MnSOD) were enhanced after treatment of DLX. The
heat shock proteins (HSP), especially HSP70, and Forkhead box O3
(FOXO3) was significantly up-regulated with DLX treatment,
indicating a serious disorder in the redox status; while co-
incubation with antioxidant NAC could effectively reduce the DLX-
induced hepatoxicity (Fig. 1I).

DLX led to the mitochondrial dysfunctions and cell apoptosis
in EHS model
A fluorescent probe pattern staining was used to evaluate the
DLX-induced hepatotoxicity from a different perspective, using

high-content imaging analysis (HCA) (Fig. 2A). The mitochondrial
membrane potential (MMP) decreased significantly in a dose
response effect when EHSs were treated with DLX for 24 h. Similar
results were shown in the cellular alterations of cell apoptosis with
the increasing intensity of Caspase-3/7. The steatosis could be
observed in the DLX-treated EHSs by Nile Red staining.
5-Chloromethyl fluorescein Diacetate (CMFDA) intensity decreased
in the identified region, indicating that the bile canaliculi was
damaged. More importantly, of all the cellular alterations that
occurred, the oxidative stress had changed most significantly (Fig.
2B). These results proved once again that oxidative stress was the
igniting cell event leading to other subsequent toxic responses.
This contributed to the cell apoptosis and cell deaths, which seem
to constitute the underlying mechanisms behind the observed
DLX-induced hepatotoxicity.
Under physiological conditions, the mitochondrial electron

transport chain is a major source of ROS. MitoSOX™ staining in
DLX-treated EHSs supported the conclusion of the presence of
mitochondrial oxidant stress. Additional amounts of ROS have
been induced in DLX-treated EHSs. This is evident by the fact that
mitochondria-targeted antioxidant, Mito-TEMPO, could inhibit the
ROS generation by the mitochondria in a dose-dependent
manner, and also increase the overall cell survival. The same
protective effects also could be achieved with NAC co-treatment
(Fig. 2C). Therefore, the antioxidant therapy effectively decreased
the DLX-induced cytotoxicity.
In the mitochondria, the naked mitochondrial DNA (mtDNA) was

very easily attacked by excess ROS. The mtDNA content was
determined by amplification of the mitochondrial gene Cytochrome
b (cytb). As shown in Fig. 2D, DLX caused significant reduction in
mtDNA content by 66%. Damage to the mtDNA affects its encoded
transcripts, including the respiratory chain related subunits. The
expression of two mtDNA-encoded transcripts, coding for cycloox-
ygenase 1 (COX1) and NADH dehydrogenase subunit 5 (ND5), was
significantly down-regulated with treatment of DLX. A bioenergetics
assay was then performed by monitoring the oxygen consumption
rate (OCR), which indicates mitochondrial oxidative phosphorylation
(OXPHOS) activity. In the EHSs treated with 0.2mM DLX, the initial
OCR decreased to varying degrees when compared with the control
group. The OCR values reduced nearly to zero after 200min of
incubation, whereas co-incubation of NAC ultimately did not cause
changes in basal OCR (Fig. 2E). Low dose drug exposure was then
used to study the following processes. Basal respiration was
calculated by measuring the initial OCR and subtracting residual
OCR in the presence of the electron transport complex I and III
inhibitors, anti-mycin A and rotenone, respectively. The decreased
OCR observed upon the addition of oligomycin, an inhibitor that
blocks ATP synthase, and indicates coupled respiration. Carbonyl
cyanide p-trifluoromethoxy phenylhydrazone is an uncoupler of
mitochondrial ATP generation from OCR by transporting protons
across the mitochondrial inner membrane instead of through the
proton channel of ATP synthase, increasing respiration and
indicating the maximal respiratory capacity (Fig. S4A). Mitochondrial
oxygen consumption during ATP production follows a similar
pattern to that of basal OCR. Analysis of the key parameters of
mitochondrial respiration showed that DLX significantly decreased
the ATP production as well as the maximal OCR in HepaRG cells,
suggesting the inhibition of mitochondrial OXPHOS by DLX (Fig. 2F
and Fig. S4B). In contrast, NAC could reduce the mitochondria
dysfunctions caused by DLX, with less changes on the other key
parameters of mitochondrial respiration. As shown in Fig. S4C, EHSs
in the control group showed high MMP, which was defined by a
high ratio of red to green fluorescence of JC-1 probe. Both green
and red fluorescence co-exist in the same cells. The shift in
membrane potential was observed as a dramatic reduction in red
fluorescence and visibly increased green fluorescence in the DLX-
treated EHSs, and flow cytometry analyzation showed that the red
to green fluorescence intensity ratio decreasing happened in
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79.23 ± 5.06% of cells (Fig. 2G). DLX treatment increased the
depolarization of mitochondrial membranes, indicating the exis-
tence of functional mitochondrial damage and thus increased
susceptibility to apoptosis. Transmission electron microscope (TEM)
images further revealed severe structural damages, including
significant swelling and rupture of cristae in the vesicular matrix in
DLX-treated EHSs mitochondria. However, intact ovular double-
membrane structure, in which the cristae were arranged in an
orderly manner with a normal structure could be found in the
mitochondria of EHSs co-treated with NAC, which were similar to
what was observed in the control group (Fig. 2H).
The damaged mitochondria enhanced cell susceptibility to

apoptosis, and vice versa. The representative images showed that
DLX treatment could simultaneously increase the fluorescence of

annexin V and PI in the whole spheroid (Fig. S4D). Flow cytometry
showed that the proportion of Annexin V-positive cells moderately
increased following DLX treatment (Fig. 2I and Fig. S4E). The
percentage of cells at early apoptotic stage (Annexin V+/PI−)
incubated with DLX was 46.52 ± 2.22% compared with negative
control cells (1.81 ± 0.40%), indicating that DLX significantly
induced early apoptosis in EHSs. Apoptosis induced cell death
indicated with Tunel staining also showed that the positive cells in
DLX treated EHSs were much more than those in control group or
the EHSs co-treated with NAC (Fig. S4F). DNA fragmentation
analysis showed that the percentage of sub-G1 cells in DLX-treated
group (38.7 ± 5.7%) could be reduced by NAC (9.3 ± 1.5%) (Fig. 2J).
Meanwhile, the cell cycle analysis showed that DLX treatment
resulted in greater amounts cells accumulated in S and G2/M
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phases (Fig. S4G). In summary, the DLX-induced oxidative stress
leads to a consecutively occurring events that disrupt the
mitochondria and result in the mitochondria dysfunction and
apoptosis, moreover, they could be reduced by antioxidant therapy.

Structure optimization decreased the DLX-induced
hepatotoxicity
A new structure, benzodioxole, was used to replace the naphthyl
ring of DLX, and a new compound, S-071031B, was synthesized

(Fig. 3A and Fig. S5A,B). In order to verify the antioxidative effect of
benzodioxole group in S-071031B, H2O2 pre-injured EHSs have
been used. As shown in Fig. S5C, the increased ROS generation, as
well as the GSH depletion, induced by H2O2 could be effectively
neutralized by S-071031B. As a result, cell death was able to be
reduced to certain extents with any additional treatment of
S-071031B (Fig. S5D).
The GSH and ROS content and the ratio of live/dead cells in S-

071031B-treated EHSs showed no statistical difference in
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Fig. 2 DLX led to the mitochondrial dysfunctions and cell apoptosis in EHS model. A Representative confocal images of the hepatic cellular
alterations induced by DLX. Scale bar= 100 μm. B The dose dependent multiparametric curves of the hepatic cellular alterations induced by
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comparison to control group (Fig. 3B–D). More importantly,
S-071031B showed no cytotoxicity in HepaRG cells under either
single or repeated dose exposure, suggesting that the use of
S-071031B is safer than DLX (Fig. 3E). In addition, CYPs enzyme
inhibitor were found to have no effect on the S-071031B-treated
cells, further indicating the chemical structure optimization could
effectively avoid or weaken the DLX-DILI (Fig. S6).

DLX causes fatty liver and cholestasis in carbon tetrachloride
(CCl4)-treated rats
Individuals with pre-existing chronic liver disease, or those
consuming significant amounts of alcohol, may be at a greater
risk of DLX-DILI. In the EHS model, cells that are pre-injured
through exposure to different chemicals including that of
lipopolysaccharide (LPS), H2O2, CCl4, or ethanol, co-treatment
with DLX, but not S-071031B have exacerbated cell damages
(Fig. 4A). Consistent with the in vitro results in EHSs, CCl4 pre-
injured rats were more likely to show DLX-DILI (Fig. 4B). When
compared with the control group, the DLX-treated group

experienced an increase in plasma lactate dehydrogenase
(LDH), ALT, AST and alkaline phosphatase (ALP), indicating the
DLX-DILI with cholestasis (Fig. 4C). Despite this, the S-071031B
treatment didn’t cause the alterations in the blood biochemical
study. H&E images of liver taken after drug treatments were
shown in Fig. 4D. The control group was shown to have normal
hepatic lobules formed of radially arranged cords of hepato-
cytes, separated by blood sinusoids. In the CCl4-treated model
group, there was significant degeneration of cytoplasm of
hepatocytes, while nuclei were polymorphism as well as
pyknotic, karyorrhectic and apoptotic manifested by eosinophi-
lic cytoplasm and condensed nuclei. The DLX treatment
enhanced such injury on liver with more severe forms of nuclear
degeneration around nodule of inflammatory cell infiltration at
the dose of 40 mg/kg, which showed typical drug-induced fatty
liver pathological characteristics. However, the S-071031B-
treated group showed similar liver pathological state with
control group, suggesting S-071031B could not induce serious
hepatotoxicity in vivo.
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Fig. 3 DLX-induced cytotoxicity and ROS production in EHSs can be reduced by S-071031B. A Chemical structure of DLX and S-071031B.
B The fold changes of GSH or ROS content of EHS cells treated with DLX or S-071031B. C, D Representative confocal fluorescent images of
ROS/GSH assay (C) and live/dead (D) and on EHSs with treatment of DLX or S-071031B for 24 h. E Dose response curves, given as percentage
of control treated with 0.1% DMSO, and IC50, to assess single-dose 4 h or 24 h and repeated-dose (right) toxicity of DLX or S-071031B on
HepaRG spheroids. mages. Scale bar= 100 μm. S-071031B vs DLX: ***, p < 0.001; two-tailed Student’s t tests.
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DLX-induced steatosis and cholestasis could be reproduced in
EHSs
Mitochondrial fatty acid β-oxidation plays a pivotal role in
maintaining body energy homoeostasis, especially during cata-
bolic states. The damage of mitochondrial respiratory chain (MRC)
will reduce the necessary substrates for fatty acid β-oxidation [38].
The extra fatty acid may induce the lipid accumulation in cells,
which can be stained by Nile Red. As shown in Fig. 5A, both the
lipid droplet area and fluorescence intensity were found to be
found increased dramatically in DLX-treated EHSs.
The lipid accumulation in hepatocytes arises due to the

imbalance between lipid acquisition and removal. Fatty acid
transport could be monitored in real-time by a BODIPY®-
dodecanoic acid fluorescent fatty acid analog. The DLX pre-
treated spheroids showed strong fatty acid uptake capacity with
increasing fluorescence in EHSs (Fig. 5B). We found that the DLX
could significantly increase the fatty acid transport within the first
30min. Although the control spheroids can also uptake fatty acid
to generate energy, this process was very subtle, while S-071031B

did not disturb the normal transport to fatty acid of hepatocytes.
RT-qPCR assays indicated that there was an increase in mRNA
levels of a number of genes involved in the lipid synthesis
pathway (Fig. 5C). The activity of the MRC complex I in DLX-
treated EHS cells were decreased, resulting in an increase in the
ratio of NADH/NAD+ (Fig. 5D). The reduced NAD+ resulted the
interrupt of fatty acid β-oxidation. Lipid removal is usually
facilitated by secretion in the form of very low density lipoprotein
(VLDL) particles for delivery to peripheral tissues. Each VLDL
particle is stabilized by a single molecule of apolipoprotein B
(ApoB). The expression of ApoB in drug treated EHSs showed that
it is in fact DLX and not S-071031B treatment that caused its
significant decrease (Fig. 5E). Therefore, the extraneous lipid could
not be eliminated effectively in DLX-treated spheroids. The
summary of the induction of anomalous lipid metabolism by
DLX was shown in Fig. 5F.
Importantly, the abnormal elevation of CYP2E1 was found in

DLX-treated EHSs (Fig. 5G). CYP2E1 is important for ROS
generation [39]. Free radicals interact with lipids and proteins
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that are abundantly present in biomembranes to yield lipid
peroxidation products, e.g., malondialdehyde (MDA), associated
with mutagenesis (Fig. 5H). We further found that in DLX-
treated group, the enhanced lipid peroxidation occurred with

increasing fluorescence intensity (Fig. 5I). Enhanced lipid
peroxidation and increased CYP2E1 expression further aggra-
vates ROS generation, and in a vicious circle. Thus, under the
exposure of DLX, the balance is altered by a multitude of events
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Fig. 5 S-071031B decreased the steatosis induced by DLX. A Representative confocal fluorescent images with identified lipid spots of EHSs
with DLX or S-071031B treatment stained by Nile Red (orange). The AFI of lipid spots were shown in the images (up) and their area was
measured and normalized to control group (down). Scale bar= 20 μm. B Fluorescence images and fatty acid accumulation analysis of EHSs
with DLX or S-071031B treatment stained by QBT kit to monitor the fatty acid uptake for 180min. Scale bar= 200 μm. C Related gene
expressions of pyruvate dehydrogenase kinase 4 (PDK4), acyl-CoA synthetase long-chain family member 4 (ACSL4), 1-acylglycerol-3-
phosphate O-acyltransferase 1 (AGPAT1), solute carrier family 2 member 4 (SLC2A4), ATP citrate lyase (ACLY), fatty acid desaturase 2 (FADS2)
and elongation of very long chain fatty acids 1 (ELOVL1) in DLX or S-071031B treated HepaRG cells estimated by RT-qPCR. D and E The
enzyme activity of MRC complex I (D) and the ratio of NADH/NAD+ (E) in EHS cells treated with DLX or S-071031B. F Related gene expressions
of apolipoprotein B (ApoB) in DLX or S-071031B treated EHSs. G The schematic summary of mechanism about DLX induced steatosis.
H Related gene expressions of CYP2E1 in DLX or S-071031B treated EHSs. I MDA content in DLX or S-071031B treated EHSs. J Representative
confocal fluorescent images of EHSs with DLX or S-071031B treatment to detect the drug caused lipid peroxidation. Scale bar= 100 μm. *,
p < 0.05; ***, p < 0.001; two-tailed Student’s t tests.
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that both increase hepatic lipid concentrations and result in
steatosis.
Hepatic cells in spheroids were able to functionally transport

bile acids (BAs) into micro-canaliculi. CMFDA staining assay

showed that after treatment with DLX, the area of recognized
bile canalicular region and fluorescence intensity were
decreased, indicating that the canaliculi were damaged.
S-071031B treatment showed no change compared with control
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Fig. 6 S-071031B did not cause the cholestasis in HepaRG spheroids. A Composite confocal images of EHSs treated with DLX or S-071031B.
The resulting object masks were displayed on the bottom of each image, with masks for the bile canaliculus structure with a random pseudo-
color (left). And the quantified AFI (BC-AFI) and area (BC-A) of bile canaliculus in drug treated HepaRG spheroids were shown in the right
panel. Scale bar= 100 μm. B EHSs were singly (left) or repeatedly (right) exposed to DLX or S-071031B in the presence or absence of a non-
toxic bile acid (BA) mixture. The cell viability was measured and normalized to control group. C IC50 and cholestatic index (CIx) analysis of
different groups treated EHSs. D ATP content of cells in EHSs after different treatments. E Gene expression of BSEP, MDR1, NTCP, and OATP2B1
in drug treated EHSs.
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EHSs (Fig. 6A). It was well known that compounds with
cholestatic liability and an externally added mixture of BAs
pose selective synergistic toxicity. Therefore, the strategy of
using DLX and BAs co-exposures was employed to identify
compounds with cholestatic risk. The mixture used in this study
contained the five most abundant BAs found in human plasma
(Table S2). The toxicity of the BA mixture was measured before
exposure to ensure that non-toxic concentrations were used for
the co-exposure (Fig. 6B). Co-exposure to DLX and BAs resulted
in a significant increase in toxicity when compared to the
exposure to DLX only, in both single dose [cholestatic index
(CIx)= 0.653] and repeated dose (CIx= 0.383). Co-exposure to
S-071031B and BAs experienced almost no change in single
(CIx= 0.975) and repeated dose (CIx= 0.987), suggesting that
with the modifications to S-071031B, the cholestasis induced by
DLX was strongly decreased or completely avoided altogether
(Fig. 6C). Because most of these transporters are ATP-dependent
[40, 41], DLX treatment was found to induce the decrease of ATP
in cells (Fig. 6D). Furthermore, the bile salt export pump (BSEP) is
the most physiologically important canalicular bile transporter.
The gene expression of BSEP was down-regulated with DLX
treatment. Other efflux transporter (MDR1) and uptake trans-
porters (NTCP and OATP2B1) also showed a significant decrease.
Likewise, these genes were reduced by many folds when
changed to S-071031B (Fig. 6E). Taken together, DLX-induced
steatosis and cholestasis could be reproduced in EHS model,
and both injury phenomena were avoided by restructure of DLX
to S-071031B.

DISCUSSION
Unlike the idiosyncratic DILI, many drugs have a clear dose-time
toxicity relationship due to the fact that their hepatotoxicities are
metabolism-dependent. However, because of the lack of ideal
models and related tools, the toxicity and related mechanisms are
difficult to explore. This is one of the many challenges in drug
research and development, and also the main reason for the
failure of pharmaceutical enterprises and the misfortune of
patients [42].
DLX is a very mature drug and valuable for its use in treatment

as an antidepressant. However, the DLX-DILI case reports in DILI
network and relevant articles cannot be ignored [11, 15] and
according to the reports, steatosis and cholestasis are the two
main symptoms. An extensive, predominantly zone-3 liver
necrosis and moderate to marked steatosis have been pre-
viously reported to have occurred in a transjugular liver biopsy
[15]. Park et al. reported cholestatic jaundice induced by DLX in
a 22-year-old Korean male patient [43]. In fact, there are much
less DLX-DILI cases reported when compared with drugs that
have been widely reported for the occurrence of hepatotoxicity.
There is reason to suspect that people with high drug metabolic
enzyme levels are more likely to develop metabolic toxicity. In
order to explore the major molecular priming events and
recapitulate the in vivo toxic effect, a more ideal model for
in vitro research is a necessity.
Patients with pre-existing chronic liver disease are at a greater

risk for hepatic injury with DLX. The manufacturer has revised the
product label to include a warning that DLX “should ordinarily not
be prescribed to a patient with substantial alcohol use or evidence
of chronic liver disease”[11]. During our own study, the DLX
treatment did not have serious hepatotoxicity on healthy rats,
however, in CCl4 pre-injured rat models, the DLX significantly
enhanced liver injury. We assumed that the degree of bioactiva-
tion for DLX was very low, especially in healthy rats and human.
CCl4 as a conventionally used agent can induce liver toxicity,
having been reported to induce CYPs’ activities in rats. Thus, the
hepatotoxicity induced by DLX is easier to detect in CCl4 pre-

injured rats. The higher CYPs expression in vitro model is
conducive for predicting and detecting the DLX-DILI, and other
hepatotoxic compounds. In our past research, we confirmed that
in the 3D spheroid culture condition, the expression and activity of
CYP could be increased by many folds in comparison to that of a
monolayer culture. Based on that, we have developed more
effective models and more sensitive and specific quantifiable
visualization tools.
We identified the importance of oxidative stress in the following

phenomenon of hepatic cells through the completion of a
systemic analysis of DLX-induced hepatotoxicity. Certain chemical
moieties found in pharmaceutical compounds, known as toxico-
phores, can be bioactivated to generate new chemical structures,
which react covalently with cellular structures such as DNA and
proteins. DLX possesses several possible toxicophores, such as the
naphthyl rings and thiophene rings. The naphthyl ring is easily
attacked by the sulfhydryl group of GSH to form GSH adducts
though bioactivation by CYP2D6 and CYP1A2. Wu et al. predicted
that naphthalene was the likely site of metabolism from the in
silico findings of MetaSite and induced-fit docking [35]. Interest-
ingly, our latest synthesized compound S-071031B, which contains
the benzodioxole group instead of naphthyl rings of DLX, showed
potent antidepressant activity. We demonstrated that S-071031B
could significantly decrease the oxidative stress caused by DLX in
hepatic cells, thus leading to lower hepatotoxicity in many
aspects.
We preliminarily summarized that the mechanism of DLX-DILI is

complex and multifaceted. The DLX induced early intracellular
ROS generation and GSH depletion by the potential toxicophore
of naphthyl ring, therewith mitochondrial dysfunctions, resulting
steatosis and cholestasis, and making the cell falling into a vicious
circle (Fig. 7). After a series of comparisons between the new
modified compound S-071031B and DLX, all results showed
S-071031B is a safer drug for depression treatment.
HCA is an important predictive tool, and is widely used for

mechanistic purposes, especially for prioritizing safety and
human hepatotoxicity during the process of discovering and
assessing of new drugs, and also allows kinetic monitoring of
cells in vitro to identify multiple cellular markers of processes
that are critically involved in hepatotoxic pathogenesis [44].
Combined with the HCA and spheroid technologies, the initial
event of hepatotoxicity could be indicated easily and quickly. In
the current study, the enhanced oxidative stress was observed
with the treatment of DLX at early stage, suggesting the
importance of oxidative stress.

CONCLUSIONS
The present work provides the first systematic in vitro study of the
mechanisms involved in DLX-DILI in human liver, using extra-
cellular liver matrix bioactivated HepaRG spheroids. DLX was
found to induce hepatotoxicity through multiple complex
mechanisms, among which the naphthalene ring plays a key role.
The new compound S-071031B is a potential alternative for
depression therapy, and has since been approved in phase I
clinical trial in China. These data provide a new insight into the
mechanisms of DLX-induced hepatotoxicity in human liver,
emphasizing both the causal and aggravating role of oxidative
stress in drug-induced intrahepatic toxicity. Used in combination
with the polymorphism of hepatic drug metabolic enzymes to
analyze the mechanism of DILI and further study the drug-drug
interaction. This may not only save patients who are sensitive to
the drug induced hepatotoxicity, but also help identify excellent
novel drugs with important therapeutic significance while also
being aware of any potential hepatotoxicity. Moreover, this work
suggests that EHSs represent a highly suitable model for the
better understanding of DILI mechanisms.
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