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Abstract

We present a unifying statistical formulation for many fundamental problems in genome
science and develop a reference-free, highly efficient algorithm that solves it. Sequence
diversification – nucleic acid mutation, rearrangement, and reassortment – is necessary
for the differentiation and adaptation of all replicating organisms. Identifying
sample-dependent sequence diversification, e.g. adaptation or regulated isoform
expression, is fundamental to many biological studies, and is achieved today with
next-generation sequencing. Paradoxically, current analyses begin with attempts to
align to or assemble necessarily incomplete reference genomes, a step that is at odds
with detecting the most important examples of sequence diversification. In addition to
being computationally expensive, reference-first approaches suffer from diminished
discovery power: they are blind to unaligned or mis-aligned sequences. We provide a
unifying formulation for detecting sample-dependent sequence diversification that
subsumes core problems faced in diverse biological fields. This formulation allows us to
construct an algorithm that performs inference on raw reads, avoiding references
completely. We illustrate the power of our approach for new data-driven biological
discovery with examples of novel single-cell resolved, cell-type-specific isoform
expression, including expression in the major histocompatibility complex, and de novo
prediction of viral protein adaptation including in SARS-CoV-2.

Introduction
Processes that mutate or rearrange nucleic acids – sequence diversification –

are fundamental to evolution and adaptation across the tree of life and the simplest
self-replicating elements. Diversification of pathogen genomes enables host range
expansion. Host genomes and transcriptomes must be diversified to respond (1, 2).
CRISPR spacers turnover and accumulate sequence diversity in response to infections
(3); in jawed vertebrates, V(D)J recombination and somatic hypermutation generate
diversity during the adaptive immune response. Sequence diversification also seeds
natural selection and controls phenotypic diversity: examples include single nucleotide
changes and structural variations such as small and large insertions and deletions and
movement of transposable elements across the tree of life (4, 5, 6, 7). Sequence
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diversification in the RNA transcriptome enables dynamic phenotypes from the same
reference genome, and takes the form of regulated RNA-isoform expression, e.g., RNA
editing and RNA splicing, and enables host-response to virus’ and multicellular gene
expression programs to name a few.

Thus, identifying sequence diversification is the core objective of wide-ranging
biological studies, from those studying the human immune response to ecological
metagenomics to clinical virology. Next-generation sequencing has enabled study of
sequence diversification at scale, and it is now routine. However, the uniting biological
goal – the study of sample-dependent sequence diversification – has yet to be identified
and formulated in a statistical framework. To illustrate this conceptual unification, we
now discuss three key and broadly studied examples in greater detail, showing how
they can be formulated within this framework.

Example 1: detecting sample-dependent RNA splicing. Suppose that exon 1 is
spliced primarily to exon 2 in cell-type A, but is spliced to exon 3 in cell-type B. Here, the
sequence in exon 1 has downstream sample-specific diversity (Fig. 1b). Many such
examples and variations, including allele-specific splicing or expression and more
complex splicing patterns, have important phenotypic consequences (8). Example 2:
Detecting V(D)J rearrangement in the adaptive immune response. Here, RNA (or DNA)
measurements aim to identify sample-dependent rearrangement. Regions near
diversifying sequences in any V(D)J genomic sequence will exhibit sample-dependent
diversity, as cells have highly diverse sequences adjacent to the constant receptor
sequence (e.g. immunoglobulin constant regions). Example 3: signatures of viral
evolution. As a pathogen adapts to a host, host-interacting genes are under intense
selective pressure (9). Because of the scale of strain-level pathogen diversity, sequence
diversification in these genes is sample-dependent as strains compete. Space limits the
number of known biological examples we discuss in the main text, but myriad problems
ranging from plant genomics, to *seq approaches to study chromosomal configurations,
to biosurveillance and biomarker detection can be formulated under this framework
(more are described in the Supplement).

The above formulation is very general and has broad applications in genome
science beyond just RNA-Seq. As a biologically unrelated example, consider detecting
when a transposon is silent in sample A but is active and mobile in sample B. In sample
B, the transposon is inserted in many sequence contexts, creating a greater diversity of
bordering k-mers. Thus, the sequence adjacent to the transposon arms has
sample-specific diversity in the host genome. NOMAD opens many directions for future
work and extension of existing results, both statistical and biological (Supplement).

Today, genomic data analysis is performed in a fragmented and ad-hoc manner,
commonly consisting of several multi-step methods that lack theoretical underpinnings
or a shared probabilistic formulation. Critically, most workflows operating on sequencing
data rely upon reference genomes for a key initial step, first performing alignment,
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pseudoalignment (hereafter, alignment), or assembly. Statistical inference to detect the
prespecified sample-specific sequence diversification of interest (eg. alternative splicing
or selection for viral mutation) is performed only afterwards, on the aligned output (10).
We refer to this approach as “reference-first”.

Reference-first approaches limit the scope and statistical accuracy of biological
discovery, and require intensive computational effort. While annotations and references
are useful ontological guideposts, they are only approximately correct. A scientist may
not want to introduce bias by pre-specifying references or may not know to do so a
priori. Further, reference-first inference provides results that are conditional on aligner
outputs, with bias towards reference alleles (11). Downstream statistical analysis is
therefore done on a signal convolved with an unknown noise source. Thus, references
and annotations are scientifically and statistically problematic for reliable, sensitive, and
interpretable discovery.

Shortcomings of reference-first approaches include possible failures to
(properly) map sequences due to search heuristics; sequence divergence of individual
human genomes creates intrinsic limitations of analysis based on a reference genome,
or even pangeomes (12). Reads representing the extensive inter-individual structural
variants or other regions not present in the reference are difficult to analyze, and it is
thought many person-specific and somatic variants are still missed (13). References’
inability to capture genetic diversity has critical implications for disparities:
under-represented groups have comparatively incomplete references (14). All of these
problems are more significant for genomic analysis of somatically acquired diseases
such as repeat expansions or structurally unstable tumors, where each clone likely has
its own “reference genome” (15). De novo approaches have discovered vast
person-specific genetic variation, but require high sequencing depth and coverage
significantly beyond what is available in many studies, and remain reference-based (4).
To our knowledge, no valid p values have been proposed to quantify sample-dependent
sequence diversification of de novo assembly approaches.

In studies of the non-human world, such as viral surveillance or environmental
metagenomics, reference-first approaches have even more problems (16). Recent work
shows that the scope of missed microbial sequence diversity due to the use of
reference-first approaches is likely vast (17); further, the scale of the microbial world
means references will necessarily be incomplete; indeed, metagenomic studies typically
have > 50% unaligned reads (18). Viral reads are often unaligned for similar reasons:
viral reference genomes and reference transcriptomes cannot capture the complexity of
viral quasispecies (19) or the vast extent of viral polymorphism and splicing (20), and
new viral assemblies are constantly being discovered and added to reference
databases (21, 22). It is impossible to imagine pre-specifying a set of reference
genomes or transcriptomes due to the rapid genomic changes that define the microbial
world and have significant clinical impact (23) and where the use of databases limits
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inference (24). In plant genomics and non-model organism work, it is common to lack a
reference genome entirely, making inference on differential isoform expression through
alignment impossible. Together, this is a strong argument for reserving reference-based
analysis for secondary interpretation.

In addition to these important theoretical issues, reference-based methods have
critical practical drawbacks. Alignment to annotations and assembly on large files
require significant time, memory, ad hoc parameter choices (e.g., alignment
parameters), and are error-prone (25). The popular gapped aligner STAR (26) requires
60GB of memory to store the index of the human genome, for example, making analysis
intractable for low-compute-resource scenarios. More recent aligners like HISAT and
Bowtie2 require far less memory but the field continues to debate their sensitivity (27,
28).

NOMAD is a statistics-first approach to identify sample-dependent sequence
diversification

We show that detecting sample-dependent sequence diversification can be
reduced to a natural statistical test on raw sequencing read data. Inference can be
performed on pairs of k-mers, contiguous subsequences of length k. We say that a
k-mer (called an "anchor") has sample-dependent diversity if the distribution of k-mers
starting L basepairs downstream of it (called “targets”) depends on the sample (Fig. 1b)
(29). Inference can be performed for much more general constructions of anchors and
targets (Supplement).

The above formulation can be used to detect regulated alternative splicing, a
fundamental problem in RNA-seq. A simple example task is to detect if different sample
classes (e.g. cell-types) splice exon 1 to exon 2 vs exon 1 to exon 3 at different rates
(Fig. 1b). If so, for an anchor sequence a in exon 1 and target sequences t1 and t2 in
exons 2 and 3 respectively, conditional on observing a in a read, the probability of
observing t1 or t2 later in the read varies by sample class. If, instead, all sample classes
have the same splicing distribution for these exons, the probability of observing a
specific target t given that a was observed L basepairs upstream is
sample-independent. Sample class might be different timepoints, disease statuses, or,
in the case of single-cell sequencing, cell type labels or individual cells. Thus, detecting
per-sample differences in the conditional distributions of P(t | a) will detect regulated
alternative splicing and many more biological examples of sequence diversification.

The probabilistic formulation above unifies many fundamental problems in
genome science. It allows us to develop a novel statistics-first approach, NOMAD (de
NOvo estiMAtion of Differential elements), that provides a framework for detecting
sample-dependent sequence diversification. NOMAD is reference-free, extremely
computationally efficient, and provides powerful and valid statistical inference. NOMAD
makes all predictions completely independently of references and annotations, which
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are only used for optional post-facto interpretation. NOMAD performs inference directly
on the data observed in genomic studies: raw fastq files, completely bypassing
references. Following the above example, NOMAD detects anchor subsequences a
where, given observing a in a read, the conditional distribution of observing a target
sequence t a distance L downstream of a is sample-dependent (Fig. 1b). Importantly,
NOMAD can be run in an unsupervised mode without any sample labels.

We next present the NOMAD algorithm and a snapshot of its results. When run
on single-cell RNA-seq samples of macrophage and capillary cells, NOMAD discovers
cell-regulated isoforms missed by existing methods and runs much faster than those
methods. NOMAD gies new insights into cell-type specific variant calls and expression
of the major histocompatibility locus. On single-cell RNA-seq of human and mouse
lemur B and T cells, with no single-cell-level metadata and using annotations only for
post-facto interpretation of calls, NOMAD can statistically prioritize the variable regions
of the Immunoglobulin loci as having highest inter-cell sequence diversity. Lemur
inference is made using the human reference as an approximation. Finally, NOMAD’s
generality enables it to prioritize viral sequence variants in Influenza and SARS-CoV-2
under selection in complex mixtures, blindly predicting the spike protein as the most
highly diversifying protein and reidentifying mutations Omicron variants. In each
example, NOMAD reveals biology missed by specialized existing algorithms. NOMAD is
implemented as a fully containerized Nextflow pipeline, and is publicly available at
https://github.com/kaitlinchaung/nomad.

Results

NOMAD performs direct, reference-free statistical inference
NOMAD performs inference directly on observed fastq reads, an approach we

call “statistics-first”. Its statistical approach maps detecting sample-dependent sequence
diversification to analysis of contingency tables: for each anchor, fastq files are parsed
into contingency tables of targets by samples parsed into separate contingency tables
for each anchor in a highly efficient manner (Methods). Anchors with overlapping
sequences are processed in parallel. NOMAD then detects deviations from the null
hypothesis that samples have the same target distribution (30): first, an anchor-sample
difference score Sj for each sample j is computed, a measure of how different this
sample’s target distribution is from the empirical target distribution across all samples.
Then, in the simplest case of a classical two-group comparison, the NOMAD statistics is
the average difference scores (Sj) for each sample in each group (Methods,
Supplement).

More generally, the NOMAD statistic S is the weighted linear combination of
anchor-sample scores across samples which allows us to efficiently compute the

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=2016205&pre=&suf=&sa=0
https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


statistic S. It is amenable to theoretical analysis and allows us to provide closed form p
value bounds for each anchor. These bounds are multiple testing corrected (31, 32) to
yield the q-value reported here (Methods). A large test statistic means that the target
distributions significantly deviate from being identically distributed. avoiding common
statistical pitfalls that require ad hoc per-sample count lower bounds (33). NOMAD also
provides a effect size between 0 and 1, and can be interpreted as a measure of how
distinctly target sequences are partitioned by sample (eg. cell type), taking value 0 when
sample groups have no difference in target distributions and increasing in magnitude to
1 when the target distributions of the two groups are disjoint (Methods). We also
generalize the procedure above to cases without sample-level metadata (e.g. in
single-cell RNA-seq when cell-type is unknown), which is NOMAD’s unsupervised
mode.

NOMAD denoises reads and reduces number of reads input to costly alignment
steps

Alignment is sometimes needed or desired for post-facto biological interpretation.
NOMAD is able to dramatically reduce the number of reads required in this step; in
empirical tests, this reduction is 1000-fold. It accomplishes this by performing an
efficient statistically principled extension of anchors, one per sample, which we term
“consensus building.” Given an anchor, the per-sample consensus is constructed such
that position i reports the ‘plurality vote’ i bases away from the 3’ end of the anchor
among all reads from the sample containing the anchor (Methods, Fig. 1c). To illustrate,
continuing example 1, suppose cells of cell-type A splice exon 1 to exon 2, but cells of
cell-type B splice exon 1 to exon 3. If a length-27 anchor is 40 bp upstream of the 3’ end
of exon 1, sample 1’s consensus is 13 bases of exon 1 followed by exon 2, whereas in
sample 2 it is 13 bases of exon 1 followed by exon 3.

If a dominant isoform exists, the consensus will be a sequence from that isoform,
e.g. a splice junction represented by it, and will be free of sequencing errors with high
probability (Methods). Consensus’ can be mapped with any spliced aligner to predict
splice sites, deletions, or other genomic events. Plurality voting denoises the reads,
enabling confident calls of SNPs, splicing, or structural variants versus sequencing
errors (Methods, Fig. 1b).

In reference-first workflows, every read must be aligned, e.g. for S samples and
M reads per sample, S*M alignments must be performed. On the other hand, NOMAD
only reports the m anchor/consensus sequences that already have statistical evidence
of a biologically important signal, requiring only S*m alignments. The number of reads
per sample M is commonly in the range of 10 million, whereas the number of
NOMAD-nominated anchors m is typically <10,000 (though this is data-dependent),
yielding dramatic savings in time and computation (Fig 1d). We now illustrate NOMAD’s
performance in three disparate areas of genome science. All datasets were selected
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prior to running NOMAD, constituting blind tests of the algorithm. In each case, NOMAD
extends results obtained from domain-specific algorithms.

NOMAD provides an efficient, statistical and reference-free differential isoform
detection in single cells

Single-cell RNA-seq potentiates the discovery of cell-type-defining isoforms,
including paralogous genes and those generated by alternative splicing. Many
approaches for statistically rigorous detection of differential isoform expression have
been recently developed, but all require reference alignments with aforementioned
limitations (10, 28, 34), p-values require intensive computation, and each method has
power to detect only certain events, for example, splicing but not SNPs. They also
struggle to resolve multi-mapped reads (10, 34). NOMAD generalizes and extends
existing pipelines: detecting alternative isoform expression, regulated splicing at
unannotated boundaries, and allele-specific expression in one test.

We tested NOMAD’s performance by randomly choosing macrophage and
capillary cells profiled with Smart-seq2 from the human lung (two donors) (35). We first
ran NOMAD using the sample identity metadata on donors 1 and 2 separately (14
macrophage and capillary cells each in donor 1; 9 each in donor 2). These cell types
were chosen due to having a biologically validated, differentially spliced positive control
MYL6 based on prior work, including analysis of a superset of cells analyzed here (10,
36). To our knowledge, MYL6 is the only such known positive control. Macrophages are
difficult to profile with Smart-seq 2, so cell numbers analyzed are small.

NOMAD runs dramatically faster than existing algorithms that detect differential
isoform expression, eg. SpliZ (10, 37). To achieve significance calls for donor 1, each
cell required an average run time of 2.28 minutes and 758 MB of memory; for donor 2,
each cell required an average run time of 3.5 minutes and 2.4 GB of memory on
standard high performance compute architecture. We believe that NOMAD’s memory
and time requirements can be significantly further reduced (Supplement). To
demonstrate that NOMAD is lightweight, we tested NOMAD on a 2015 Intel laptop with
a Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz processor, generating significance calls
for 10 cells totaling over 43 million reads in only 1 hour 45 min. We performed a
post-facto alignment step for interpretation of splicing and isoform expression and
comparison to SpliZ, the current best performing algorithm: alignments for 482,272 and
234,456 sequences for donors 1 and 2 respectively were needed with NOMAD
(Methods) compared to 440 million and 208 million reads required for alignment by
existing methods, a nearly 1000-fold reduction.

4052 (54%) and 4324 (60%) of NOMAD’s called anchors (for donor 1 and 2
respectively) map to the human genome, and not to databases of repetitive elements or
Rfam (38, 39) (Methods, Supplement). This large number of called anchors is expected
to include examples of cell-type-specific expression of alleles, isoforms, or splice
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variants, including those that may have low effect size. Because NOMAD has power to
detect many forms of sample-specific sequence diversity, biologists interested in
specific events can impose criteria to narrow NOMAD’s calls for their application. To
illustrate this, we applied an “isoform detection conditions'' to NOMAD’s list of significant
anchors to prioritize differential isoform expression, requiring relatively high sequence
divergence of targets and that a consensus split-maps (Methods).

175 and 164 anchors (donor 1, 2, resp.) met these criteria, mapping to 37 and 36
different genes (Supplement, Methods). A large fraction of these anchors split-map to
annotated exon boundaries, 149 (85%) and 138 (84%), demonstrating that NOMAD is
specific and has a high rate of identifying known splice variants. We then investigated
NOMAD calls shared in both donors. SpliZ called MYL6, among other genes in one
donor, though not genes we discuss below; it made no calls in donor 2, so we cannot
compare to its shared results.

MYL6 anchors were shared in both donors (Fig. 2a) (q values of 1.4E-8 and
5.9E-41 in donors 1 and 2, resp). MYL6 is a subunit of the myosin light chain recently
discovered to have regulated alternative splicing in these two cell types (36), and thus
constitutes a positive control. Unlike previous methods, NOMAD identifies it without
using genome or transcriptome annotation.

We next examined other NOMAD calls shared by the two donors. Anchors
mapping to MYL12 paralogs were some of the most abundant and included shared
anchors between the donors (Methods, Fig. 2b). MYL12 is also a subunit of the myosin
light chain. In humans (as in many species) there are two paralogous genes, MYL12A
and MYL12B, located in tandem on chromosome 18. The paralogs have >95% shared
nucleotide identity in coding sequences (Fig. 2b), causing “reference-first” algorithms to
fail to distinguish them due to mapping ambiguity.

NOMAD’s approach automatically detects targets that unambiguously distinguish
the two paralogs, and demonstrates their clear differential regulation in capillary cells
and macrophages (Fig 2). We have also observed differential MYL12 isoform
expression in other cell types (data not shown). Note that in this case the isoforms
identified are due to paralogous genes rather than alternative splicing of a single gene,
an example illustrating discovery enabled by NOMAD’s generality. MYL12 was recently
discovered to mediate allergic inflammation by interacting with CD69 (40); while little is
known about differential functions of the two MYL12 paralogs, the distinct roles of highly
similar actin paralogs may be a precedent (41, 42).

SEC13 was the only other gene found in both donors under its isoform conditions
(Fig. 2c). In this case, the exact anchor sequence is not shared, but each donor had
significant (q<1E-9) cell-type specific isoform involved regulated splicing in the N
terminus and 3’ UTR region, though through different splicing events. SEC13 is an
essential gene in retinal development (43), shuttling between the nuclear pore and
cytoplasm with annotated isoforms differing in the C terminal amino acid sequences (13
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amino acids in isoform 1 vs. 37 in isoform 2) (44) and in the 3’ UTR sequences.
NOMAD shows splicing regulation in this region in both donors perfectly correlated with
cell type, with the shorter UTR, including an unannotated variant, expressed exclusively
in macrophages (Fig 2c). In donor 2 a distinct anchor was called: consensus sequences
reveal an unannotated, in-frame splice variant that excludes the 4 N terminal amino
acids and a short fragment of the 3’ UTR. This intron would be very short, but bigger
than the shortest reported spliceosomal intron in humans (45). No evidence of donor 1’s
splice variant was found in donor 2 (and vice versa) using manual inspection of reads. A
second anchor in SEC13 shows an annotated SNP found de novo that also correlates
perfectly with cell type (Supplement).

SEC13 illustrates that NOMAD’s statistics-first approach provides power to
prioritize regulated splicing events for potential biological function. NOMAD jointly
discovers SNPs (more generally, any reference variant), cell-type isoform specificity,
and unannotated isoforms: existing algorithms perform one but not the other task, with
diminished theoretical performance if both variants and cell-type-specific splicing exist.

NOMAD identifies HLA-allele-specific expression at the single-cell level
NOMAD has the potential to resolve cell-type regulation of isoforms unrelated to

splicing, such as gene isoforms or paralogs (e.g. MYL12) which are challenging or
impossible to resolve with current methods. To illustrate this point, we inspected
anchors called by NOMAD in both donors without requiring split mapping and with a
less stringent requirement on target diversity (Methods) . The only further shared
anchors mapped to UBC, ACTB, and genes in the HLA family, including MHC-I and
HLA-A,HLA-B and HLA-C, and MHC-II HLA-DRB1 or were unannotated.

HLA is the name for the human major histocompatibility locus (46), a highly
polymorphic and rapidly evolving gene family that is critical to adaptive immunity.
Currently, HLA mapping requires prespecifying gene panels (47), manual curation, and
custom pipelines (48), which still struggle to identify infrequent alleles. To our
knowledge, no approach identifies single-cell-resolved HLA allelic expression, though
cases where it has been manually identified through classical methods show it has
great biological impact (49, 50). NOMAD provides clear statistical and biological
inference that HLA-locus alleles are cell-type-specific: anchors with significant target
sequence divergence are automatically selected (Fig. 2d,e).

We investigated the HLA-DRB1-annotated NOMAD hits’ cell-type specificity (Fig.
2d). HLA-DRB1 is a major disease risk locus for multiple sclerosis (47, 51), yet due to
heterogeneity in the locus, GWAS studies are underpowered to predict pathogenic
variants even when detected using reference panels of HLA alleles, which are limited
(52). We investigated a shared anchor for which both donors display highly
cell-type-specific expression (Fig. 2d, q<1.2E-4). Target 1 in donor 1 maps uniquely to
HLA-DRB1, so we can name the gene NOMAD identifies. Consensus’ also map to this
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gene but other targets map to more than one gene with the HLA-DRB annotation: since
annotations can be imperfect, we do not attempt to provide unequivocal HLA allele
assignment or typing (Supplement). However, NOMAD provides robust inference that
HLA-DRB genes, and likely others in the MHC loci, have single-cell type regulated
expression, but have yet to be discovered due to its polymorphism, and associated
mapping challenges.

Because the HLA locus is highly polymorphic, NOMAD calls in the locus may be
shared at the level of gene name assigned to the anchor but not anchor sequence.
Indeed, >10% of called genes in each donor were in the HLA family (12/98 and 12/81,
respectively). Because individuals have polymorphisms in this locus, we investigated a
donor-specific call with an effect size near 1 in HLA-DPB1 (donor 2); NOMAD did not
call this anchor in donor 1. HLA-DPB1 is a MHC class II gene (53) with regulation during
activation of bulk CD4+ T cell populations (54, 52), but we are not aware of it being
explored in other cell types or at the single-cell level. Consensus mapping (Fig. 2e)
shows high cell-type-specific alternative splicing regulation. The long isoform detected
in macrophages and the short in capillary cells are predicted to have different functions
due to changes in the open reading frame and UTR.

In summary, by bypassing references, NOMAD achieves greater statistical and
biological discovery power than existing methods. To our knowledge, NOMAD is the first
method to establish cell-type-specific isoform regulation in the examples above, beyond
the expected positive control MYL6 discovered recently (36). NOMAD provides joint
direct inference on (un)annotated isoforms, SNPs, and isoform discrimination,
impossible with existing methods. NOMAD’s fast and transparent workflow should
enable rapid and broad application to single cell sequencing studies and unify many
analytic workflows (Supplement). To our knowledge, even the best existing algorithms
have not and cannot detect these events (10, 55).

NOMAD’s statistical approach does not require sample metadata such as cell
type. We ran NOMAD in its unsupervised mode which calls significant anchors without
prespecified cell annotations, as well as reporting “discriminative splits” which can be
viewed as an approximate cell type classification. Such classification is highly desirable
since the process of annotating individual cells is laborious, error-prone, and sometimes
cell types are not known a priori or cannot be determined by experts. >90% of genes hit
by 2 or more anchors in NOMAD’s supervised mode were also called in the
unsupervised mode, including MYL6, MYL12 and SEC13 (Methods, Supplement).
Preliminary analysis further suggests NOMAD can be used for unsupervised
classification such as clustering in single cell data (current work).

Unsupervised discovery of B, T cell receptor diversity
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The adaptive immune system generates more than 10^12 (56) T cell receptor
(TCR) and B cell receptor (BCR) variants through V(D)J recombination and somatic
hypermutation. The recombined sequences are absent from any reference genome,
and the locus may have polymorphisms absent from the reference. Identifying diversity
in V(D)J regions from single-cell RNA-seq has important implications for understanding
adaptive immune responses. Existing methods require specialized workflows to perform
this task, including filtering and receptor annotations (57, 58). We tested if NOMAD
could identify V(D)J sequences based on the statistical characteristics of the V(D)J
sequence diversity alone.

We randomly chose 50 naive B cells profiled with Smart-seq2 (SS2) from the
peripheral blood of donor 1 and 128 CD4+ T cells from donor 2 from the Tabula Sapiens
Project (59) and ran NOMAD in its unsupervised mode, (60) without sample metadata,
to determine if it prioritized anchors in the BCR (resp. TCR) in B (resp. T) cells which
are expected to have high cell-dependent sequence diversification.

NOMAD blindly rediscovered the high degree of single-cell variability in the
immunoglobulin (IG) in B cells: this locus was most highly ranked by anchor counts per
transcript (Fig. 3a). To test the possibility that NOMAD anchors just represent the most
abundant sequences, we constructed a list of anchors ranked by abundance
independent of target diversity, and performed all analysis in parallel. We call this list the
control (Methods). In B cells, NOMAD anchor counts were highest in genes IGKV3-11,
IGKV3D-20, IGKV3D-11, and IGKC, the first three being variable regions of the B cell
receptor (Fig. 3a).

We investigated NOMAD-called anchors in IGKC, the constant region of the
kappa light chain. As expected, inspection of a called NOMAD anchor mapping to the
constant region had highly diverse, single-cell-specific target composition. Each target
mapped uniquely, but imperfectly, to an adjacent IGKJ gene; somatic hypermutation and
imperfect end joining are expected to yield imperfect mapping (Fig. 3c, Supplement).
Additionally, NOMAD’s consensus provides a partial, local reconstruction of the
Immunoglobulin locus that includes some of its variability. NOMAD goes further in
providing statistical inference that this locus has sample-specific sequence diversity with
no per-cell metadata.

HLA-B, RAP1B, TRAV26-2, and TRBV20-1 were the highest-ranked transcripts
in T cells measured by anchor counts. HLA-B is a major histocompatibility (MHC) class I
receptor known to be expressed in T cells, and TRAV26-2 and TRBV20-1 are variable
regions of the T cell receptor. T cell expression of HLA-B alleles has been correlated
with T cell response to HIV (61, 62). Fig. 3A, (Supplement) shows many other genes
known to be rearranged by V(D)J were also recovered. In the control sets for both B
and T cells, enriched genes were unrelated to immune functions (Fig. 3d, Supplement).

We investigated NOMAD’s most densely hit transcript in T cells: HLA-B (Fig. 3b).
Mapping assembled consensus’ shows two dominant alleles: one perfectly matches a
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reference allele, the other has 4 polymorphisms all corresponding with positions of
known SNPs. NOMAD statistically identifies T cell variation in the expression of these
two alleles, some T cells having only detectable expression of one but not the other (p<
4,6E-24) (63). Other HLA alleles called by NOMAD, including HLA-F, have similar
patterns of variation in allele-specific expression (Supplement).

Gene ontology (64, 65) (GO) term enrichment (Methods) also showed NOMAD
anchors prioritized genes related to immune function in both datasets (Supplement): for
B cells, the most significant GO terms pertained to adaptive immune response and
immunoglobulin production; for T cells, the most significant GO terms pertained to
antigen processing and presentation of endogenous peptide antigen via MHC class I
(Supp). The control set for B cells did not contain any significant GO terms, while the
control set of T cells contained one GO term, for regulation of cell adhesion.

We tested if NOMAD can identify functionally important sequence diversity
bypassing genomic annotation completely. To do this, for each anchor, we assigned a
protein domain based on in silico translation of its consensus sequence and mapping to
the Pfam database (66). The protein domain with best mapping to the database is
assigned to the anchor resulting in a set of “NOMAD protein profiles” (Methods,
Supplement).

NOMAD protein profiles in B and T cells were highly enriched in domains
involved in immune function: the most frequently hit were V-set and C1-set (29 and 25
hits, respectively), domains annotated as the IG-like variable, and constant domains of
the immunoglobulin locus, respectively, for the B cells, and 5 hits to the MHC_I profile
for the T cells (Fig. 3d). V1 set domain hits have higher E-values, consistent with their
mutational burden that would enrich for lower homology to the reference profile.
Intriguingly, Tnp_22_dsRBD, a double stranded RNA binding domain contained in L1
transposons, is strongly enriched, suggesting potential activation. Controls have no
such enrichment, and map to Globin (13 hits) and WW (1 hit) profiles.

As NOMAD is reference-free, it can be applied to organisms with incomplete or
missing reference genomes. We applied NOMAD to 111 natural killer T cells and 289 B
cells isolated from the spleen of two mouse lemur (Microcebus murinus) individuals
profiled by SS2 (67), as the Microcebus atlas contained very few B and T cells from
peripheral blood. This was again a blind test of NOMAD using a random choice of cells
and cell types predicted to have V(D)J recombination. Despite the publishing of a
high-quality reference genome assembly for the mouse lemur (67), certain regions of
the genome remain challenging to annotate with traditional pipelines. As for other
species, annotation of the T and B cell receptor loci currently rely on careful curation
given their numerous genes that undergo somatic rearrangements and mutations
(Ezran et al, manuscript in prep). Because mouse lemurs are primates, regions of
partial homology in the T cell receptor and B cell receptor could allow them to be
identified by alignment to the human annotation. The human transcript annotations with
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the most NOMAD anchor hits in lemur B cells were IGLV10-54, IGKV2D-29,
IGKV2D-40, and IGKV2OR22-4; for T cells, the transcripts were HLA-G, TRBC2,
HLA-C, and HLA-B. Similar to human B and T cells, the transcripts with the most hits in
the control set were unrelated to immune function. Together, these show that NOMAD
can discover sequence diversification in the V(D)J locus in T and B cells without any
reference, using only an annotation guidepost from an organism (human) who shared
an ancestor ~60-75 million years ago (68).

In lemur, like in human, NOMAD protein profiles provided unsupervised
rediscovery of known biology. The most frequent hits in B cell were the V-set (86 hits,
with higher E-values), IG-like domains resembling the antibody variable domain, and
COX2 (55 hits, a subunit of cytochrome c oxidase, a protein known to be activated in
the inflammatory response) (69). for T cells, the transcripts were COX2 and MHC_I (77
and 58 hits, respectively). Neither control yielded profile hits. Together, this shows that
NOMAD can identify sequences with predicted adaptive immune function de novo,
using no reference genome, and suggests that unsupervised statistical approaches can
discover new functional immune cell types.

Finally, existing pipelines for assembling BCR sequences, eg. BASIC (58) cannot
always identify V(D)J rearrangement, including in some cells profiled in (67). We
selected the 35 B/plasma cells where no variable gene family on the light chain variable
region could be programmatically identified by BASIC. NOMAD automatically identified
anchors mapping to the IGLV locus, and its consensus’ include sequences that BLAST
to the light chain variable region (Supplement).

NOMAD discovers sequence diversification in proteins at the host-viral interface
without a genomic reference

Viral mutations cannot be comprehensively cataloged: strain evolution is
constant and viruses exist as quasispecies (70),(20). NOMAD provides inference to
identifying the most variable sample-dependent viral sequences bypassing any genomic
reference. We tested if NOMAD could detect actively adapting viral sequences de novo.
It stands to reason that NOMAD anchors should identify near genomic positions with
known strain-level variation and in regions known to undergo high mutation rates.
Because virus’ genomes and transcriptomes diversify when infecting a host, NOMAD
should prioritize anchors near genome sequences known to be under selection, eg. the
receptor binding domain of the spike glycoprotein in SARS-CoV-2 (71).

To test this, we ran NOMAD in unsupervised mode on blindly chosen samples
with COVID infections from the SRA taken from December 2021 to February 2022 in
France, a period of known Omicron-Delta coinfection (SRP365288). To test if known
variants could be rediscovered, we mapped NOMAD anchors with high effect size (and
matched controls) to the Wuhan strain (Methods). NOMAD anchors had a low
bowtie-mapping rate to the Wuhan reference (7%, 19/267). Mapped anchors are
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enriched near known mutations in the omicron and delta strains and include an anchor
adjacent to annotated variants of concern in the spike protein of the Omicron strain (Fig.
4a, Supplement). BLAST of bowtie-unmapped anchors show further hits to SARS
reference strains: of the bowtie unaligned anchors, 17/20 blasted (E-value <.1) to
strains isolated in 2022.

We performed protein profile analysis of a subset of NOMAD vs. control anchor
hits (Supplement). Ranking domain hits by enrichment of NOMAD versus the control
(Fig. 4b), the two most enriched are betacoronavirus S1 glycoprotein receptor binding
domain (bCoV_S1_RBD, 59 NOMAD vs 23 control hits), followed by the spike
glycoprotein C-terminal domain (CoV_S1_C, 32 NOMAD vs 2 control hits), ORF9b
betacoronavirus lipid binding domain (bCoV-lipid_BD, 28 NOMAD vs 4 control hits), and
the coronavirus nonstructural protein 3 replicase C-terminal domain (CoV_NSP3_C, 27
NOMAD vs 4 control hits).

CoV_S1_C and CoV_NSP3_C gave higher E-value hits from NOMAD. The
E-value quantifies alignment quality to Pfam’s reference profiles. NOMAD’s results imply
these domains may have evolutionary divergence from the Pfam entry, as would be
expected when sampling SARS-CoV-2 variants absent from the reference. Spike
polymorphisms between omicron and delta, likely selected by human neutralizing
antibody repertoire and/or enhanced receptor binding and entry efficacy, (72) are
known. NOMAD identifies them de novo, absent a reference, suggesting that NOMAD
could also be useful in identifying protein domains under active adaptation in this and
other viruses.

To study the generality of the NOMAD approach to viral discovery, we ran
NOMAD in unsupervised mode on other data sampled from viral infections: a cell
culture study of an influenza-A infection model (SRP294571) and a metagenomic study
of rotavirus breakthrough cases (PRJNA729919), and performed protein profile analysis
(Supplement). In influenza, NOMAD’s most frequently hit profiles were Actin (62 hits),
and GTP_EFTU (23 hits), and the Influenza-derived Hemagglutinin (17 hits), consistent
with virus-induced alternative splicing of Actin (73) and EF-Tu, further elucidating these
proteins’ roles during infection (74, 75) (no such hits were found in the control). In
rotavirus, the most enriched domain in NOMAD compared to control was the rotavirus
VP3 (Rotavirus_VP3, 76 NOMAD hits vs 9 control hits), a viral protein known to be
involved in host immune suppression (76), and the rotavirus NSP3 (Rota_NSP3, 87
NOMAD vs 35 control hits), a viral protein involved in subverting the host translation
machinery (77), both proteins that might be expected to be under constant selection
given their intimate host interaction (Fig. 4c).

Conclusion:
Sample-dependent diversifying sequences are critical for adaptation and cell

specialization, spanning DNA diversity generated during V(D)J recombination,
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sample-specific isoform expression, and adaptation, from viruses to bacteria to complex
eukaryotes. Diverse subfields of genomic data-science are unified by attempting to
discover sample-dependent sequence diversification. NOMAD is a statistics-first
algorithm that efficiently solves this task.

Even within one small pairwise comparison of human cell types profiled with
RNA-seq, NOMAD provides many novel insights: from allelic expression of the MHC
locus to subtle isoform-sequence variation previously out of reach. Higher-powered,
deeper study could shed light on enigmatic aspects of genome regulation such as
regulated expression of isoforms with minute amino acid differences, including in HLA
alleles and in large and small non-coding RNAs (33, 75). In addition, NOMAD unifies
the detection of intron retention, alternative linear splicing, allele-specific splicing, gene
fusions, and circular RNA. Its efficiency means it can be run at scale on millions of
single cells, and likely on the entire short read archive. NOMAD can also be applied to
analyze DNA and protein sequence, or any *seq experiment, from Hi-C to spatial
transcriptomics. It also potentiates use in areas of statistical genetics, such as
genome-wide association studies, where anchors near statistically significant genetic
variants should be identified.

While we have mainly focused on RNA biology in this manuscript, NOMAD is
incredibly general. We expect NOMAD to be especially impactful in analysis of plants
and microbes, which are far less well annotated, and moreover where DNA and RNA
diversity is so vast that references will be unlikely to ever capture it. We believe NOMAD
also will potentiate discovery of the mechanisms underlying these diversifying
processes. Running NOMAD on paired DNA and RNA seq should identify regulated
RNA species, including but not limited to splicing, again bypassing the need for genome
assembly.

Findings from SARS-CoV-2 point to a broader potential for NOMAD in viral and
generally genomic surveillance seeking to identify emerging pathogens and identify new
selective pressures on organisms (e.g. through wastewater). Mutational hotspots are a
signature of genetic adaptation, from the simplest virus to complex eukaryotes. NOMAD
provides a reference-free method to find k-mers that are under evolutionary selection,
as would be expected for any emerging viral threat or microbe adapting to or causing
disease in hosts, including mobile cargo such as phage that modify virulence. NOMAD
may be an effective tool to monitor and provide viral surveillance for known or novel
pathogens.

NOMAD is a "statistic-first" algorithm with post-facto human interpretation by
optional coupling with annotation for interpretation. It translates the field's
"reference-first" approach to "statistics-first", performing direct statistical hypothesis
tests on raw sequencing data, enabled by its probabilistic modeling of reads rather than
of alignment outputs. Three statistical directions are the subject of current work
including extension to parametric inference for these topics: 1) improving function
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construction for mapping of targets to real numbers for biological and statistical
inference; 2) clustering of samples and anchors; 3) statistical tests of anchor and target
dependence to predict regulatory relationships. We also anticipate field-specific
modules for NOMAD, eg: generating longer consensus sequences via local assembly
for example, in BCR and TCR typing.

In summary, NOMAD enables direct, large-scale study of sample-dependent
sequence diversification, completely bypassing the need for references or assemblies,
and brings to fruition the promise of data-driven biological discovery previously
impossible to study.

Limitations of the study
Some problems of course cannot be formulated in the manner posed, such as

cases where the estimand is RNA or DNA abundance. However, the problems that can
be addressed using this formulation span diverse fields which are of great current
importance (Supplement), including those previously discussed.
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from individual 2. The mouse lemur single-cell RNA-seq data used in this study was
generated as part of the Tabula Microcebus consortium. Analysis of each set of cells, B
and natural killer T cells, were performed on two individuals together and the fastq files
were downloaded from: https://tabula-microcebus.ds.czbiohub.org. The sample sheets
used as inputs to nextflow for all analysis are uploaded to the github site. Viral data was
downloaded from the NCBI: Influenza (SRP294571), SARS-CoV-2 (SRP365288), and
rotavirus (PRJNA729919).

Figure captions

Figure 1
A. Overview of NOMAD (green) vs. existing methods (red). Typical workflows (red)

remove reads during fastq preprocessing and alignment, and only then perform
statistical significance testing. For every desired inferential task, a different
inference pipeline must be used (red). NOMAD performs direct significance
testing on raw fastq reads, bypassing alignment and enabling data-scientifically
driven inference, using optional ontology mapping for interpretation. If optional
mapping is desired, typically 1000 fold fewer reads than in initial fastqs files must
be aligned.

B. Overview of NOMAD statistics: raw fastq files are parsed into kmer anchors (red)
and targets (blue and yellow) separated by a lookahead sequence of length L.
For each anchor, statistical inference is performed on a contingency table of
targets by samples. Reads with sample-dependent sequence diversification by
alternative splicing are depicted. For each significant anchor, a per-sample
consensus sequence is built which can be interpreted as the dominant isoform in
the case of alternative splicing.

C. Consensus building denoises inputs to aligners before the alignment process.
Sequencing errors (red X’s) are randomly distributed in reads, and by plurality
vote across reads from the given sample, error-corrected as a consensus is built.
Without this step, aligners will (a) fail to align, (b) yield misaligned reads, or (c)
align reads correctly but with sequencing errors. Even if correct alignments are
made, resulting mismatches with the reference must be further post-processed to
make inference that discriminates sequencing errors from SNPs.

D. Left: NOMAD takes in fastq data, extracts (anchor, target) pairs of k-mers which
are sorted and counted, and performs statistical inference. Right: After
compressing and denoising via sample consensus sequences, NOMAD reduces
the number of alignments required by a factor of 103.

Figure 2
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A. NOMAD detects anchors in MYL6, a positive control. Q value of 1.4E-8 for donor
1, 5.8E-41 for donor 2. Consensus split-read mapping shows capillary cells
dominantly include and macrophage cells skip exon the exon in MYL6 including
the EF_hand_8 domain (shown by the red color). Figure schematic taken from
(36).

B. (i) Anchors mapping to MYL12 isoforms. Q value of 2.5E-8 for donor 1, 2.3E-42
for P3. An anchor highlighted in yellow includes a shared NOMAD-called anchor
between donors 1 and 2; MYL12A and MYL12B isoforms share >95% nucleotide
identity in coding regions. (ii) NOMAD’s approach automatically detects targets
and creates consensus sequences that unambiguously distinguish the two
isoforms. (iii) In both donors, NOMAD reveals differential regulation of MYL12A
and MYL12B in capillary cells (MYL12A dominant) and macrophages (MYL12B
dominant). The schematic illustrates MYL12 (in blue) within the myosin light
chain complex, recently shown to interact with CD69 in the lung.

C. Schematic model shows SEC13 embedded in COP2-encased vesicles that bud
from the endoplasmic reticulum; SEC13 is also found in the nuclear membrane.
Short UTR isoforms, missing the C terminus of the protein, are dominant in
capillary cells; long UTRs are dominant in macrophages. Each donor capillary
cell has an identical consensus in donor 1, reflecting an unannotated splice
isoform. Q value of 1.2E-9 for P2, 6.3E-26 for P3.

D. Unique alignment of the NOMAD-identified anchor, target1 pair to HLA-DRB1. Q
value of 4.0E-10 for P2, 1.2E-4 for donor 2. Each donor, celltype pair has a
distinct, cell-type specific consensus sequence, reflected by the multiway
alignment to HLA-DRB1 3’ UTR. Nucleotide composition of the most abundant
targets are depicted as heatmaps. Scatter plots show cell-type regulation of
different HLA-DRB1 alleles not explained by a null binomial sampling model
p<2E-16 for donor 1, 5.6E-8 for donor 2 , finite sample confidence intervals
depicted in red and green, statistical test described in Methods.

E. Donor 1 specific splice variant of HLA-DPB1. Anchor Q value: 7.9E-22. Detected
targets in macrophages exclusively expressing the short isoform which shortens
the ORF and changes the 3’ UTR; splice variants found de novo by NOMAD
consensus’. Binomial hypothesis test as in D for cell-type target expression
depicted in scatter plots (p<2.8E-14).

Figure 3
A. Analysis of lemur and human B (left) and T (right) cells. Human genes are

depicted as triangles; lemur as circles. Post-facto alignments show variable
regions in the kappa light chain in human B cells are most densely hit by NOMAD
anchors and absent from controls; in T cells, the HLA loci and TRB including its
constant and variable region are most densely hit, which are absent from
controls. x-axis indicates the fraction of the 1000 control anchors (most abundant
anchors) that map to the named transcript, y-axis indicates the fraction of
NOMAD’s 1000 most significant anchors that map to the named transcript. Each
inset depicts anchor density alignment in the IGKV region (left) and HLA-B in
CD4+ T cells (top right) and TRBC-2 (bottom right), showing these regions are
densely hit.
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B. NOMAD-annotated anchors are enriched in HLA-B (Panel A). HLA-B sequence
variants are identified de novo by the consensus approach, including
allele-specific expression of two HLA-B variants, one annotated in the genome
reference, the other with 5 SNPs coinciding with annotated SNPS. L: heatmap of
per cell fraction expression of each of 2 variants: NOMAD shows that T cells
have allelic expression of HLA-B, not explicable by low sampling depth (binomial
test as in Fig. 3d,e described in Methods, p< 4.6E-24) .

C. In human T cells (left), anchor in the TRVB7-9 gene, and two example
consensus’ map to disjoint J segments, TRBJ1-2 and TRBJ2-7. Histograms
depict combinatorial single-cell (columns) by target (row) expression of targets
detected by NOMAD. Examples of Human B cells and lemur T cells are depicted
similarly. Human B cell anchor maps to the immunoglobulin kappa chain constant
region (IGKC), and as predicted, targets map imperfectly to IGKJ (not shown).
Lemur T cell anchor maps to the human gene TBC1D14.

D. NOMAD protein profile analysis schematized at top (Methods) shows that
NOMAD recovers domains known to be diversified in adaptive immune cells,
bypassing any genome reference or alignment; control hits computed from the
most abundant anchors have no such enrichment. In B cells, the V set hits are
exclusively at a relatively high E-value, as predicted by protein diversification
generated during V(D)J making matching to reference domains imperfect. The
third hit is near perfect Tnp_22_dsRBD double stranded RNA binding domain,
suggesting potential activation of LINE elements in B cells (green: NOMAD; grey:
control). COX2, known to be involved in immune response, is highly ranked in
both lemur T and B cells. Plots were truncated for clarity of presentation as
indicated by dashed grey line; full plots are in Supplement.

Figure 4
A. Highest effect size NOMAD anchors for SARS-CoV2 (L) that map with bowtie to

the Wuhan reference (NC_045512) are shown; enrichment near variants of
concern, including a sequence immediately adjacent to one of NOMAD’s called
anchors. SARS-CoV2 genome depicted with annotated ORFs and lines depicting
positions of variants of concern (VOC) annotated as Omicron and Delta variants.
No control anchor maps to spike or other areas of VOC density except in N
(nucleocapsid). Protein graphics from
https://pdb101.rcsb.org/browse/coronavirus. Data from
https://www.ncbi.nlm.nih.gov/sra/SRX14565486[accn.

B. NOMAD SARS-CoV2 protein profile hits to the Pfam database (greens) and
control (greys); ordered by enrichment in NOMAD hits compared to control.
Spike protein domains are highly enriched in the NOMAD hit list (L), the receptor
binding domain being highest. NOMAD hits to the CoV spike have higher
E-values, suggesting mutations with respect to the reference. The most highly
enriched hit is the betacoronavirus S1 glycoprotein receptor binding domain
(bCoV_S1_RBD), followed by the spike glycoprotein C-terminal domain
(CoV_S1_C), the ORF9b betacoronavirus lipid binding domain (bCoV-lipid_BD),
and the coronavirus nonstructural protein 3 replicase C-terminal domain
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(CoV_NSP3_C). CoV_S1_C and CoV_NSP3_C hits have high E-value hits,
potentially explained by an evolutionary divergence from the Pfam entry,
predicted if NOMAD were detecting unannotated variants in the SARS-CoV-2
genome. Data from https://www.ncbi.nlm.nih.gov/sra/SRX14565486[accn.
Protein graphics from https://pdb101.rcsb.org/browse/coronavirus. Plot was
truncated for clarity of presentation as indicated by dashed grey line
(Supplement).

C. NOMAD protein profiles for Rotavirus metagenomic study PRJNA729919:
NOMAD protein profile hits to the Pfam database (greens) and control (greys);
ordered by enrichment in NOMAD hits compared to control. The most enriched
domain is the rotavirus VP3 (Rotavirus_VP3, 76 NOMAD hits vs 9 control hits), a
viral protein known to be involved in host immune suppression, followed by the
rotavirus NSP3 (Rota_NSP3, 87 NOMAD vs 35 control hits), a viral protein
involved in subverting the host translation machinery (77), both proteins that
might be expected to be under constant selection given their intimate host
interaction. Most enriched in the control: Rota_VP4_MID, an outer capsid coat
protein, and RotaNS53, an RNA binding domain of the protein. Plot was
truncated for clarity of presentation as indicated by dashed grey line
(Supplement).
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Methods

Anchor preprocessing
Anchors and targets are defined as sequences of length k positioned at a distance
R=max(0, (L - 2 * k) / 2) apart, where L is read length. If L=100 and k=27, then R= 23.
We note that largest choices of L have provable theoretical properties regarding
information contained in anchor-target pairs following the style of analysis in (78).
Anchor sequences can be extracted as adjacent, disjoint sequences or as tiled
sequences that begin at a fixed step size (here fastqs were tiled every 5 bp). For this
manuscript, 4M reads per fastq file were used. Extracted anchor and target sequences
are then counted for each sample, and anchor-target counts are then collected across
all samples for restratification by the first kMers of the anchors. This stratification step
allows for user control over parallelization. To reduce the number of hypotheses tested
and required to correct for, we proceed with p value calculation only for anchors with
more than 50 total counts across all samples.

NOMAD Statistics

P values

NOMAD performs statistical inference directly on raw fastq reads. NOMAD
begins by constructing the empirical conditional distribution of targets for each anchor
and sample (p samples, p>1) by extracting (anchor, target) pairs of k=27-mers from the
fastq files (Fig 1b); following notation in (29). Constructing the samples by targets
counts matrix for each anchor is extremely inefficient, as it simply requires enumerating
every read in every fastq file for each possible anchor sequence. Innovative, yet very
simple, preprocessing techniques accomplish this in an efficient manner with complexity
nearly linear in the file size, enabling facile statistical inference. For example, this
computation and the statistical inferential step explained below together took an
average of 2.28 minutes and 750 MB of memory to process 4 million reads, a dramatic
speed up over existing methods.

While contingency tables have been widely analyzed in the statistics community
(30, 79–83), no existing tests provide closed form, finite-sample valid statistical
inference with desired power for the application setting at hand (Supplement). We
construct our test statistic S as follows. First, we randomly construct a function f, which
maps each target independently to {0,1}. We then compute the mean value of targets
with respect to this function. Next, we compute the mean within each sample of this
function. Then, we construct our anchor-sample score for sample j, Sj, as a scaled
version of the difference between these two. Finally, we construct our test statistic S as
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the weighted sum of these Sj, with weights corresponding to the cj (class-identity in the
two-group case with metadata). In the below equations, Dj,k denotes the sequence of
the k-th target observed for the j-th sample.

This allows us to construct statistically valid p values as:

By applying Hoeffding’s inequality on these sums of independent random variables
(under the null) (84).
As discussed, we compute this statistic for K different random choices of f, and in the
case where sample group metadata is not available, also for L random choices of c. To
yield valid p values for this anchor, we apply Bonferroni correction over the L*K multiple
hypotheses we test (just K when sample metadata is available). Then, in order to
determine the significant anchors, we apply BY correction (BH with positive
dependence) to our list of p values for each anchor, yielding valid FDR controlled Q
values reported throughout the manuscript.

Note that, in the case of A anchors, we can trivially instead simply apply BY correction
to our A*L*K hypotheses, instead of first Bonferroni correction for L*K hypotheses then
BY correcting our A aggregate hypotheses. This procedure will still be FDR controlled,
and will yield at least as many discovered anchors. For clarity here, however, we apply
Bonferroni correction to yield valid p values for each anchor individually.

Effect size:
NOMAD provides a measure of effect size when the cj’s used are +/- 1, to allow for
prioritization of anchors with large inter-sample differences in target distributions. Effect
size is calculated based on the split c and function f that yield the most significant
NOMAD p value. Fixing these, the effect size is the absolute value of the difference
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between the mean function value over targets (with respect to f) across those samples
with cj = +1, and the mean over targets (with respect to f) across those samples with cj =
-1.

This effect size has natural relations to a simple 2 group alternative hypothesis. It
can also be shown to relate to the total variation distance between the empirical
distributions of the two groups. These connections are discussed further in the
Supplement.

Consensus sequences
A consensus sequence is built for each significant anchor for the sequence downstream
of the anchor sample. A separate consensus is built for each sample by aggregating all
reads from this sample that contain the given anchor. Then, NOMAD constructs the
consensus as the plurality vote of all these reads; concretely, the consensus at basepair
i is the plurality vote of all reads that contain the anchor, i basepairs after the anchor
appears in the read (a read does not vote for consensus base i if it has terminated
within i basepairs after the anchor appeared). The consensus base as well as the
fraction agreement with this base among the reads is recorded.

The consensus sequences can be used for both splice site discovery and other
applications, such as identifying point mutations and highly diversifying sequences, e.g.
VDJ rearrangements. The statistical properties of consensus building make it an
appealing candidate for use in de novo assembly (Supplement).

To provide intuition regarding the error correcting capabilities of the consensus, consider
a simple probabilistic model where our reads from a sample all come from the same
underlying sequence. In this case, under the substitution only error model, we have that
the probability that our consensus for n reads makes a mistake at a given location i
under independent sequencing error rate epsilon is at most

We can see that even for n=10, this probability is less than 1.3E-7 for a given basepair,
which can be union-bounded over the length of the consensus to yield a vanishingly
small probability of error. Thus, for a properly aligned read, if a basepair differs between
the consensus and reference it is almost certainly a SNP.

Annotations
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Anchors, targets, and consensus sequences are annotated in summary files to lend
functional and biological context (Supplement). To identify false positive sequences or
contextualize mobile genetic elements, anchors and targets can be aligned with bowtie2
to a set of indices, corresponding to databases of sequencing artifacts, transposable
elements, and mobile genetic elements. In these alignments, the best hit is reported,
relative to an order of priority (29). Similarly, anchor, target, and consensus sequences
can be aligned to reference genomes and transcriptomes, to provide information about
the location of sequences relative to genomic elements. To perform homology-based
annotation, anchor sequences were extended by their consensus sequences
(Supplement), and aligned to annotated protein, non-coding RNA (ncRNA), and
eukaryotic repetitive DNA databases, namely, the Pfam, Rfam, and Dfam, respectively
following (29).

Splice junction calls
To identify exon coordinates for reporting concordance with annotations in this
manuscript, consensus sequences are mapped with STAR aligner (default settings)
(26). Gapped alignments are extracted and their coordinates are annotated with known
splice junction coordinates using bedtools bamtobed --split; each resulting contiguously
mapping segment is called a “called exon” (see below). From each consensus
sequence, called exons are generated as start and end sites of each contiguously
mapped sequence in the spliced alignment. These ‘called exons’ are then stratified as
start sites and end sites. Note that the extremal positions of all called exons would not
be expected to coincide with a spliced boundary (see below); “called exon” boundaries
would coincide with an exon boundary if they are completely internal to the set of called
exon coordinates. Each start and end site of each called exon is intersected with an
annotation file of known exon coordinates; it receives a value of 0 if the site is
annotated, and 1 if it is annotated as alternative. The original consensus sequence and
the reported alignment of the consensus sequence are also reported. Gene names for
each consensus are assigned by bedtools intersect with gene annotations (hg38
RefSeq for human data by default), possibly resulting in multiple gene names per
consensus.

Example of how spliced reads are converted to “called exons” (bottom) and are
compared to annotated exons (top); right most and leftmost boundaries of called exons
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are not expected to coincide with annotated exon boundaries and are excluded from
analysis of concordance between consensus called-exons and annotations.

Identifying cell-type specific isoforms in SS2
In the analysis of HLCA SS2 data, we utilize “isoform detection conditions” for
alternative isoform detection. These conditions select for (anchor, target) pairs that map
exclusively to the human genome, anchors with at least one split-mapping consensus
sequence, mu_lev > 5, and M > 100. We define mu_lev as the average target distance
from the most abundant target as measured by the Levenstein distance. To identify
anchors and targets that map exclusively to the human genome, we included anchors
and targets that had exactly one element annotation, where that one element annotation
must be grch38_1kgmaj. To identify anchors with at least one split-mapping consensus,
we selected anchors that had at least one consensus sequence with at least 2 called
exons. The conditions on Levenshtein distance, designed to require significant
across-target sequence diversity, significantly reduced anchors analyzed (excluding
many SNP-like effects). We further restricted to anchors with M > 100, to account for the
lower cell numbers in macrophage cells; note that the user can perform inference with a
lower M requirement, based on input data. For HLA discussion, gene names were
called using ​​consensus_gene_mode.

Timing for SS2
Because code was run on a server with dynamic memory, we report summary statistics
as follows. For the steps parallelized by fastq file, such as anchor and target retrieval,
total time for dataset run, as reported by Nextflow, was parsed per cell. Thus, the
average time per cell is reported. For the steps parallelized by 64 files (q value
calculations), total extracted times were summed and divided by number of cells. For
steps that consisted of aggregating files, total run time was divided by number of cells.
Thus, the total time and memory should be multiplied by the total number of cells to
achieve an estimate of the pipeline time for this dataset.

HLA analysis in HLCA
NOMAD summary files were processed by restricting to anchors aligning to the human genome
and no other databases used in the pipeline for post-facto annotation (Supplement), and having
at least 1 target with this characteristic. Further, mu_lev had to exceed 1.5.

Protein Domain Analysis
For each set of enriched anchors, homology-based annotation was attempted against
an annotated protein database, the Pfam (66). For each dataset, up to 103 of the most
significant anchors (q-value < 0.01) were first assessed against each individual
experiment for downstream consensus sequence extensions by appending each
consensus nucleotide that both satisfied a minimum observation count of 10 and a
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minimum observation of identity fraction of 0.8, until whichever metric first exhibited two
consecutive failures. In the case of the HIV and Microcebus datasets, 875 and 347
significant anchors were available, and thus used, respectively. Anchors that did not
have any consensus nucleotides appended were kept as is. An extended anchor was
generated for each experiment in which an anchor was found. Each extended anchor
was then stored in a final concatenated multi .fasta file with unique seqID headers for
each experiment’s extended anchors.

To assess these extended anchors for protein homology, this concatenated .fasta file
was then translated in all six frames using the standard ‘code 11’ translation table using
seqkit (85) prior to using hmmsearch from the HMMer3 package (86) to assess each
resulting amino acid sequences against the Pfam35 profile Hidden Markov Model
(pHMM) database.

All hits to the Pfam database were then binned at different E-value orders of magnitude
and plotted using matplotlib (87) in jupyter (88). In each case, control
assessments were performed by repeating the extension and homology searches
against an equivalent number of control anchors, selected as the most frequent anchors
from that dataset.

Lastly it is worth noting that while only counts of the best scoring Pfam hits were
assessed in this study, other information is also produced by HMMer3. In particular,
relative alignment positions are given for each hit which could be used to more finely
pinpoint the precise locus at which sequence diversification is detected.

NOMAD comparison to BASIC analysis of lemur spleen B cells

We ran NOMAD on cells where BASIC failed to identify the light chain variable gene family. We
selected cells annotated as "No BCR light chain" by BASIC which was run in -a mode

We identified anchors which were mapped by bowtie to the IGL gene string (human annotation
via the following command issued in NOMAD’s genome_annotation output directory).
This resulted in the following 5 anchors:
CCTCAGAGGAGGGCGGGAACAGCGTGA
CTCGGTCACTCTGTTCCCGCCCTCCTC
GCCCCCTCGGTCACTCTGTTCCCGCCC
GGGCGGGAACAGCGTGACCGAGGGGGC
TCACTCTGTTCCCGCCCTCCTCTGAGG

We then grepped these sequences in the anchors and consensus files generated by NOMAD
and ran blast with the parameters
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mt="6 qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore
sseqid sgi sacc slen staxids stitle" with E-value threshold of .1

# command
blastn -outfmt "$fmt" -query "$fasta" -remote -db nt -out "$algnfile" -evalue 0.1 -task blastn -dust
no -word_size 24 -reward 1 -penalty -3 -max_target_seqs 200

We checked that light chain variable regions were called via grep for the words "light chain
variable" yielding 60 sequences. Each cell could have at most |anchors| contributions to this
number, and thus at least 12 cells (conservatively) had NOMAD-identified partial light chain
variable sequences.

SARS-CoV2 analysis

All methods are described in the text. Data was downloaded from SRP365288. Bowtie was run
in default mode. NOMAD anchors were chosen with effect size threshold >.8. After bowtie
mapping, the number of control anchors were chosen to match the number of anchors mapped
by bowtie to create comparable numbers. In total, 19 NOMAD anchors mapped with bowtie and
17 mapped from the control and are displayed in Fig 4. An effect size threshold was imposed
due to the size of the SARS-CoV-2 genome to obtain low anchor density for analysis.
NC_045512.fa, Omicron and Delta mutation variant downloaded as fastas from the UCSC
genome browser in June of 2022 using the track browser

and

Rotavirus metagenomics: Data is taken from NCBI SRA accession PRJNA729919

Control analysis
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To construct control anchor lists based on abundance, we considered all anchors input
to NOMAD and counted their abundance, collapsing counts across targets. That is, ach
anchor receives a count determined by the number of times it appears at an offset of 5
in the read up to position R- max(0,R/2-2*k) where R is the length of the read, summed
over all targets. The 1000 most abundant anchors were output as the control set. For
analysis comparing control to NOMAD anchors, min(|NOMAD anchor list|,1000) most
abundant anchors from the control set were used and the same number of NOMAD
anchors were used, sorted by p value.

Gene ontology(GO) term analysis
For comparison of NOMAD anchors with the control set, 1000 of the most significant
anchors were analyzed in parallel with the control anchors. Transcripts were assigned to
anchors by mapping the anchor sequences to a bowtie2 reference of the human
transcriptome. The unique gene list was then used as input to GO term analysis (64,
65). Analysis was performed independently on the NOMAD and control sets without a
background set, using the “Homo sapiens” reference, “biological process” ontology, and
default significance parameters. For all downstream analyses, only GO terms with
statistically significant results were reported.

SARS-CoV2
Anchors with effect size exceeding 0.8 were selected and mapped with bowtie default
parameters against the Wuhan strain NC_045512 downloaded from NCBI in 2022.
Equal numbers of controls were chosen and also mapped with identical parameters.
Mapping was 7% to this index, 19 out of 267 anchors aligned. 19 control anchors were
then selected, 17 (89%) of which mapped to the reference. These sets of anchors are
depicted in Figure 4a,b.

Bibliography

1. M. D. Daugherty, H. S. Malik, Rules of engagement: molecular insights from
host-virus arms races. Annu. Rev. Genet. 46, 677–700 (2012).

2. S. M. Rudman, S. I. Greenblum, S. Rajpurohit, N. J. Betancourt, J. Hanna, S. Tilk,
T. Yokoyama, D. A. Petrov, P. Schmidt, Direct observation of adaptive tracking on
ecological time scales in Drosophila. Science. 375, eabj7484 (2022).

3. G. Faure, S. A. Shmakov, W. X. Yan, D. R. Cheng, D. A. Scott, J. E. Peters, K. S.
Makarova, E. V. Koonin, CRISPR-Cas in mobile genetic elements:
counter-defence and beyond. Nat. Rev. Microbiol. 17, 513–525 (2019).

4. P. Ebert, P. A. Audano, Q. Zhu, B. Rodriguez-Martin, D. Porubsky, M. J. Bonder,

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=48995,10376357&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=48995,10376357&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/bibliography
https://sciwheel.com/work/bibliography/400430
https://sciwheel.com/work/bibliography/400430
https://sciwheel.com/work/bibliography/12668578
https://sciwheel.com/work/bibliography/12668578
https://sciwheel.com/work/bibliography/12668578
https://sciwheel.com/work/bibliography/7043712
https://sciwheel.com/work/bibliography/7043712
https://sciwheel.com/work/bibliography/7043712
https://sciwheel.com/work/bibliography/10552091
https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


A. Sulovari, J. Ebler, W. Zhou, R. Serra Mari, F. Yilmaz, X. Zhao, P. Hsieh, J. Lee,
S. Kumar, J. Lin, T. Rausch, Y. Chen, J. Ren, M. Santamarina, E. E. Eichler,
Haplotype-resolved diverse human genomes and integrated analysis of structural
variation. Science. 372 (2021), doi:10.1126/science.abf7117.

5. K. N. LeGault, S. G. Hays, A. Angermeyer, A. C. McKitterick, F.-T. Johura, M.
Sultana, T. Ahmed, M. Alam, K. D. Seed, Temporal shifts in antibiotic resistance
elements govern phage-pathogen conflicts. Science. 373 (2021),
doi:10.1126/science.abg2166.

6. B. J. Arnold, I.-T. Huang, W. P. Hanage, Horizontal gene transfer and adaptive
evolution in bacteria. Nat. Rev. Microbiol. 20, 206–218 (2022).

7. N.-C. Chang, Q. Rovira, J. N. Wells, C. Feschotte, J. M. Vaquerizas, Zebrafish
transposable elements show extensive diversification in age, genomic distribution,
and developmental expression. Genome Res. gr.275655.121 (2022),
doi:10.1101/gr.275655.121.

8. J. Ule, B. J. Blencowe, Alternative splicing regulatory networks: functions,
mechanisms, and evolution. Mol. Cell. 76, 329–345 (2019).

9. L. Yang, M. Emerman, H. S. Malik, R. N. McLaughlin, Retrocopying expands the
functional repertoire of APOBEC3 antiviral proteins in primates. eLife. 9 (2020),
doi:10.7554/eLife.58436.

10. J. E. Olivieri, R. Dehghannasiri, J. Salzman, The SpliZ generalizes “percent
spliced in” to reveal regulated splicing at single-cell resolution. Nat. Methods. 19,
307–310 (2022).

11. J. F. Degner, J. C. Marioni, A. A. Pai, J. K. Pickrell, E. Nkadori, Y. Gilad, J. K.
Pritchard, Effect of read-mapping biases on detecting allele-specific expression
from RNA-sequencing data. Bioinformatics. 25, 3207–3212 (2009).

12. P. H. Sudmant, T. Rausch, E. J. Gardner, R. E. Handsaker, A. Abyzov, J.
Huddleston, Y. Zhang, K. Ye, G. Jun, M. H.-Y. Fritz, M. K. Konkel, A. Malhotra, A.
M. Stütz, X. Shi, F. P. Casale, J. Chen, F. Hormozdiari, G. Dayama, K. Chen, M.
Malig, J. O. Korbel, An integrated map of structural variation in 2,504 human
genomes. Nature. 526, 75–81 (2015).

13. S. S. Ho, A. E. Urban, R. E. Mills, Structural variation in the sequencing era. Nat.
Rev. Genet. 21, 171–189 (2020).

14. R. M. Sherman, S. L. Salzberg, Pan-genomics in the human genome era. Nat.
Rev. Genet. 21, 243–254 (2020).

15. M. Meyerson, D. Pellman, Cancer genomes evolve by pulverizing single
chromosomes. Cell. 144, 9–10 (2011).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography/10552091
https://sciwheel.com/work/bibliography/10552091
https://sciwheel.com/work/bibliography/10552091
https://sciwheel.com/work/bibliography/10552091
https://sciwheel.com/work/bibliography/11649011
https://sciwheel.com/work/bibliography/11649011
https://sciwheel.com/work/bibliography/11649011
https://sciwheel.com/work/bibliography/11649011
https://sciwheel.com/work/bibliography/12008126
https://sciwheel.com/work/bibliography/12008126
https://sciwheel.com/work/bibliography/13058719
https://sciwheel.com/work/bibliography/13058719
https://sciwheel.com/work/bibliography/13058719
https://sciwheel.com/work/bibliography/13058719
https://sciwheel.com/work/bibliography/7650950
https://sciwheel.com/work/bibliography/7650950
https://sciwheel.com/work/bibliography/9171004
https://sciwheel.com/work/bibliography/9171004
https://sciwheel.com/work/bibliography/9171004
https://sciwheel.com/work/bibliography/12604110
https://sciwheel.com/work/bibliography/12604110
https://sciwheel.com/work/bibliography/12604110
https://sciwheel.com/work/bibliography/1409365
https://sciwheel.com/work/bibliography/1409365
https://sciwheel.com/work/bibliography/1409365
https://sciwheel.com/work/bibliography/790620
https://sciwheel.com/work/bibliography/790620
https://sciwheel.com/work/bibliography/790620
https://sciwheel.com/work/bibliography/790620
https://sciwheel.com/work/bibliography/790620
https://sciwheel.com/work/bibliography/7772760
https://sciwheel.com/work/bibliography/7772760
https://sciwheel.com/work/bibliography/8188639
https://sciwheel.com/work/bibliography/8188639
https://sciwheel.com/work/bibliography/432158
https://sciwheel.com/work/bibliography/432158
https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


16. T. N. A. O. Consortium, A Global Nucleic Acid Observatory for Biodefense and
Planetary Health. arXiv (2021), doi:10.48550/arxiv.2108.02678.

17. J. Batson, G. Dudas, E. Haas-Stapleton, A. L. Kistler, L. M. Li, P. Logan, K.
Ratnasiri, H. Retallack, Single mosquito metatranscriptomics identifies vectors,
emerging pathogens and reservoirs in one assay. eLife. 10 (2021),
doi:10.7554/eLife.68353.

18. H.-C. Flemming, S. Wuertz, Bacteria and archaea on Earth and their abundance
in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).

19. K. Kirkegaard, N. J. van Buuren, R. Mateo, My Cousin, My Enemy: quasispecies
suppression of drug resistance. Curr. Opin. Virol. 20, 106–111 (2016).

20. D. Kim, J.-Y. Lee, J.-S. Yang, J. W. Kim, V. N. Kim, H. Chang, The Architecture of
SARS-CoV-2 Transcriptome. Cell. 181, 914-921.e10 (2020).

21. R. C. Edgar, J. Taylor, V. Lin, T. Altman, P. Barbera, D. Meleshko, D. Lohr, G.
Novakovsky, B. Buchfink, B. Al-Shayeb, J. F. Banfield, M. de la Peña, A.
Korobeynikov, R. Chikhi, A. Babaian, Petabase-scale sequence alignment
catalyses viral discovery. Nature. 602, 142–147 (2022).

22. A. A. Zayed, J. M. Wainaina, G. Dominguez-Huerta, E. Pelletier, J. Guo, M.
Mohssen, F. Tian, A. A. Pratama, B. Bolduc, O. Zablocki, D. Cronin, L. Solden, E.
Delage, A. Alberti, J.-M. Aury, Q. Carradec, C. da Silva, K. Labadie, J. Poulain,
H.-J. Ruscheweyh, P. Wincker, Cryptic and abundant marine viruses at the
evolutionary origins of Earth’s RNA virome. Science. 376, 156–162 (2022).

23. D. R. Evans, M. P. Griffith, A. J. Sundermann, K. A. Shutt, M. I. Saul, M. M.
Mustapha, J. W. Marsh, V. S. Cooper, L. H. Harrison, D. Van Tyne, Systematic
detection of horizontal gene transfer across genera among multidrug-resistant
bacteria in a single hospital. eLife. 9 (2020), doi:10.7554/eLife.53886.

24. R. J. Wright, A. M. Comeau, M. G. I. Langille, From defaults to databases:
parameter and database choice dramatically impact the performance of
metagenomic taxonomic classification tools. BioRxiv (2022),
doi:10.1101/2022.04.27.489753.

25. S. Mangul, L. S. Martin, B. L. Hill, A. K.-M. Lam, M. G. Distler, A. Zelikovsky, E.
Eskin, J. Flint, Systematic benchmarking of omics computational tools. Nat.
Commun. 10, 1393 (2019).

26. A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M.
Chaisson, T. R. Gingeras, STAR: ultrafast universal RNA-seq aligner.
Bioinformatics. 29, 15–21 (2013).

27. J. Westoby, M. S. Herrera, A. C. Ferguson-Smith, M. Hemberg, Simulation-based

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography/13187886
https://sciwheel.com/work/bibliography/13187886
https://sciwheel.com/work/bibliography/12272625
https://sciwheel.com/work/bibliography/12272625
https://sciwheel.com/work/bibliography/12272625
https://sciwheel.com/work/bibliography/12272625
https://sciwheel.com/work/bibliography/6449012
https://sciwheel.com/work/bibliography/6449012
https://sciwheel.com/work/bibliography/13187887
https://sciwheel.com/work/bibliography/13187887
https://sciwheel.com/work/bibliography/8758504
https://sciwheel.com/work/bibliography/8758504
https://sciwheel.com/work/bibliography/12359531
https://sciwheel.com/work/bibliography/12359531
https://sciwheel.com/work/bibliography/12359531
https://sciwheel.com/work/bibliography/12359531
https://sciwheel.com/work/bibliography/12779279
https://sciwheel.com/work/bibliography/12779279
https://sciwheel.com/work/bibliography/12779279
https://sciwheel.com/work/bibliography/12779279
https://sciwheel.com/work/bibliography/12779279
https://sciwheel.com/work/bibliography/8695959
https://sciwheel.com/work/bibliography/8695959
https://sciwheel.com/work/bibliography/8695959
https://sciwheel.com/work/bibliography/8695959
https://sciwheel.com/work/bibliography/13175711
https://sciwheel.com/work/bibliography/13175711
https://sciwheel.com/work/bibliography/13175711
https://sciwheel.com/work/bibliography/13175711
https://sciwheel.com/work/bibliography/6734443
https://sciwheel.com/work/bibliography/6734443
https://sciwheel.com/work/bibliography/6734443
https://sciwheel.com/work/bibliography/49324
https://sciwheel.com/work/bibliography/49324
https://sciwheel.com/work/bibliography/49324
https://sciwheel.com/work/bibliography/5990853
https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


benchmarking of isoform quantification in single-cell RNA-seq. Genome Biol. 19,
191 (2018).

28. A. M. Fenn, O. Tsoy, T. Faro, F. Roessler, A. Dietrich, J. Kersting, Z. Louadi, C. T.
Lio, U. Voelker, J. Baumbach, T. Kacprowski, M. List, Alternative splicing analysis
benchmark with DICAST. BioRxiv (2022), doi:10.1101/2022.01.05.475067.

29. J. Abante, P. L. Wang, J. Salzman, DIVE: a reference-free statistical approach to
diversity-generating and mobile genetic element discovery. BioRxiv (2022),
doi:10.1101/2022.06.13.495703.

30. A. Agresti, A Survey of Exact Inference for Contingency Tables. Stat. Sci. 7,
131–153 (1992).

31. Y. Benjamini, Y. Hochberg, Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society.
Series B (Methodological). 57, 289–300 (1995).

32. Y. Benjamini, D. Yekutieli, The control of the false discovery rate in multiple testing
under dependency. Ann. Statist. 29, 1165–1188 (2001).

33. C. F. Buen Abad Najar, N. Yosef, L. F. Lareau, Coverage-dependent bias creates
the appearance of binary splicing in single cells. BioRxiv (2019),
doi:10.1101/2019.12.19.883256.

34. Y. Huang, G. Sanguinetti, BRIE2: computational identification of splicing
phenotypes from single-cell transcriptomic experiments. Genome Biol. 22, 251
(2021).

35. K. J. Travaglini, A. N. Nabhan, L. Penland, R. Sinha, A. Gillich, R. V. Sit, S.
Chang, S. D. Conley, Y. Mori, J. Seita, G. J. Berry, J. B. Shrager, R. J. Metzger, C.
S. Kuo, N. Neff, I. L. Weissman, S. R. Quake, M. A. Krasnow, A molecular cell
atlas of the human lung from single-cell RNA sequencing. Nature. 587, 619–625
(2020).

36. J. E. Olivieri, R. Dehghannasiri, P. L. Wang, S. Jang, A. de Morree, S. Y. Tan, J.
Ming, A. Ruohao Wu, Tabula Sapiens Consortium, S. R. Quake, M. A. Krasnow,
J. Salzman, RNA splicing programs define tissue compartments and cell types at
single-cell resolution. eLife. 10 (2021), doi:10.7554/eLife.70692.

37. G. Benegas, J. Fischer, Y. S. Song, Robust and annotation-free analysis of
alternative splicing across diverse cell types in mice. eLife. 11 (2022),
doi:10.7554/eLife.73520.

38. I. Kalvari, E. P. Nawrocki, J. Argasinska, N. Quinones-Olvera, R. D. Finn, A.
Bateman, A. I. Petrov, Non-Coding RNA Analysis Using the Rfam Database. Curr.
Protoc. Bioinformatics. 62, e51 (2018).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography/5990853
https://sciwheel.com/work/bibliography/5990853
https://sciwheel.com/work/bibliography/13187893
https://sciwheel.com/work/bibliography/13187893
https://sciwheel.com/work/bibliography/13187893
https://sciwheel.com/work/bibliography/13183837
https://sciwheel.com/work/bibliography/13183837
https://sciwheel.com/work/bibliography/13183837
https://sciwheel.com/work/bibliography/2016205
https://sciwheel.com/work/bibliography/2016205
https://sciwheel.com/work/bibliography/4142067
https://sciwheel.com/work/bibliography/4142067
https://sciwheel.com/work/bibliography/4142067
https://sciwheel.com/work/bibliography/488290
https://sciwheel.com/work/bibliography/488290
https://sciwheel.com/work/bibliography/8044796
https://sciwheel.com/work/bibliography/8044796
https://sciwheel.com/work/bibliography/8044796
https://sciwheel.com/work/bibliography/11622584
https://sciwheel.com/work/bibliography/11622584
https://sciwheel.com/work/bibliography/11622584
https://sciwheel.com/work/bibliography/10054525
https://sciwheel.com/work/bibliography/10054525
https://sciwheel.com/work/bibliography/10054525
https://sciwheel.com/work/bibliography/10054525
https://sciwheel.com/work/bibliography/10054525
https://sciwheel.com/work/bibliography/11724609
https://sciwheel.com/work/bibliography/11724609
https://sciwheel.com/work/bibliography/11724609
https://sciwheel.com/work/bibliography/11724609
https://sciwheel.com/work/bibliography/12767041
https://sciwheel.com/work/bibliography/12767041
https://sciwheel.com/work/bibliography/12767041
https://sciwheel.com/work/bibliography/5561821
https://sciwheel.com/work/bibliography/5561821
https://sciwheel.com/work/bibliography/5561821
https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


39. I. Kalvari, E. P. Nawrocki, N. Ontiveros-Palacios, J. Argasinska, K. Lamkiewicz, M.
Marz, S. Griffiths-Jones, C. Toffano-Nioche, D. Gautheret, Z. Weinberg, E. Rivas,
S. R. Eddy, R. D. Finn, A. Bateman, A. I. Petrov, Rfam 14: expanded coverage of
metagenomic, viral and microRNA families. Nucleic Acids Res. 49, D192–D200
(2021).

40. K. Hayashizaki, M. Y. Kimura, K. Tokoyoda, H. Hosokawa, K. Shinoda, K.
Hirahara, T. Ichikawa, A. Onodera, A. Hanazawa, C. Iwamura, J. Kakuta, K.
Muramoto, S. Motohashi, D. J. Tumes, T. Iinuma, H. Yamamoto, Y. Ikehara, Y.
Okamoto, T. Nakayama, Myosin light chains 9 and 12 are functional ligands for
CD69 that regulate airway inflammation. Sci. Immunol. 1, eaaf9154 (2016).

41. P. Vedula, S. Kurosaka, N. A. Leu, Y. I. Wolf, S. A. Shabalina, J. Wang, S.
Sterling, D. W. Dong, A. Kashina, Diverse functions of homologous actin isoforms
are defined by their nucleotide, rather than their amino acid sequence. eLife. 6
(2017), doi:10.7554/eLife.31661.

42. B. J. Perrin, J. M. Ervasti, The actin gene family: function follows isoform.
Cytoskeleton (Hoboken). 67, 630–634 (2010).

43. X. Niu, J. Hong, X. Zheng, D. B. Melville, E. W. Knapik, A. Meng, J. Peng, The
nuclear pore complex function of Sec13 protein is required for cell survival during
retinal development. J. Biol. Chem. 289, 11971–11985 (2014).

44. Z. Liu, M. Yan, W. Lei, R. Jiang, W. Dai, J. Chen, C. Wang, L. Li, M. Wu, X. Nian,
D. Li, D. Sun, X. Lv, C. Wang, C. Xie, L. Yao, C. Wu, J. Hu, N. Xiao, W. Mo, L.
Zhang, Sec13 promotes oligodendrocyte differentiation and myelin repair through
autocrine pleiotrophin signaling. J. Clin. Invest. 132 (2022),
doi:10.1172/JCI155096.

45. F. Hubé, C. Francastel, Mammalian introns: when the junk generates molecular
diversity. Int. J. Mol. Sci. 16, 4429–4452 (2015).

46. J. Kaufman, Unfinished business: evolution of the MHC and the adaptive immune
system of jawed vertebrates. Annu. Rev. Immunol. 36, 383–409 (2018).

47. Y. Luo, M. Kanai, W. Choi, X. Li, S. Sakaue, K. Yamamoto, K. Ogawa, M.
Gutierrez-Arcelus, P. K. Gregersen, P. E. Stuart, J. T. Elder, L. Forer, S.
Schönherr, C. Fuchsberger, A. V. Smith, J. Fellay, M. Carrington, D. W. Haas, X.
Guo, N. D. Palmer, S. Raychaudhuri, A high-resolution HLA reference panel
capturing global population diversity enables multi-ancestry fine-mapping in HIV
host response. Nat. Genet. 53, 1504–1516 (2021).

48. T. Naito, K. Suzuki, J. Hirata, Y. Kamatani, K. Matsuda, T. Toda, Y. Okada, A deep
learning method for HLA imputation and trans-ethnic MHC fine-mapping of type 1
diabetes. Nat. Commun. 12, 1639 (2021).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography/10061387
https://sciwheel.com/work/bibliography/10061387
https://sciwheel.com/work/bibliography/10061387
https://sciwheel.com/work/bibliography/10061387
https://sciwheel.com/work/bibliography/10061387
https://sciwheel.com/work/bibliography/4047545
https://sciwheel.com/work/bibliography/4047545
https://sciwheel.com/work/bibliography/4047545
https://sciwheel.com/work/bibliography/4047545
https://sciwheel.com/work/bibliography/4047545
https://sciwheel.com/work/bibliography/4617860
https://sciwheel.com/work/bibliography/4617860
https://sciwheel.com/work/bibliography/4617860
https://sciwheel.com/work/bibliography/4617860
https://sciwheel.com/work/bibliography/1841778
https://sciwheel.com/work/bibliography/1841778
https://sciwheel.com/work/bibliography/7351912
https://sciwheel.com/work/bibliography/7351912
https://sciwheel.com/work/bibliography/7351912
https://sciwheel.com/work/bibliography/13184007
https://sciwheel.com/work/bibliography/13184007
https://sciwheel.com/work/bibliography/13184007
https://sciwheel.com/work/bibliography/13184007
https://sciwheel.com/work/bibliography/13184007
https://sciwheel.com/work/bibliography/3394333
https://sciwheel.com/work/bibliography/3394333
https://sciwheel.com/work/bibliography/13185675
https://sciwheel.com/work/bibliography/13185675
https://sciwheel.com/work/bibliography/11804302
https://sciwheel.com/work/bibliography/11804302
https://sciwheel.com/work/bibliography/11804302
https://sciwheel.com/work/bibliography/11804302
https://sciwheel.com/work/bibliography/11804302
https://sciwheel.com/work/bibliography/11804302
https://sciwheel.com/work/bibliography/11920185
https://sciwheel.com/work/bibliography/11920185
https://sciwheel.com/work/bibliography/11920185
https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


49. B. P. Fairfax, S. Makino, J. Radhakrishnan, K. Plant, S. Leslie, A. Dilthey, P. Ellis,
C. Langford, F. O. Vannberg, J. C. Knight, Genetics of gene expression in primary
immune cells identifies cell type-specific master regulators and roles of HLA
alleles. Nat. Genet. 44, 502–510 (2012).

50. S. Kovats, E. K. Main, C. Librach, M. Stubblebine, S. J. Fisher, R. DeMars, A
class I antigen, HLA-G, expressed in human trophoblasts. Science. 248, 220–223
(1990).

51. L. F. Barcellos, S. Sawcer, P. P. Ramsay, S. E. Baranzini, G. Thomson, F. Briggs,
B. C. A. Cree, A. B. Begovich, P. Villoslada, X. Montalban, A. Uccelli, G.
Savettieri, R. R. Lincoln, C. DeLoa, J. L. Haines, M. A. Pericak-Vance, A.
Compston, S. L. Hauser, J. R. Oksenberg, Heterogeneity at the HLA-DRB1 locus
and risk for multiple sclerosis. Hum. Mol. Genet. 15, 2813–2824 (2006).

52. M. Gutierrez-Arcelus, Y. Baglaenko, J. Arora, S. Hannes, Y. Luo, T. Amariuta, N.
Teslovich, D. A. Rao, J. Ermann, A. H. Jonsson, NHLBI Trans-Omics for Precision
Medicine (TOPMed) Consortium, C. Navarrete, S. S. Rich, K. D. Taylor, J. I.
Rotter, P. K. Gregersen, T. Esko, M. B. Brenner, S. Raychaudhuri, Allele-specific
expression changes dynamically during T cell activation in HLA and other
autoimmune loci. Nat. Genet. 52, 247–253 (2020).

53. E. R. Unanue, V. Turk, J. Neefjes, Variations in MHC class II antigen processing
and presentation in health and disease. Annu. Rev. Immunol. 34, 265–297 (2016).

54. S. Senju, A. Kimura, M. Yasunami, N. Kamikawaji, H. Yoshizumi, Y. Nishimura, T.
Sasazuki, Allele-specific expression of the cytoplasmic exon of HLA-DQB1 gene.
Immunogenetics. 36, 319–325 (1992).

55. C. F. Buen Abad Najar, P. Burra, N. Yosef, L. F. Lareau, Identifying cell-state
associated alternative splicing events and their co-regulation. BioRxiv (2021),
doi:10.1101/2021.07.23.453605.

56. B. Briney, A. Inderbitzin, C. Joyce, D. R. Burton, Commonality despite exceptional
diversity in the baseline human antibody repertoire. Nature. 566, 393–397 (2019).

57. I. Lindeman, G. Emerton, L. Mamanova, O. Snir, K. Polanski, S.-W. Qiao, L. M.
Sollid, S. A. Teichmann, M. J. T. Stubbington, BraCeR: B-cell-receptor
reconstruction and clonality inference from single-cell RNA-seq. Nat. Methods. 15,
563–565 (2018).

58. S. Canzar, K. E. Neu, Q. Tang, P. C. Wilson, A. A. Khan, BASIC: BCR assembly
from single cells. Bioinformatics. 33, 425–427 (2017).

59. Tabula Sapiens Consortium*, R. C. Jones, J. Karkanias, M. A. Krasnow, A. O.
Pisco, S. R. Quake, J. Salzman, N. Yosef, B. Bulthaup, P. Brown, W. Harper, M.
Hemenez, R. Ponnusamy, A. Salehi, B. A. Sanagavarapu, E. Spallino, K. A.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography/533396
https://sciwheel.com/work/bibliography/533396
https://sciwheel.com/work/bibliography/533396
https://sciwheel.com/work/bibliography/533396
https://sciwheel.com/work/bibliography/8347955
https://sciwheel.com/work/bibliography/8347955
https://sciwheel.com/work/bibliography/8347955
https://sciwheel.com/work/bibliography/3118964
https://sciwheel.com/work/bibliography/3118964
https://sciwheel.com/work/bibliography/3118964
https://sciwheel.com/work/bibliography/3118964
https://sciwheel.com/work/bibliography/3118964
https://sciwheel.com/work/bibliography/8352280
https://sciwheel.com/work/bibliography/8352280
https://sciwheel.com/work/bibliography/8352280
https://sciwheel.com/work/bibliography/8352280
https://sciwheel.com/work/bibliography/8352280
https://sciwheel.com/work/bibliography/8352280
https://sciwheel.com/work/bibliography/3064060
https://sciwheel.com/work/bibliography/3064060
https://sciwheel.com/work/bibliography/13185678
https://sciwheel.com/work/bibliography/13185678
https://sciwheel.com/work/bibliography/13185678
https://sciwheel.com/work/bibliography/13194404
https://sciwheel.com/work/bibliography/13194404
https://sciwheel.com/work/bibliography/13194404
https://sciwheel.com/work/bibliography/6303589
https://sciwheel.com/work/bibliography/6303589
https://sciwheel.com/work/bibliography/6005991
https://sciwheel.com/work/bibliography/6005991
https://sciwheel.com/work/bibliography/6005991
https://sciwheel.com/work/bibliography/6005991
https://sciwheel.com/work/bibliography/3054007
https://sciwheel.com/work/bibliography/3054007
https://sciwheel.com/work/bibliography/12992545
https://sciwheel.com/work/bibliography/12992545
https://sciwheel.com/work/bibliography/12992545
https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


Aaron, W. Concepcion, J. M. Gardner, B. Kelly, et al., The Tabula Sapiens: A
multiple-organ, single-cell transcriptomic atlas of humans. Science. 376, eabl4896
(2022).

60. M. F. Criscitiello, Unusual T cell receptor in opossum. Science. 371, 1308–1309
(2021).

61. P. Kiepiela, A. J. Leslie, I. Honeyborne, D. Ramduth, C. Thobakgale, S. Chetty, P.
Rathnavalu, C. Moore, K. J. Pfafferott, L. Hilton, P. Zimbwa, S. Moore, T. Allen, C.
Brander, M. M. Addo, M. Altfeld, I. James, S. Mallal, M. Bunce, L. D. Barber, P. J.
R. Goulder, Dominant influence of HLA-B in mediating the potential co-evolution
of HIV and HLA. Nature. 432, 769–775 (2004).

62. S. Elahi, W. L. Dinges, N. Lejarcegui, K. J. Laing, A. C. Collier, D. M. Koelle, M. J.
McElrath, H. Horton, Protective HIV-specific CD8+ T cells evade Treg cell
suppression. Nat. Med. 17, 989–995 (2011).

63. J. M. Francis, D. Leistritz-Edwards, A. Dunn, C. Tarr, J. Lehman, C. Dempsey, A.
Hamel, V. Rayon, G. Liu, Y. Wang, M. Wille, M. Durkin, K. Hadley, A. Sheena, B.
Roscoe, M. Ng, G. Rockwell, M. Manto, E. Gienger, J. Nickerson, D. C. Pregibon,
Allelic variation in class I HLA determines CD8+ T cell repertoire shape and
cross-reactive memory responses to SARS-CoV-2. Sci. Immunol. 7, eabk3070
(2022).

64. M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.
Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver,
A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin,
G. Sherlock, Gene Ontology: tool for the unification of biology. Nat. Genet. 25,
25–29 (2000).

65. The Gene Ontology Consortium, The Gene Ontology resource: enriching a GOld
mine. Nucleic Acids Res. 49, D325–D334 (2021).

66. J. Mistry, S. Chuguransky, L. Williams, M. Qureshi, G. A. Salazar, E. L. L.
Sonnhammer, S. C. E. Tosatto, L. Paladin, S. Raj, L. J. Richardson, R. D. Finn, A.
Bateman, Pfam: The protein families database in 2021. Nucleic Acids Res. 49,
D412–D419 (2021).

67. The Tabula Microcebus Consortium, C. Ezran, S. Liu, S. Chang, J. Ming, O.
Botvinnik, L. Penland, A. Tarashansky, A. de Morree, K. J. Travaglini, K.
Hasegawa, H. Sin, R. Sit, J. Okamoto, R. Sinha, Y. Zhang, C. J. Karanewsky, J. L.
Pendleton, M. Morri, M. Perret, M. A. Krasnow, Tabula Microcebus: A
transcriptomic cell atlas of mouse lemur, an emerging primate model organism.
BioRxiv (2021), doi:10.1101/2021.12.12.469460.

68. C. Ezran, C. J. Karanewsky, J. L. Pendleton, A. Sholtz, M. R. Krasnow, J. Willick,

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography/12992545
https://sciwheel.com/work/bibliography/12992545
https://sciwheel.com/work/bibliography/12992545
https://sciwheel.com/work/bibliography/11566082
https://sciwheel.com/work/bibliography/11566082
https://sciwheel.com/work/bibliography/836892
https://sciwheel.com/work/bibliography/836892
https://sciwheel.com/work/bibliography/836892
https://sciwheel.com/work/bibliography/836892
https://sciwheel.com/work/bibliography/836892
https://sciwheel.com/work/bibliography/2470415
https://sciwheel.com/work/bibliography/2470415
https://sciwheel.com/work/bibliography/2470415
https://sciwheel.com/work/bibliography/12061261
https://sciwheel.com/work/bibliography/12061261
https://sciwheel.com/work/bibliography/12061261
https://sciwheel.com/work/bibliography/12061261
https://sciwheel.com/work/bibliography/12061261
https://sciwheel.com/work/bibliography/12061261
https://sciwheel.com/work/bibliography/48995
https://sciwheel.com/work/bibliography/48995
https://sciwheel.com/work/bibliography/48995
https://sciwheel.com/work/bibliography/48995
https://sciwheel.com/work/bibliography/48995
https://sciwheel.com/work/bibliography/10376357
https://sciwheel.com/work/bibliography/10376357
https://sciwheel.com/work/bibliography/9956308
https://sciwheel.com/work/bibliography/9956308
https://sciwheel.com/work/bibliography/9956308
https://sciwheel.com/work/bibliography/9956308
https://sciwheel.com/work/bibliography/13183981
https://sciwheel.com/work/bibliography/13183981
https://sciwheel.com/work/bibliography/13183981
https://sciwheel.com/work/bibliography/13183981
https://sciwheel.com/work/bibliography/13183981
https://sciwheel.com/work/bibliography/13183981
https://sciwheel.com/work/bibliography/3756202
https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


A. Razafindrakoto, S. Zohdy, M. A. Albertelli, M. A. Krasnow, The mouse lemur, a
genetic model organism for primate biology, behavior, and health. Genetics. 206,
651–664 (2017).

69. A. L. Groeger, C. Cipollina, M. P. Cole, S. R. Woodcock, G. Bonacci, T. K.
Rudolph, V. Rudolph, B. A. Freeman, F. J. Schopfer, Cyclooxygenase-2 generates
anti-inflammatory mediators from omega-3 fatty acids. Nat. Chem. Biol. 6,
433–441 (2010).

70. E. Domingo, J. Sheldon, C. Perales, Viral quasispecies evolution. Microbiol. Mol.
Biol. Rev. 76, 159–216 (2012).

71. N. Magazine, T. Zhang, Y. Wu, M. C. McGee, G. Veggiani, W. Huang, Mutations
and Evolution of the SARS-CoV-2 Spike Protein. Viruses. 14 (2022),
doi:10.3390/v14030640.

72. S. Kumar, T. S. Thambiraja, K. Karuppanan, G. Subramaniam, Omicron and Delta
variant of SARS-CoV-2: A comparative computational study of spike protein. J.
Med. Virol. 94, 1641–1649 (2022).

73. M. G. Thompson, M. Dittmar, M. J. Mallory, P. Bhat, M. B. Ferretti, B. M. Fontoura,
S. Cherry, K. W. Lynch, Viral-induced alternative splicing of host genes promotes
influenza replication. eLife. 9 (2020), doi:10.7554/eLife.55500.

74. X. Sun, G. R. Whittaker, Role of the actin cytoskeleton during influenza virus
internalization into polarized epithelial cells. Cell. Microbiol. 9, 1672–1682 (2007).

75. S.-M. Kuo, C.-J. Chen, S.-C. Chang, T.-J. Liu, Y.-H. Chen, S.-Y. Huang, S.-R.
Shih, Inhibition of Avian Influenza A Virus Replication in Human Cells by Host
Restriction Factor TUFM Is Correlated with Autophagy. MBio. 8 (2017),
doi:10.1128/mBio.00481-17.

76. Y. Song, N. Feng, L. Sanchez-Tacuba, L. L. Yasukawa, L. Ren, R. H. Silverman,
S. Ding, H. B. Greenberg, Reverse genetics reveals a role of rotavirus VP3
phosphodiesterase activity in inhibiting rnase L signaling and contributing to
intestinal viral replication in vivo. J. Virol. 94 (2020), doi:10.1128/JVI.01952-19.

77. M. Gratia, E. Sarot, P. Vende, A. Charpilienne, C. H. Baron, M. Duarte, S.
Pyronnet, D. Poncet, Rotavirus NSP3 Is a Translational Surrogate of the Poly(A)
Binding Protein-Poly(A) Complex. J. Virol. 89, 8773–8782 (2015).

78. J. Salzman, H. Jiang, W. H. Wong, Statistical Modeling of RNA-Seq Data. Stat.
Sci. 26 (2011), doi:10.1214/10-STS343.

79. P. Diaconis, B. Sturmfels, Algebraic algorithms for sampling from conditional
distributions. Ann. Statist. 26 (1998), doi:10.1214/aos/1030563990.

80. P. Diaconis, B. Efron, Testing for Independence in a Two-Way Table: New

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography/3756202
https://sciwheel.com/work/bibliography/3756202
https://sciwheel.com/work/bibliography/3756202
https://sciwheel.com/work/bibliography/5611294
https://sciwheel.com/work/bibliography/5611294
https://sciwheel.com/work/bibliography/5611294
https://sciwheel.com/work/bibliography/5611294
https://sciwheel.com/work/bibliography/387457
https://sciwheel.com/work/bibliography/387457
https://sciwheel.com/work/bibliography/12996503
https://sciwheel.com/work/bibliography/12996503
https://sciwheel.com/work/bibliography/12996503
https://sciwheel.com/work/bibliography/12175376
https://sciwheel.com/work/bibliography/12175376
https://sciwheel.com/work/bibliography/12175376
https://sciwheel.com/work/bibliography/13096224
https://sciwheel.com/work/bibliography/13096224
https://sciwheel.com/work/bibliography/13096224
https://sciwheel.com/work/bibliography/13175725
https://sciwheel.com/work/bibliography/13175725
https://sciwheel.com/work/bibliography/10690310
https://sciwheel.com/work/bibliography/10690310
https://sciwheel.com/work/bibliography/10690310
https://sciwheel.com/work/bibliography/10690310
https://sciwheel.com/work/bibliography/8911605
https://sciwheel.com/work/bibliography/8911605
https://sciwheel.com/work/bibliography/8911605
https://sciwheel.com/work/bibliography/8911605
https://sciwheel.com/work/bibliography/5877402
https://sciwheel.com/work/bibliography/5877402
https://sciwheel.com/work/bibliography/5877402
https://sciwheel.com/work/bibliography/531757
https://sciwheel.com/work/bibliography/531757
https://sciwheel.com/work/bibliography/13211358
https://sciwheel.com/work/bibliography/13211358
https://sciwheel.com/work/bibliography/13211367
https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


Interpretations of the Chi-Square Statistic. Ann. Statist. 13 (1985),
doi:10.1214/aos/1176349634.

81. Y. Chen, P. Diaconis, S. P. Holmes, J. S. Liu, Sequential monte carlo methods for
statistical analysis of tables. J. Am. Stat. Assoc. 100, 109–120 (2005).

82. P. Diaconis, S. Holmes, in Discrete probability and algorithms, D. Aldous, P.
Diaconis, J. Spencer, J. M. Steele, Eds. (Springer New York, New York, NY,
1995), vol. 72 of The IMA volumes in mathematics and its applications, pp. 43–56.

83. R. A. Fisher, On the Interpretation of X2 from Contingency Tables, and the
Calculation of P. Journal of the Royal Statistical Society. 85, 87 (1922).

84. M. J. Wainwright, High-Dimensional Statistics: A Non-Asymptotic Viewpoint
(Cambridge University Press, 2019).

85. W. Shen, S. Le, Y. Li, F. Hu, SeqKit: A Cross-Platform and Ultrafast Toolkit for
FASTA/Q File Manipulation. PLoS ONE. 11, e0163962 (2016).

86. L. S. Johnson, S. R. Eddy, E. Portugaly, Hidden Markov model speed heuristic
and iterative HMM search procedure. BMC Bioinformatics. 11, 431 (2010).

87. J. D. Hunter, Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95
(2007).

88. T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier, J. Frederic,
K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, Others, Jupyter Notebooks-a
publishing format for reproducible computational workflows. (2016), vol. 2016.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://sciwheel.com/work/bibliography/13211367
https://sciwheel.com/work/bibliography/13211367
https://sciwheel.com/work/bibliography/13211371
https://sciwheel.com/work/bibliography/13211371
https://sciwheel.com/work/bibliography/13211372
https://sciwheel.com/work/bibliography/13211372
https://sciwheel.com/work/bibliography/13211372
https://sciwheel.com/work/bibliography/372079
https://sciwheel.com/work/bibliography/372079
https://sciwheel.com/work/bibliography/13183903
https://sciwheel.com/work/bibliography/13183903
https://sciwheel.com/work/bibliography/6248931
https://sciwheel.com/work/bibliography/6248931
https://sciwheel.com/work/bibliography/1253554
https://sciwheel.com/work/bibliography/1253554
https://sciwheel.com/work/bibliography/1310480
https://sciwheel.com/work/bibliography/1310480
https://sciwheel.com/work/bibliography/13209912
https://sciwheel.com/work/bibliography/13209912
https://sciwheel.com/work/bibliography/13209912
https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


)LJXUH��

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


IDVWT

v�t�'

0ǖŉƤưŉūĻ
tĠưŃŶĘƤ

8QDOLJQHG�UHDGV

IDVWT
*HQHUDO�
LQIHUHQFH

$

6SOLFLQJ�LQIHUHQFH

$OWHUQDWLYH�VSOLFLQJ

9�'�-�UHFRPELQDWLRQ

9LUDO�VWUDLQ�YDULDWLRQ

"9LUDO�LQIHUHQFH

"

1RYHO�PHFKDQLVPV"

$OLJQHU

6RUW

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


%

DQFKRU��WDUJHW

DQFKRU WDUJHW

/

��

� ��

$QFKRU $QFKRU

*77$&$&& $$&&*7&7
&RQVHQVXV�� &RQVHQVXV��

&HOO�W\SH�$ &HOO�W\SH�%

S�YDOXH

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


FDQ¶W�GLVWLQJXLVK�
613V�YV��HUURUV

120$'
��VHTXHQFH

&
����UHDGV

,QIHUHQFH�
�H�J��613�

����UHDGV

«

XQDOLJQHG�
UHDGV 5HI

$OLJQHU

$OLJQHU

"

$XWRPDWLFDOO\�
GHWHFWHG�613V

/HJHQG
6HTXHQFLQJ�HUURU���;
613�
613�

a����
DOLJQHG�
UHDGV

(UURU�FRUUHFWHG�FRQVHQVXV�

;

;

;
PLVDOLJQHG5HDGV�

v�t�'

0ǖŉƤưŉūĻ
tĠưŃŶĘƤ

5HI�
JHQH��

5HI

$OLJQHG�
FRQVHQVXV

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


6DPSOH�� 6DPSOH��

���������������������
�

��� �
� � �

�

6RUWHG�
FKXQNV

7DEOHV

,QIHUHQFH

��RUGHUV�RI�
PDJQLWXGH

5HDGV�WR�DOLJQ�WR�UHIHUHQFH

'
IDVWT

6DPSOH�� 6DPSOH��

��
�.

�UH
DG
V

��
�0

�UH
DG
V

��
�.

�UH
DG
V

��
�0

�UH
DG
V

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


)LJXUH��

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


$

([RQ�LQFOXVLRQ�
GRPLQDQW

([RQ�VNLSSLQJ�
GRPLQDQW

'RQRU���PDFURSKDJH
'RQRU���PDFURSKDJH

'RQRU���FDSLOODU\
'RQRU���FDSLOODU\

([DPSOH�FRQVHQVXV�VHTXHQFHV�

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


%
�LLL�

1RYHO�120$'�SUHGLFWLRQ

0</��%�
0</��$�

«

«

«

«

DQFKRU

WDUJHW��

WDUJHW��
�L�

�LL�

0</��$�
GRPLQDQW

0</��%�
GRPLQDQW

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


"

([DPSOH�FRQVHQVXV�VHTXHQFHV� 8QDQQRWDWHG�LQWURQ

'RQRU���FDSLOODU\
'RQRU���PDFURSKDJH

'RQRU���FDSLOODU\
'RQRU���PDFURSKDJH

/RQJ�875�
GRPLQDQW

6KRUW�875�
GRPLQDQW

&

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


'
+/$�'5%��JHQRPLF�VHTXHQFH
'RQRU���FDSLOODU\�FRQVHQVXV

'RQRU���PDFURSKDJH�FRQVHQVXV
'RQRU���FDSLOODU\�FRQVHQVXV

'RQRU���PDFURSKDJH�FRQVHQVXV

DQFKRU FRQVHQVXV

([DPSOH�FRQVHQVXV�VHTXHQFHV�IURP�GRQRUV���DQG���

DQFKRU 'RQRU���WDUJHW��

'RQRU�� 'RQRU��

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


(�

'RQRU���FDSLOODU\�FRQVHQVXV
'RQRU���PDFURSKDJH�FRQVHQVXV

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


)LJXUH��

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


&RQWURO�DQFKRUV�SHU�JHQH�����

1
2
0
$
'
�D
QF
KR
UV
�S
HU
�J
HQ
H�
��
��

&RQWURO�DQFKRUV�SHU�JHQH�����

)UDFWLRQ�RI�WRWDO�DQFKRUV�PDSSLQJ�WR�WUDQVFULSW��7�FHOO

$

1
2
0
$
'
�D
QF
KR
UV
�S
HU
�J
HQ
H�
��
��

,*.9����

)UDFWLRQ�RI�WRWDO�DQFKRUV�PDSSLQJ�WR�WUDQVFULSW��%�FHOO

+/$�%

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


%

&RQVHQVXV�VHTXHQFH��
&RQVHQVXV�VHTXHQFH��

$QFKRUV

+/$�%

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


& +XPDQ�%�FHOOV+XPDQ�7�FHOOV

/HPXU�7�FHOOV

YDULDEOH�UHJLRQ

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


+XPDQ /HPXU

'

%HVW�SHU�DQFKRU�3IDP�KLWV

7�FHOOV

0+&�,

%�FHOOV

9VHW

&��VHW

�VSOHHQ��%�FHOOV

&��VHW

9VHW

&2;�

�VSOHHQ��QDWXUDO�NLOOHU�7�FHOOV
&2;�

0+&�,

&RQWUROV

120$'

DQFKRU
FRQVHQVXV

FRQVHQVXV�VHTXHQFHV

FRQVHQVXV�EXLOGLQJ

120$'

SURWHLQ

LQ�VLOLFR�
WUDQVODWLRQ PDS�WR�3IDP�

GDWDEDVH
SURWHLQ

LGHQWLI\�EHVW�
PDSSLQJ�SURWHLQ

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


)LJXUH��

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


&RQWURO�DQFKRUV�
�JUD\�

120$'�DQFKRUV�
�EODFN�

$

$QQRWDWHG�
YDULDQWV

DQFKRU�

RPLFURQ�92&

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


E&R9�6��
UHFHSWRU�
ELQGLQJ�
GRPDLQ

&R9�
6��&

%

&RQWUROV

120$'

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/


&

SURWHLQ�LQYROYHG�LQ�
KRVW�LPPXQLW\

SURWHLQ�LQYROYHG�LQ�
VXEYHUWLQJ�WKH�KRVW�
WUDQVODWLRQ�PDFKLQHU\

%HVW�SHU�DQFKRU�3IDP�KLWV

51$�ELQGLQJ�GRPDLQ�
RI�WKH�SURWHLQ

FDSVLG�
SURWHLQ

&RQWUROV

120$'

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.497555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497555
http://creativecommons.org/licenses/by-nc/4.0/

