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Background: Adenosine receptor type 2 (A2AR) inhibitor, AZD4635, has been shown to
reduce immunosuppressive adenosine effects within the tumor microenvironment (TME)
and to enhance the efficacy of checkpoint inhibitors across various syngeneic models.
This study aims at investigating anti-tumor activity of AZD4635 alone and in combination
with an anti-PD-L1-specific antibody (anti-PD-L1 mAb) across various TME conditions
and at identifying, via mathematical quantitative modeling, a therapeutic combination
strategy to further improve treatment efficacy.

Methods: The model is represented by a set of ordinary differential equations capturing:
1) antigen-dependent T cell migration into the tumor, with subsequent proliferation and
differentiation into effector T cells (Teff), leading to tumor cell lysis; 2) downregulation of
processes mediated by A2AR or PD-L1, as well as other immunosuppressive
mechanisms; 3) A2AR and PD-L1 inhibition by, respectively, AZD4635 and anti-PD-L1
mAb. Tumor size dynamics data from CT26, MC38, and MCA205 syngeneic mice treated
with vehicle, anti-PD-L1 mAb, AZD4635, or their combination were used to inform model
parameters. Between-animal and between-study variabilities (BAV, BSV) in treatment
efficacy were quantified using a non-linear mixed-effects methodology.

Results: The model reproduced individual and cohort trends in tumor size dynamics for
all considered treatment regimens and experiments. BSV and BAV were explained by
variability in T cell-to-immunosuppressive cell (ISC) ratio; BSV was additionally driven by
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differences in intratumoral adenosine content across the syngeneic models. Model
sensitivity analysis and model-based preclinical study simulations revealed therapeutic
options enabling a potential increase in AZD4635-driven efficacy; e.g., adoptive cell
transfer or treatments affecting adenosine-independent immunosuppressive pathways.

Conclusions: The proposed integrative modeling framework quantitatively characterized
the mechanistic activity of AZD4635 and its potential added efficacy in therapy
combinations, across various immune conditions prevailing in the TME. Such a model
may enable further investigations, via simulations, of mechanisms of tumor resistance to
treatment and of AZD4635 combination optimization strategies.
Keywords: adenosine, PD-L1, checkpoint inhibitors, immunotherapy, mathematical modeling, combination
strategies, treatment optimization
INTRODUCTION

Adenosine is a purine nucleoside which, under ischemic conditions,
may accumulate in the extracellular microenvironment and be
involved in the downregulation of inflammation processes (1).
While this downregulation may be desired in some pathological
states (e.g., myocardial infarction), it also reduces anti-tumor
immune responses and may potentially limit the efficacy of
immuno-oncology (IO) therapeutic agents. In the tumor
microenvironment (TME), hypoxia is followed by cancer cell
necrosis, with a subsequent release of adenosine and its
precursors into the extracellular space. Hypoxia-induced
activation of ectonucleases CD39 and CD73—enzymes producing
adenosine—may result in a ~10-fold increase of extracellular
adenosine within tumors, as compared to normal tissue (2–4).
Amounting levels of adenosine activate A2AR and A2BR, receptors
expressed on the surface of various immune cell populations.
Adenosine has been shown to impair antigen-presenting cell
proliferation, decrease effector T cells (Teff) activation, induce
Treg activation, skew macrophage polarization from a pro-
inflammatory to an anti-inflammatory and angiogenic phenotype,
and inhibit NK cell activity (5, 6).

Various therapeutic approaches aiming at blocking adenosine
effects have been extensively tested preclinically (7). These
include blocking of either adenosine production with CD73 or
CD39 monoclonal antibodies (mAb) (8–11) or downstream
adenosine effects with A2AR or A2BR inhibitors (12–15). These
interventions demonstrated efficacy as monotherapy or
combination with other IO agents [PD-(L)1 mAb, CTLA-4
mAb, and dendritic cell (DC) vaccines] and/or chemotherapy
(5, 6, 8–10, 12–14) and are now being tested in clinical trials (16).
AZD4635 is a potent and selective A2AR inhibitor shown to
enhance anti-tumor immunity via activation of antigen
tor type 2A(B); ACT, adoptive cell
ity; BSV, between-study variability;
d protein 4; DC, dendritic cells; ISC,
ncology; NLME, non-linear mixed-
eff, effector T cells; TME, tumor
n value; PD-L1, Programmed death-
mor cell death; TGI, tumor growth
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org 2
presentation and restoration of Teff functions (17). Treatment
with AZD4635 alone and in combination with an anti-PD-L1
mAb was associated with reduction of tumor burden in phase I
clinical trials in subjects with refractory solid tumors (18) and is
currently entering a phase II study in subjects with metastatic
castration-resistant prostate cancer [https://clinicaltrials.gov/ct2/
show/NCT04089553].

While initial clinical trials demonstrated therapeutic potential
of A2AR blockade (19), ongoing research is aimed at further
improvement of treatment outcomes. The latter can be achieved
by evaluation of various combination options in the preclinical
setting and the identification of patients who are likely to
respond to treatment in early trials. The use of RNA-based,
gene signature-derived multivariate scores, associated with
treatment effects, may be a useful tool for such patient
selection; two adenosine signatures have been recently
identified as potentially good prognostic and predictive
markers (19, 20).

The integrative modeling framework described here, also
referred to as quantitative systems pharmacology (QSP)
modeling, allows for the quantitative characterization of a
compound’s mechanism of action, with a time-dependent
description of cell interactions within the TME upon
compound dosing, all linked to endpoint(s) of interest
(namely, tumor size dynamics). Simulations may then be used
to mechanistically explore features of resistance to treatment
across various sets of cellular and molecular immune conditions
prevailing in the TME, based on the integration of extensive
preclinical datasets into the modeling framework (21). The core
structure of the QSP model captures key time-dependent steps of
the cancer immunity cycle, including antigen-presentation,
migration and expansion of tumor-specific lymphocyte clones,
and immunogenic tumor cell death (22). Each step in this cycle
may be modulated by various immunosuppressive forces,
depending on the TME type, and the effects of various
therapeutic IO agents on these forces quantified. The QSP
model may thus be used to characterize (over time, in terms of
relative levels, and for various sets of prevailing TME conditions)
fundamental mechanisms of anti-tumor immune responses for
dosing schemes of choice, in mono- and combination therapy
settings. Another distinctive feature of the proposed framework
March 2021 | Volume 12 | Article 617316
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is the application of a non-linear mixed effect modeling (NLME)
methodology (23), enabling evaluation of between-animal and
between-study variabilities (BAV, BSV) in the observed tumor
size dynamics. Such a model includes a statistical component,
capturing variations in immune system parameters across the
animals, driving differences in treatment efficacy, which is
essential in the analysis of immunotherapeutic interventions,
where a wide range of responses are often observed. The present
research aimed at developing, specifically, a QSP NLME model
based upon four independent preclinical studies evaluating the
efficacy of an anti-PD-L1 mAb, AZD4635, or their combination,
in three syngeneic murine models characterized by different
prevailing TME conditions (CT26, MC38 and MCA205). Upon
model qualification, predictive simulations were then
performed to identify determinants of AZD4635 activity and
to prioritize treatment strategies, given specific sets of
TME conditions.
MATERIALS AND METHODS

Experimental Data
Multiple sets of experimental data were used for model
parameter estimation and model qualification:1) A2AR binding
affinities for AZD4635 and adenosine, obtained from in vitro
functional cAMP studies (17); 2) plasma AZD4635 profiles
available from 9 Balb/c mice treated with single oral doses of
10, 25, or 50 mg/kg; 3) total adenosine measurements and tumor
size dynamics data measured in CT26, MC38, and MCA205
syngeneic mouse models (Supplementary Materials, Figure S1).
The final dataset was comprised of pooled data from four
experimental studies, with individual animal tumor
measurements from 116 Balb/c mice (17). Three studies were
performed in 116 animals injected subcutaneously with 1x106

CT26, 1x106 MC38, or 5x105 MCA205 tumor cells. Treatment
was initiated when tumor size reached ~50-90 mm2 and
continued for 2 weeks. The following treatment regimens were
tested: 1) control isotype mAb; 2) an anti-PD-L1 mAb at 5 mg/kg
twice–weekly (BIW); 3) AZD4635 50 mg/kg twice-daily (BID);
4) combination of the aforementioned anti-PD-L1 mAb and
AZD4635 treatment regimens. In an additional dose-finding
study, 40 mice inoculated with 5x105 MCA205 tumor cells
were treated with: 1) a control isotype Ab; 2) an anti-PD-L1
mAb at 5 mg/kg BIW, alone or in combination with: 3) 10 mg/
kg, 4) 25 and 50 mg/kg twice daily AZD4635 (17).

Mathematical Modeling
The core of the QSP model, which characterizes key stages of the
anti-tumor immune response, was taken from our group’s
previous work (21). The model structure consisted of ordinary
differential equations (ODE) and functions describing the
interplay among key elements of the cancer immunity cycle
(Figure 1A); these were chosen based on experimental
measurements or on existing mathematical models. Briefly, an
immune response was triggered by tumor antigens released
during immunogenic tumor cell death (TCD). This process
Frontiers in Immunology | www.frontiersin.org 3
was followed by antigen presentation, migration of tumor-
specific lymphocyte precursors (nTeff), and their subsequent
activation, proliferation and differentiation into professional
cytotoxic effector T-lymphocytes (dTeff) capable of performing
tumor cell kill - thereby intensifying tumor antigen supply. The
immunosuppressive TME was represented by various
immunosuppressive cells (ISC), which would infiltrate tumor
tissue in response to antigen presentation, downregulate effector
T cells, as well as activate negative Teff-mediated PD-(L)1
feedback. The latter can be blocked by an anti-PD-L1 mAb;
the dynamics of PD-L1 inhibition was determined by the plasma
mAb profile, captured by a corresponding pharmacokinetic (PK)
sub-model.

The model structure also included a description of adenosine-
mediated immunosuppression based on experimental
information collected from the literature and summarized in
the Supplementary Materials, Section 1. The model considered
adenosine release from dying cancer cells and its binding to A2AR
within the TME, followed by downregulation of antigen
presentation as well as a decrease in T lymphocyte activation.
Immunosuppressive adenosine effects were diminished, in the
model, by administration of AZD4635 via competition with
adenosine for the A2AR binding site. A two-compartment PK
sub-model was used to reproduce the AZD4635 plasma profile.
A detailed description of all model equations is provided in the
Supplementary Materials, Section 2.

An NLME approach was used to link variability in observed
tumor dynamics with differences in cellular or molecular
functional aspects of the immune system. The following set of
parameters describing variability were introduced into the
model: 1) fixed constants (similar across all animals); 2)
random effect coefficients, capturing BAV; 3) covariate
coefficients, reflecting BSV; 4) residual error model parameters,
characterizing unexplained variability across experimental
measurements. A total of 43 parameters were used (Table S2);
11 of these were taken from a QSP IO model developed
previously by Kosinsky et al. (21). An additional 10 parameters
were fixed based on further experimental data. A total of 6
AZD4635 pharmacokinetic parameters were estimated using
plasma PK profiles, and two parameters reflecting binding
affinities of AZD4635 and adenosine to A2AR were estimated
using in vitro data. Values for the remaining 18 parameters were
estimated using individual tumor size dynamics data described
above (Experimental Data section). Covariate coefficients, which
characterized intratumoral adenosine accumulation (VmaxAdo)
and initial tumor volume (TVtot0) were set based on,
respectively, adenosine measurements obtained from syngeneic
models and numbers of inoculated tumor cells (17). Selection of
additional covariates as well as random effects was performed
using a covariate search routine (forward-addition method).
Based on the quality of experimental data reproduction—
which was evaluated using an objective function value (OFV),
most of the BSV and BAV could be explained by variability in
parameters sL and sR, which captured influx of, respectively,
immunoactive and immunosuppressive cells into the TME
(Supplementary Table S1).
March 2021 | Volume 12 | Article 617316
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The quality of the developed model was evaluated using
multiple criteria (24, 25). These include: i) analyses of
diagnostic plots (population and individual predictions
vs. experimental observations, distribution of population, and
individual weighted residuals, etc.—see (25) and Supplementary
Figures S5 and S6; ii) precision and identifiability of parameter
estimates based on estimated relative standard error values—see
(26) and Supplementary Table S2; and iii) minimization of
random effects and residual errors. Automatic parameter
estimation and model analyses were based on a stochastic
approximation expectation maximization (SAEM) algorithm
and performed using the Monolix® 2019R1 software
(Lixoft, Antony, France). Model simulation runs and
visualizations were performed in the R software version 3.4.1,
using packages mlxR and ggplot2. The model code and the R-
based scripts, used for the simulations, are available in the
Frontiers in Immunology | www.frontiersin.org 4
GitHub repository [https://github.com/VeronikaVor2/IO-QSP-
model-adenosine-].
RESULTS

Data Reproduction by the Proposed Model
The model provided adequate and unbiased reproduction of
tumor dynamics distributions for the various treatment
conditions and across preclinical experiments (Figures 1B, C;
corresponding model diagnostic plots are available in the
Supplementary Materials, Section 4 and Figures S2–S4). As
observed based on both experimental data and model
predictions, the anti-PD-L1 mAb demonstrated limited efficacy
in the evaluated syngeneic models, while there was an increase in
A

B

C

FIGURE 1 | (A) Simplified model schematic. Abbreviations used: Ado, adenosine level; A2AR, unbound A2AR level; A2ARocc, occupied A2AR level; Agsys, systemic
level of tumor antigen; AZD4635c, AZD4635 concentration in central compartment; AZD4635p, AZD4635 concentration in peripheral compartment; IAR, immune
activation rate; ISC, component of immunosuppressive cells in TME; PD-L1, PD-L1 immunosuppressive component in TME; aPD-L1, an anti-PD-L1 mAb level in
central compartment; nTeff, non-differentiated T-cells; dTeff, cytotoxic effector T-cells; TCD, tumor cell death; TVtot, total tumor volume. (B, C) Distributions of
population model predictions and corresponding tumor size dynamics data from (B) efficacy studies in CT26, MC38, and MCA205 syngeneic models (dosing
regimen: 5 mg/kg anti-PD-L1 mAb BW; 50 mg/kg AZD4635 BID). (C) A dose-finding study in MCA205 syngeneic model (dosing regimen: 5 mg/kg anti-PD-L1 mAb
BW; 10–50 mg/kg AZD4635 BID).
March 2021 | Volume 12 | Article 617316
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efficacy when combined with AZD4635 in the MCA205 model
(Figure 1C; and Supplementary Figure S4). Interestingly,
higher efficacy of monotherapies and combinations was
observed in studies using the MCA205 syngeneic model (vs.
CT26 and MC38 studies). Dose-dependent decreases in tumor
growth rates were found in an additional MCA205 study, for an
AZD4635 dose range of 10–50 mg/kg, in combination with the
anti-PD-L1 mAb, although confidence intervals overlapped
among these groups (see Figure 1C; and Supplementary
Materials, Figure S6).

To evaluate the adequacy of TME representation in the QSP
model, we performed model qualification runs using flow
cytometry data collected from MCA205 experiments. Various
markers were used in the experimental setting, to characterize
efficiency of antigen presentation in vehicle- and AZD4635-
treated animals, including MHCII and CD86 expressions on
macrophages and dendritic cells. This information was generated
in MC38 but not in MCA205 experiments; also, the only
measurement timepoint was on day 14, which limited our
validation exercise. Treatment with AZD4635 was associated
with 1.4 to 3.5-fold increases in these markers, while the QSP
model predicted a 1.15-fold (90% CI: 0.82–1.91-fold) increase in
APC efficiency under such treatment. The model-predicted dTeff
level on treatment day 14 was compared to the PD-1-positive
CD8+ cell count measured in the experiments. Model
simulations and experimental data concurred by indicating a
highest increase in cell count under combination treatment,
followed by the anti-PD-L1 mAb monotherapy and AZD4635
monotherapy (Supplementary Materials, Figure S7).

Mechanistic Differences Across TMEs
in Various Syngeneic Tumor Models
To identify TME factors responsible for the observed differences
in responses across syngeneic models and to investigate
mechanisms of AZD4635 and an anti-PD-L1 mAb
combination efficacy, we compared parameter estimates across
studies and simulated TME dynamics under vehicle, an anti-PD-
L1 mAb, AZD4635, or their combination (Figure 2).

Model simulations indicated similarity in TME dynamic
trends across studies. In a vehicle group, a transient dTeff
increase was observed for the first ~10 days (Figure 2A),
fol lowed by intratumoral accumulation of multiple
immunosuppressive components such as adenosine, ISC, and
PD-L1 (Figure 2B), which downregulate the dTeff function—a
reflection of reduction in intratumoral dTeff level and PD-(L)1
pathway activity. These components can be blocked by the
respective therapeutic options; an anti-PD-L1 mAb would enable
complete inhibition of PD-L1-mediated effects, whereas AZD4635
would partially inhibit A2AR-mediated immunosuppression.
These interventions can stimulate dTeff proliferation, with the
highest dTeff expansion under combination treatment, which, in
turn, would translate into higher efficacy for combinations
vs. monotherapies.

As can be seen in Figure 2C, treatment effects on the TME and,
consequently, tumor size dynamics differed across studies. Median
tumor growth was slowest under monotherapy and combination
Frontiers in Immunology | www.frontiersin.org 5
treatments in studies performed using MCA205, followed by CT26
andMC38 (Figure 2C). The observed BSV in treatment efficacy was
captured by applying covariates to four model parameters
representing the amount of inoculated tumor cells (TVtotin),
maximal intratumoral adenosine level (VmaxAdo ), and influxes of
dTeff (sL) and ISC (sR). Parameter TVtotin was set based on the
experimental protocol (see Materials and Methods section).
Parameter VmaxAdo was fixed to 100, 60, and 5 µM for,
respectively, CT26, MC38, and MCA205, based on intratumoral
adenosine measurements (27), resulting in differing target
modulation by AZD4635 across these syngeneic models. More
pronounced inhibition of the A2AR pathway was thus gained in
MCA205 vs. CT26 and MC38 (Figure 2B), which can be explained
by more effective competition between AZD4635 and adenosine
for A2AR. Parameters sL and sR were the main drivers for both
BAV and BSV, based on covariate search results; values for these
parameters thus differed across animals and studies
(Supplementary Materials, Table S1). The MCA205 model was
characterized by significantly slower dTeff and ISC infiltration
levels vs. CT26 and MC38, resulting in corresponding lower
efficacy of the tested therapies (Figure 2D). BSV in treatment
efficacy, which was observed between the two MCA205 studies,
was explained by differences in parameter sL, with a net result of a
more stable dTeff increase and an improved resolution of ISC-
mediated immunosuppression.

Mechanisms of Resistance to the
AZD4635 and PD-(L)1 mAb
Combination Treatment
Complete tumor regression under given therapeutic regimens
was achieved in a subset of animals only, although, overall, a
combination of AZD4635 and an anti-PD-L1 mAb
demonstrated highest efficacy across studies (Figures 1B, C).
Hence, the model was used to investigate TME differences for
“progressors” (animals with an increase in tumor size) vs. “non-
progressors” (animals with tumor size regression or control)
during the treatment period, and whether selected TME
components would be predictive of response to treatment. To
this end, 100 values for parameters sL and sR were randomly
generated from the estimated distributions for the study 1 on
MCA205 model and used for simulations of tumor size and TME
dynamics. Based on simulated tumor size dynamics, animals
were grouped into progressors vs. non-progressors, and
corresponding changes in each TME model component in each
animal were compared, before and after 2 weeks of treatment
(Figure 3).

Non-progressors were characterized by higher dTeff and lower
ISC infiltration rates (Figure 3B) in themodel, whichwas reflected
in TME dynamics (Figures 3C, D). At baseline, non-progressors
were characterized by higher baseline dTeff, total CD8 and PD-L1
vs. progressors, whereas no significant difference in ISC between
non-progressors vs. progressors was observed.

A build-up, with time, of both immunoactive and
immunosuppressive TME components was observed for all
groups, with highest increases in dTeff, total CD8 and total
PD-(L)1 for the non-progressors; in contrast, accumulation of
March 2021 | Volume 12 | Article 617316
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ISC in this group was lower vs. progressors and vehicle groups.
Progressors were characterized by the highest level of ISC after
treatment start, whereas increase in immunoactive TME
components in this group was lower than in non-progressors
but higher than in vehicle-treated animals.

Evaluation of Potential AZD4635
Combination Strategies
Numerous immunotherapy-based combinations are currently
under investigation. However, it would be impractical to test
outcomes of all possible treatment combinations, even in the
preclinical setting. In this context, a QSP model may be used as a
quantitative simulation tool to explore dynamically biomarker
responses and efficacy potential of various combinations of
modalities, given various TME conditions and modality
pharmacokinetics. To provide a rationale for various combinations,
we first identified factors whichmay increase efficacy of AZD4635
Frontiers in Immunology | www.frontiersin.org 6
alone or in combination with an anti-PD-L1 mAb, via a model-
based sensitivity analysis. To this end, estimated population
parameter values in the most treatment-resistant mouse model
(MC38) were varied by ±50%, one by one, and corresponding
tumor size responses under AZD4635 alone or in combination
with anti-PD-L1 mAb were simulated for a 30-day period. The
percentage change from the prediction, obtained using the
estimated population parameter values, was calculated and
visualized (Figure 4A). Parameters affecting maximal nTeff
influx (kLn), dTeff cytotoxic activity (beff), and the intrinsic
tumor growth rate (r) exhibited a maximal impact on the
efficacy of both AZD4365 alone and in combination with
the anti-PD-L1 mAb (Figure 4A). In contrast, parameters
characterizing normalized antigen level (Agnorm) as well as
antigen-dependent nTeff and ISC influxes (respectively, sL and
sR) significantly modulated activity of the combination treatment
but had a moderate effect on AZD4635 monotherapy efficacy.
A

B

D

C

FIGURE 2 | Evaluation of tumor microenvironment (TME) dynamics across experiments. Model-based simulations of (A) dTeff; (B) key immunosuppressive TME
components; and (C) tumor size dynamics across studies. Lines—median prediction, area—90% prediction interval (PI). Different treatment regimens are shown by
color. (D) Boxplots of the estimated parameters across studies. P-values were calculated using the Wilcoxon test. MCA205 experiments: 1—an efficacy study; 2—a
dose-finding study.
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Parameters characterizing activation of adenosine and PD-L1-
mediated pathways had a minor effect on the TME and tumor
dynamics under both monotherapy and combination treatments.
To further investigate these dynamics in TME changes under
various treatments, we visualized the dynamics of tumor growth,
dTeff, ISC, and adenosine-mediated suppression following the
systematic variation of parameter values, as described above
(Supplementary Materials, Figure S6). The most effective
treatment options were associated with the highest increase in
dTeff and decrease in ISC. Interestingly, a decrease in adenosine
productionof asmuchas 50%was followedby amoderate effect on
adenosine-mediated immunosuppression under treatment.
Decreased tumor growth rates were associated with slower
adenosine and ISC build-ups.

While the above mentioned sensitivity analysis represents a
mathematical means to model behavior analysis, simulations of
preclinical experiments may also provide a sensible
representation of various monotherapy and combination
scenarios, with predictions of responses to treatment, and
Frontiers in Immunology | www.frontiersin.org 7
enable a systematic evaluation of uncertainty in the
observations due to BAV. Therefore, potential combination
benefits of AZD4635 or AZD4635/an anti-PD-L1 mAb with
other therapies were evaluated via virtual preclinical study
simulations of the MC38 syngeneic model. To introduce these
additional therapies in the QSP model, a scaling factor scF was
applied to model parameters, at a timepoint of ≥7 days post
tumor inoculation, to mimic various processes modulation by
the treatment (Figures 4A, B). Selection of scF parameter values
was challenged by insufficient quantitative information, as
generated for particular immunotherapeutic interventions;
therefore, value selection was based upon certain assumptions.
To simulate dosing of CD73 mAb in the model, the parameter
reflecting the adenosine synthesis rate (VmaxAdo) was set to zero,
assuming complete blockade of CD73-mediated adenosine
production under treatment. The efficacy of compounds
targeting adenosine/PD-L1-independent immunosuppressive
mechanisms (e.g., CTLA-4 mAb) was captured by setting the
ISC flux parameter (sR) to zero, to reflect complete blockade of
A B

D

C

FIGURE 3 | Evaluation of tumor microenvironment (TME) differences between progressors (red), non-progressors (green), and animals from vehicle group (blue),
from MCA205 study 1. (A) Simulated tumor size dynamics. Lines—median prediction, area—90% prediction interval (PI). (B) Density of simulated model parameters.
(C) Simulated dynamics; and (D) boxplots of TME components at baseline and on day 14th day of treatment.
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these pathways. Adoptive cell transfer (ACT) was mimicked via a
2-fold increase in the nTeff influx parameter (sL), to reflect the
increase in tumor-infiltrating lymphocytes following the
intervention. The efficacy of vaccines was investigated via a 2-
fold increase in the antigen flux parameter (Agnorm)—
acknowledging that no experimental information on in vivo
levels of the presented tumor antigen was found in the literature.

Virtual experiments with 10 animals per group were
simulated using 10 pairs of randomly generated values for
parameters sL and sR. A tumor growth inhibition index (TGI)
on day 28 was used as an efficacy outcome (Equation 1):

TGI = 1 −
GeoMean TVtrð Þ
GeoMean TVconð Þ

� �
· 100% (1)

where GeoMean(TVtr) and GeoMean(TVcon) are geometric
means of tumor volumes in the treated and control groups,
measured 2 weeks after start of treatment.

To evaluate between-study uncertainty in the TGI estimates,
which arises from the relatively low number of animals used, the
simulations were repeated 100 times, median and 95%
confidence intervals for TGI were calculated; results of these
simulations are summarized in Figure 4C.
Frontiers in Immunology | www.frontiersin.org 8
Various therapeutic modalities added on top of AZD4635
alone or in combination with an anti-PD-L1 mAb differentially
modulated anti-tumor activity of the treatments. Blockade of
adenosine production with an CD73 mAb was followed by
decreases in adenosine levels leading to improvement of A2AR
coverage by AZD4635. This effect was associated with increase of
anti-tumor activity of AZD4635 and an anti-PD-L1 mAb in
combination, in contrast, efficacy of the dual combination of
AZD4635 and CD73 mAb was limited by activation of PD-L1
and ISC pathways (Supplementary Figure S8). Downregulation
of ISC influx would significantly improve the efficacy of both
mono- and combination therapies, indicating a high therapeutic
potential of AZD4635 combinations with various therapeutic
approaches which target immunosuppressive mechanisms
(e.g., CTLA-4 mAb). The addition of a vaccine to treatment
was predicted to be less effective vs. other options, which may be
explained by the activation of tumor infiltration not only by
immunoactive cells but also by immunosuppressive cells, with a
subsequent downregulation of effector T cell clonal expansion
(Supplementary Figure S8). Model simulations suggested ACT
to be an effective modality to combine with AZD4635, due to a
pronounced and stable increase in effector T cells under this
combination treatment.
A

B C

FIGURE 4 | Evaluation of combination strategies for AZD4635. (A) Identification of factors affecting the efficacy of AZD4635 alone or in combination with a PD-L1
mAb; colors denote parameter change. (B) Implementation of considered treatment options in the model. (C) Predicted tumor growth inhibition index (TGI; mean
and 90% confidence intervals); colors denote median TGI.
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DISCUSSION

Several quantitative models have been proposed to investigate
mechanisms of drug action and to support drug development
programs in immuno-oncology (IO) (28). The granularity of
mechanistic details incorporated into the model structure
depends on study objectives, experimental data availability, and
current knowledge in the field, which have led to various
mathematical representations of biological mechanisms. In the
present study, we built upon a QSP model previously developed
by Kosinsky et al. (21). This model captured key steps of the
cancer immunity cycle and enabled a ‘condensed’ representation
of the immunosuppressive components of the TME, as a lumped
function of molecular and cellular events affected by treatment(s)
(e.g., PD-L1- and A2AR-mediated pathways) or not explicitly
modulated by treatment(s) (e.g., presence of Tregs). This
parsimonious approach to QSP model development allowed us
to reproduce and quantitatively characterize well-established IO
“categories,” such as adaptive immune tolerance, tumor
immunogenicity and immunogenic tumor cell death (TCD)
(29) and, at the same time, to minimize uncertainty in model
parameter estimation—a result of the biological complexity
stemming out of numerous dynamic interactions within the
TME (28).

With this parsimonious approach, several assumptions on
adenosine biology were made during the model development
process. Firstly, A2BR-related mechanisms were not included in
the model, given contradictory information in the literature on
the role of A2BR in immunosuppression. Given the relatively low
affinity for adenosine to A2BR (Kd ~ 10–100 µM) and the ~ 0.1–1
nM range of extracellular adenosine in the TME (1, 2), A2BR
would not be expected to significantly contribute to adenosine-
mediated immunosuppression. Also, experiments by Kjaergaard
and colleagues have shown that A2BR knock-out does not
significantly affect the growth of MCA205 tumors (30).
Interestingly, in contrast to these observations, anti-tumor
activity has been detected for several selective A2BR inhibitors
in 4T1 and B16.F10 syngeneic models (12, 13, 31). Secondly,
heterogeneity in spatial adenosine distribution within the TME
(17) and detailed adenosine transport steps between intra- and
extra-cellular compartments (2, 17, 32) were considered as out of
scope for the present modeling research. To account for
differences between measured total TME (intra- and extra-
cellular) adenosine concentrations and effective adenosine
concentrations affecting immune cells, a correction factor
AdoscF was applied and the effect of different values of AdoscF
was tested via a sensitivity analysis.

The QSP model was used to gain a further understanding of
AZD4635 effects on the TME and, consequently, on tumor size
dynamics. Although the proposedmodel is not designed to provide
insights into actual molecular mechanisms of experimental
observations and does not differentiate among various
immunosuppressive mechanisms (e.g., myeloid-derived
suppressive cells and tumor-associated macrophages), it can be
used to track temporalTMEdynamics,which cannotbe achieved in
the experimental setting. In in vivo experiments, TMEmodulation
Frontiers in Immunology | www.frontiersin.org 9
by various treatments is typically evaluated through tumor tissue
flow cytometry data; such measurements represent only “snap-
shots” of the TME and do not provide information on dynamic
changeswhichdooccurduring the tumor evolutionprocess,while a
particular treatment gets periodically delivered via dosing of the
therapeutic modality (33). Our model-based simulations indicate
primary activation of the immune system, with a secondary tumor-
driven influx of immunosuppressive components (ISC) as well as
triggering intrinsic factors that limit anti-tumor efficacy of the
immune response (e.g., PD-(L)1), in all three syngeneic models
tested (CT26,MC38,MCA205). These TME simulations are in line
with experimental observations reported byLechner and colleagues
in syngeneic tumormodels with a “hot” immunophenotype, which
is characterized by a build-up of both pro- and anti-inflammatory
cells during tumor progression (34–36).

The combination of AZD4635 and an anti-PD-L1 agent is
thought to potentially shift the TME balance from an anti- to a
more pro-inflammatory state, to then enablemore complete tumor
regressions—although treatment resistance has been observed in
some animals. We captured these features in the QSP model,
through variability in fluxes of immunosuppressive and
immunoactive cells, in line with concepts of innate and adaptive
immune tolerance (29). Thesefindings underline the importance of
a high tumor infiltration by effector T cells and predominant
con t r i bu t i on o f ad eno s i n e - r e l a t ed pa thway in t o
immunosuppression, which has been highlighted in a recent
publications by Dr. Sitkovsky (37, 38). From a clinical
perspective, these observations provide a strong rationale for
measuring tumor infiltrating lymphocyte densities (e.g., via an
Immunoscore test) (39) or intratumoral PD-(L)1 expression.
Interestingly, our in vivo simulations indicated higher tumor
infiltration by dTeff in non-progressors vs. progressors, in both
baseline and post-treatment state; in contrast, differences in the
activity of immunosuppressive components in the TME between
these two groups (non-progressors vs. progressors) were manifest
only at the end of treatment. This could be explained by a later
activation of ISC vs. dTeff influx into the tumor, as reflected in
higher values of sR vs. sL parameters which characterize the
respective cell fluxes – this may represent, in fact, the mechanism
of acquired resistance, causing disease progression after an initial
response to treatment.

Variability in the sL and sR parameters also drove differences in
AZD4635 and anti-PD-L1 mAb combination efficacy across
different syngeneic models, in line with preclinical findings by
Mosely (35), Lechner (34), and Yu (40). Experimental
observations indicate higher AZD4635 activity in CT26 vs. MC38;
similar results were obtained for the adenosine inhibitor CPI-444
(17, 32). In the QSP model, these findings were explained by a
higher infiltration of ISC, in MC38 vs. CT26. This model-based
observation was supported by a higher frequency of mMDSC in
MC38, observed experimentally in preclinical studies (35).
Intratumoral adenosine levels represent another source of BSV; in
the QSPmodel, these were set at a ~10-15 fold higher inMC38 and
CT26 vs.MCA205, in accordancewith experimentalmeasurements
(17). Based on the competitive inhibition mechanism represented
in the QSP model, higher adenosine levels were associated with
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lower A2AR blockade by AZD4635, which may also contribute to
lower treatment efficacy, as observed in the CT26 and MC38
studies. Intuitively, a decrease in intratumoral adenosine levels via
targeting of theATPmetabolic pathway, e.g., withCD73- orCD39-
specific antibodies may show additional benefits compared to
AZD4635 monotherapy, as illustrated by model-based
simulations as well as preclinical data for another A2AR inhibitor,
SCH58261 (8). As intratumoral hypoxia was shown to be an
important factor regulating CD39 and CD73 expression, targeting
upstream hypoxia-HIF-1 factor may be also used as an effective
strategy to decrease adenosine production (3, 4).

Another advantage in combining inhibitors of A2AR and CD73
may reside in the potential decrease of A2BR occupancy, even
though contribution of these receptors toward immunosuppression
may not be too significant, given contradicting experimental data
as discussed above. Meanwhile, co-inhibition of A2AR and CD73
has been shown to be more effective vs. CD73 blockade alone
(41). This may be explained by potential additional A2AR
activation via AMP, which may build up under CD73
inhibition conditions (42); however, given the ~100-fold lower
affinity of AMP vs. adenosine for A2AR, this hypothesis would
require further investigation.

To identify further strategies for improvement of AZD4635
efficacy in progressors (non-responsive animals), we first
performed a model-based sensitivity analysis, which helped us
identify factors affecting treatment outcomes. Next, we evaluated,
viapreclinical study simulations, various therapeutic optionswhich
wouldmodulate correspondingpathways. For example, an increase
in Teff levels was predicted to significantly improve the efficacy of
AZD4635 alone or in combination with an anti-PD-L1 mAb; this
providesa rationale for combinationofAZD4635with, for example,
ACT, and was supported by our model-based preclinical study
simulations aswell as recent preclinical experimental evidence (37).
Interestingly, stimulation of antigenpresentation in ourQSPmodel
did not result in an increase in AZD4635 and an anti-PD-L1 mAb
combination efficacy in MC38-like tumors, presumably due
blockade of the initial immune response by immunosuppressive
components as predicted by the model (Supplementary Figure 6).
These observations could explain high attrition rates observed in
some early clinical immunotherapeutic interventions, implying
non-specific activation of the immune system such as IL-2 (43).
However, when interpreting such observations, multiple factors
(e.g., vaccine immunogenicity, ACT technology) need to be taken
into account, to provide amore accuratemechanistic description of
treatment efficacy.

While simultaneous targeting the adenosine synthesis and
signaling pathways with various treatments (e.g., CD73 and A2AR
inhibition) may result in incremental efficacy benefits, as discussed
above, our model-based simulations suggest that multi-pronged
targeting of different TME components to be the most effective
treatment strategy; this has also been emphasized in a recent
publication (37). These results are further supported by recent
preclinical evidence: efficacy of adenosine-targeting compounds
(CD73 or an A2AR inhibitors) was significantly increased in
combination with an anti-CTLA-4 mAb, an anti-PD-1/L1 mAb,
or DC vaccine (27, 44, 45).
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Whereas the current modeling work is based solely on
preclinical knowledge and experimental data available for the
analysis, a number of limitations should be noted; also, additional
experimental data would allow for further improvements to the
proposed QSP model. For example, an investigation in a clinical
setting, of patient-to-patient variability in tumor dynamics
behavior, would help to identify predictive biomarkers associated
with treatment response—to then be used toward patient selection
in further trials.Main factorswhichmay limit theuseofmechanistic
QSP NLME models include a lack of immunohistochemistry and
flow cytometry data, to track treatment-induced changes in the
TME, and an insufficient number of available biopsy samples from
early phase studies, to calibrate statistical components of the
models. Given these uncertainties, model structure should be
adapted accordingly, to avoid the use of unrealistic assumptions
and fixing model parameters with non-physiological values. While
our QSP modeling approach is more of a “hypothesis-driven”
approach—with the model structure being dictated by a priori
knowledge, “data-driven” multivariate machine learning
approaches can be used to gain more specific information on
molecular mechanisms, from clinical trial observations. Two
combinatorial omics-based adenosine-related signatures,
associated with clinical response to A2AR inhibitors, have been
proposed by Sidders et al. (20) and Fong et al. (19). Both
publications indicate higher treatment efficacy in patients with
pronounced activation of the adenosine-mediated pathway,
pointing again to the importance of a high contribution of this
mechanism toward the overall immunosuppression balance. To
further maximize the use of -omics data and account for dynamic
changes in the anti-tumor immune response under therapeutic
treatment, the hybrid approach, which exploits biomarker
signatures (derived out of data-driven machine learning methods)
as input functions to ODE-based NLME models, holds great
potential to improveuponmodel-basedpredictive simulations (28).
CONCLUSION

The proposed quantitative modeling approach enabled the
integration of diverse preclinical information, to investigate
TME-mediated mechanisms of response and of resistance to
AZD4635-based therapies, and provided a rational simulation
framework to test various combination strategies, with a goal of
improving the probability of success in treatment efficacy.
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