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Simulating human brain with hardware has been an attractive project for many years,

since memory is one of the fundamental functions of our brains. Several memory models

have been proposed up to now in order to unveil how the memory is organized in the

brain. In this paper, we adopt spatio-temporal memory (STM) model, in which both

associative memory and episodic memory are analyzed and emulated, as the reference

of our hardware network architecture. Furthermore, some reasonable adaptations are

carried out for the hardware implementation. We finally implement this memory model

on FPGA, and additional experiments are performed to fine tune the parameters of our

network deployed on FPGA.

Keywords: memory model, brain-inspired, spike neural network, spatio-temporal memory, neuromorphic

hardware, FPGA

1. INTRODUCTION

A spatio-temporal memory model has been proposed by Hu et al. (2016). In this model,
information is hierarchically stored in a structured spiking neural network as shown in Figure 1.
Compared with pre-existing memory models, the major contribution of this model lies in the
memory formulation implemented by temporal population coding and temporal learning. Each
pattern stored in the network is represented by tens of neurons, with the information being encoded
by the precise time of spikes. During the learning phase, the inter-layer synaptic weights are updated
in accordance with the tempotron learning rule (Gütig and Sompolinsky, 2006), while intra-
layer synaptic plasticity is modified by spike timing dependent plasticity (STDP) (Caporale and
Dan, 2008). Throughout the recall phase, hetero-associated memory is stored in the connections
between input layer and layer I, which enables a timely response for a particular neuron assembly
in layer I whenever a new pattern is introduced to input layer. Auto-associated memory refers to
the capability that a subset of neurons from a particular neural assembly arouse the rest of that
assembly. Moreover, the capability of pattern completion in this memory model is maintained by
the lateral connections within neuron assemblies of layer I. Episodic memory could be considered
as an abstraction of temporally consecutive simple memory patterns. A silent neuron assembly
in layer II may be triggered by the others by means of inter-assembly connections as long as a
pattern sequence has been learned during learning phase. In the recall phase, a pattern is recalled if
the neuron assembly related to that pattern fires spikes repetitively. In this case, after-depolarizing
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FIGURE 1 | The architecture of the STM model. There are three layers in the network: Input Layer, Layer I, and Layer II. Inter-layer connections between layers are

illustrated by colored lines, while intra-layer connections are black lines and exist only within Layer I and Layer II. Neurons with the same color in each layer form a

neural assembly and denote the same memory item.

potential (ADP) (Jensen et al., 1996) of neurons and theta
oscillation (O’Keefe and Recce, 1993) are both important to the
repetitive firing of assemblies coding for memory items. The
STM model provides a comprehensive substrate to elucidate the
complex process of memory formulation and organization in
virtue of complex spiking neural dynamics. In this work, we
implement the STMmodel on FPGA.

Some neuromorphic efforts have been made recently to
simulate human brain. The SpiNNaker chip, proposed by
University of Manchester, integrates 18 processing cores, in
which each one could configure ∼1,000 biologically-plausible
neurons (Painkras et al., 2013). For the TrueNorth chip
proposed by IBM in 2015, the chip itself is composed of
4,096 neurosynaptic cores, containing an aggregate of 1 million
neurons and 256 million synapses (Akopyan et al., 2015). And
it achieves even better performance both in accuracy and power
on some classification tasks than other so-called state-of-the-art
approaches (Esser et al., 2016). Loihi is another neuromorphic
chip proposed by Intel in 2018, comprising 128 neuromorphic
cores with fully integrated SNN, where each neuromorphic
core implements 1,024 primitive spiking neural units (Davies
et al., 2018). Please note that the neuromorphic chips mentioned
above are used to run ANN tasks by many researchers. For
instance, an object (letters a–z) recognition task containing 8,198
neurons was performed on SpiNNaker as shown in Orchard
et al. (2015), and a convolutional neural network for CIFAR 10
classification was deployed on one TrueNorth chip employing

4,042 cores containing 4,042*256 neurons in Esser et al. (2016).
However, most of the tasks that our brain deals with everyday are
cognitive tasks, such as association and memory search, instead
of classifications. Despite∼100 billion neurons and 1,000–10,000
synapses per neuron in our brains, some cognitive tasks do not
need so many neurons. As for the STM model, a few hundreds
of neurons are sufficient to store and recall several memory
items. Hence, we implement the STM model on FPGA in this
paper, and we plan to propose our configurable neuromorphic
chip recently.

The remaining part of this paper is organized as follows:
in section 2, we introduce the adaptations of STM model,
to make it more suitable for hardware implementation.
In section 3, we describe the hardware implementation
details. In section 4, we discuss the impacts of different
model parameters on the model behavior and the cost
of hardware.

2. MATERIALS AND METHODS

2.1. Neuron Model
The spike response model (SRM) (Maass and M Bishop, 1998) is
adopted in the original STM network. And the neural dynamics
of SRM is described as function (1), where v(t) is its membrane
potential at time t representing its state. ti and tj denote firing
times of the pre-synaptic neuron i and the post-synaptic neuron j,
respectively. wij is the synaptic efficacy from neuron j to neuron i.
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AADP, τADP, Vnorm, τ , and τs are all constants and hext(t) is
external stimulating input (Hu et al., 2016).

vi(t) = AADP
t − ti

τADP
exp(1−

t − ti

τADP
)+

∑

j

wijVnorm(exp(−
t − tj

τ
)

−exp(−
t − tj

τs
))+ hext(t) (1)

Obviously, operations including addition, complex
multiplication and exponent arithmetic are needed for SRM. By
contrast, only addition is employed by the leaky integrate-and-
fire (LIF) (Stein, 1965) neuron model, thus allowing mitigating
the hardware cost (multiplier and exponential arithmetic unit)
greatly. Therefore, we replace SRMwith LIF neuron model in the
STM hardware implementation. LIF is one of the most widely
used models for analyzing the behavior of neural systems, and
the membrane potential of the LIF neuron evolves according to
three basic operations:

1. Synaptic Integration.

vi(t) = vi(t − 1)+

n−1∑

j=0

xj(t)wij (2)

where vi(t) describes the membrane potential of neuron i at
time t, and wij denotes the synaptic weight from neuron j to
neuron i. xj(t) is the input value to neuron i from neuron j,
and xj(t) ∈ {0, 1} for depicting binary spike neuron networks.

2. Leaky.

vi(t) = vi(t)− vl (3)

vl is the leak value of the LIF neuron. The constant is
subtracted in each time step and such operation guarantees
the recovering mechanism so as to keep neurons available
for the next stimulus, when no input spike occurs for long
time. The leak value may vary from neuron to neuron in a
trained network.

3. Fire and Reset.

if vi(t) ≥ vthr :

Fire and vi(t) = vreset

else :

pass

(4)

Finally, the neuron compares its membrane potential with
the threshold vthr . If the membrane potential exceeds the
threshold value, the neuron fires a spike and reset its
membrane potential to vreset .

2.2. After-Depolarizing Potential (ADP) and
Theta Oscillation
The after-depolarizing potential of pyramidal cells and theta
oscillation in the brain are plugged into the neural dynamics of
the original spike response model (SRM). The two properties
employed above serve as a mechanism to maintain neuron’s
status through repetitive firings. However, the LIF neuron

model does not support the expected properties on account
of complex non-linear functions including exponentiation and
multiplication. Therefore, we take both ADP and theta oscillation
as external stimulating inputs, and fix-point their values
in consideration of hardware cost. The updated membrane
potential of neurons with ADP and theta oscillation can be
rewritten as:

vi(t) = vi(t − 1)+ 1ADP(t − ti)+ 1θ(t) (5)

where ti is the last firing timing of neuron i and 1 denotes the
amplitude variation between contiguous time steps. We adjust
the original ADP dynamics into linear dynamics and fix-point
the values of ADP and theta oscillation with a precision of
0.01, where both the original value and the fixed-point value are
shown in Figure 2. Some neurons are configured as θ neurons
to implement theta oscillation stimulus in connection with other
neurons in the network in a manner of fixed synaptic weights,
which will be discussed detailedly in the following part. In the
meanwhile, the ADP stimulus is handled in the same way.

Figure 3 depicts the potential trend of a neuron with ADP
and theta oscillation after generating the first spike. The potential
consists of two components, i.e., the slowly ramping up ADP
and theta oscillation. When the ADP meets near-peak theta
stimuli, neuron’s potential exceeds the threshold and it fires again.
Therefore, the information encoded by the neuron is temporally
stored in theta cycles.

2.3. Fix-Point Processing
To reduce the memory overhead of hardware implementation,
we fix-point the weights, leaks and thresholds of the network.
During the training phase, the thresholds of all the neurons in the
network are set as 1, while the other parameters are all floating-
point numbers. When the training is completed, the weights and
leaks are rounded to signed 11-bit integers. 11-bit weight exceeds
our demand actually.We chose 11-bit weight to express−1024 to
1023, which is not fully used in this implementation (0–300 used),
but this gives us more chances to improve our model by fine
turning the weights. And 65% memory for weights are reduced
after fix-point process. Table 1 gives an overview of the fixed-
point values of the previous parameters in a certain case of STM
network, in which all the adaptations are applied. One can affirm
that the network presents both associated memory and episodic
memory correctly as demonstrated in Figure 4A. It should be
noted that there is no online learning on the hardware, where
both STDP and tempotron are turned off.

3. RESULTS

3.1. Network Architecture
The network architecture is shown in Figure 5A. There are
four layers in the network: Input Layer, Layer I, Layer I Recall,
and Layer II. Compared with the original STM model network,
a recall layer is adopted to achieve repetitive firings. To be
specific, the recall layer has the same number of normal LIF
neurons as layer I in order to respond to different inputs
and transmit stimulus to layer II. Each normal neuron in the
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FIGURE 2 | ADP and theta oscillation values. The original ADP kernel is AADP
1t

τADP
exp(1− 1t

τADP
), non-linearly. We replace it with a linear kernel with a reasonable

slope, while the shape of theta oscillation is unchanged. At first we set the slope for the linear kernel as the value at which ADP meets its maximum value at exactly the

same time as the original kernel. On this basis, the slope was set as 0.0055 after some experiments. Then, we quantize the value of both ADP and theta oscillation

with fixed-point precision.

FIGURE 3 | The potential (red line) of the normal neuron after generating the first spike consists of two components: slowly ramping-up ADP (blue line) and theta

oscillation (green line). When the ADP meets near-peak theta stimuli, its potential exceeds the threshold (gray dotted line) and it fires again.

recall layer is connected to the corresponding neuron in layer
I. What counts is that the after-depolarizing potential (ADP)
of normal neuron in the recall layer is realized by the ADP
neuron attached to it (Figure 5B). The ADP neuron is also a
LIF neuron, with its reset-potential being set the same as its
threshold while the leak keeps 0. As a consequence, it shall fire
continuously once it is activated unless it receives inhibitory
signals. Such process is not displayed in the figure. Acting like
a chain of events, the potential of the normal neuron will
increase as time goes by owing to the stimuli from the ADP
neuron. Besides those mentioned above, normal neurons are
also stimulated by θ neurons (inducing the theta oscillation). θ

neurons can be categorized into two types: θ
1 neurons and θ

2

neurons (Figure 5C). They are fully connected to all the normal
neurons in the recall layer and their weights are all ±wθ . The θ

neurons are activated by external stimulus and the number of θ

neurons activated in each evaluating period depends on the theta
oscillation amplitude. In particular, θ1 neurons’ stimulus denotes
the theta oscillation amplitude of the last evaluating period,
while θ

2 neurons represent the variation of the theta oscillation
amplitude between current period and last period. A θ

1 neurons’
stimulus is needed only when normal neuron fires and resets. In
this way, the integrated theta oscillation is plugged into normal
neurons’ potential.

Interneurons in Layer I, Layer I Recall, and Layer II are
omitted in Figure 5A for simplicity. Each interneuron should be
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stimulated by the neural assembly that corresponds to the same
pattern it represents for and should provide inhibition to all the
other neural assemblies in the same layer. In this way, firings

TABLE 1 | Fixed-point value of parameters.

Para Layer I Layer II

Max weight 300 90

Min weight 0 0

Leak 45 28

Threshold 1,000 1,000

of different neural assemblies are separated into several gamma
cycles and become distinguishable temporally.

For hardware implementation, the neural assembly sizes of
input layer, layer I and layer II are set to be 10, 8, 10, respectively,
and the overlap ratio among input layer neural assemblies is 50%.
Above all, 109 neurons are consumed for the network to store
four associative memory items and one episodic memory item,
including 97 normal neurons and 8 interneurons. Besides, 32
ADP neurons and certain θ neurons are needed in Layer I Recall.
The number of θ neurons used depends on the theta period and
weight precision. We finally set theta period as 66 ms and the
max amplitude as 0.6, thus 60 θ

1 neurons and 6 θ
2 neurons are

FIGURE 4 | Network performance under various conditions. Spikes of neurons representing for different patterns are marked with different colored dots in the figure.

The correct response of layer-I neurons to different input patterns is exactly the hetero-associated memory like recognizing a letter. Then the information is kept in layer

I and relevant layer-II neurons are aroused. Therefore, different patterns can compose more complex memory like a word, which is called episodic memory.

(A) Network trained under modified ADP and theta oscillation and fixed-point parameters. (B) Network when input neural assembly size is 5. (C) Network when

overlap ratio of input neural assembly is 75%. (D) Network when gamma period is 5 ms.
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FIGURE 5 | (A) There are four layers in the network. One recall layer is needed because we take different methods to achieve repetitive firings from the original model.

(B) Each neuron in the recall layer is attached to one ADP neuron to realize ramping-up potential after generating spikes. And the ADP neuron will fire continuously

once activated. (C) Theta oscillation in the recall layer is separated into two parts: the theta oscillation amplitude of the last evaluating period (θ1) and the variation of

the theta oscillation amplitude between this period and last period (θ2). (D) Neuron block diagram.

employed and wθ is 0.01. The input layer is not included on the
hardware, where the input stimuli are routed to layer I neurons
directly. As a total, 178 LIF neurons are realized on FPGA.

3.2. Neuron Block
The block diagram of the basic unit, LIF neuron, is shown in
Figure 5D. In each evaluating period, which is corresponding
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TABLE 2 | Memory cost.

Item Single cost (b) Number Total cost (kb)

Neuron 50 178 8.9

Weight 11 8,512 93.632

Spike 1 178 0.178

Total – – 102.71

to real-time millisecond, the neuron reads its parameters from
memory, updates its potential by adding up all the valid input
weights and executes leak. If its potential exceeds the threshold,
the neuron resets its potential and transmits a spike event. If not,
the potential keeps unchanged. Then the neuron writes its new
potential back to memory.

3.3. Hardware Overhead
Each neuron on FPGA is represented by four parameters:
14-bit signed potential, 8-bit signed leak, 14-bit signed reset-
potential and 14-bit signed threshold, which sums up to 50
bits memory space. What’s more, the 8,512 synapses count
most in the network and each synapse stores a 11-bit signed
weight. Additional 178 bits are occupied to store the spikes
generated in each evaluating period. The final cost of memory is
summarized (Table 2).

The FPGA chip used in this realization is Kintex UltraScale
FPGA KU115, and the FPGA board we use is custom designed
by ourselves. Besides, vivado design suite was applied to deploy
the network on the FPGA board. The usage of the FPGA
resource is shown in Table 3 and the FPGA result is illustrated
in Figure 6, in which the input data is randomly generated for
functional verification.

4. DISCUSSION

In order to tune appropriate model parameters for hardware
implementation, we have performed plenty of simulations to
have an insight into the characteristics of STM model. First, we
decrease the size of neural assembly in each layer continuously.
Second, we increase the overlap of neurons between different
neural assemblies. And then, we apply different gamma and
theta periods.

4.1. Size of Neural Assembly
Population coding is applied in the STM model. Each input
item is coded by a specific combination of neurons in each
layer. Obviously, the greater the size of neural assembly is,
the more hardware resources it consumes. Therefore, it is
necessary for us to weigh the tradeoff between the size of
neural assembly and the performance of STM network. The
neuron number of input neural assembly ranges from 1 to 25
continuously. And the size of layer I neural assembly keeps as
three-quarters of that of input layer, while layer II stays the same
as input layer.

The result under circumstance of 5 for input neural assembly
size is shown in Figure 4B, indicating that with the decrease
of neural assembly size, the network performance stays almost

TABLE 3 | FPGA resource cost.

Resource Estimation Available Utilization %

LUT 5,535 663,360 0.83

FF 4,427 1,326,720 0.33

BRAM 28 2,160 1.30

IO 190 702 27.07

BUFG 1 1,248 0.08

unaffected. It demonstrates that the size of neural assembly
coding for single item is not a principal factor to achieve
fundamental functions of STM network. But obviously, the fewer
neurons coding for single item, the worse anti-noise property the
network may have. Hence, another experiment is conducted to
investigate the correlation between neural assembly size and the
anti-noise property of STM model. The noise here is expressed
as jitter at the moment of individual spikes or missing spikes
of input patterns. And the anti-noise property is considered as
the capability to generate an output pattern which keeps highly
correlated with its corresponding target pattern. The correlation
is measured according to (Schreiber et al., 2003):

Rcorr =
Esa · Esd

| Esa|| Esd|
(6)

where sa and sd are the filtered actual and desired output
spike trains, respectively. The output spike trains are convolved
with a Gaussian filter of a given width, σc, which is set to
be 2 ms. The experiment is divided into two parts. For the
first, we shift input spikes by intervals randomly drawn from a
Gaussian distribution withmean 0 and variance [1, 5] ms without
missing spikes. For the second, we randomly (with uniform
distribution) remove 2, 3, 5, 8 spikes from input patterns but
leave spike timings unchanged. We did the two parts above with
input assembly size decreasing from 20 to 5. And both cases
were repeated for 50 times to get the averaged performance.
Figure 7 verifies the robustness of the network to time jitter
with regard to assembly size. Nevertheless, larger assembly size
may ensure higher robustness to missing spikes, which means
the network is capable of recalling one pattern even when some
features of the inputs are missing. Hereby, we set input neural
assembly size as 10 in consideration of both hardware cost and
anti-noise capability.

4.2. Overlap of Neural Assemblies
Neurons in the same neural assembly encode different features
of one specific memory item, hence similar memory items ought
to share certain common features. As a result, neural assemblies
encoding those items should overlap mutually. Nevertheless,
the overlap among neural assemblies may increase the memory
capacity of a given network even in the case of the same
neuron number.

To figure out the impacts of the overlap degree on the
network performance, we generate input patterns with the
overlap ratio ranging from 5 to 75% (step length equals to 5%).
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FIGURE 6 | The signal indicating firings of neurons on FPGA is shown in this figure. The firings are illustrated in short black bars. As can be seen, inputs of pattern 0–3

are introduced to the network at valleys of different theta cycles and Layer-I and Layer-II neurons respond selectively and repetitively to the stimulation in the same

order. The status of Layer-II neurons is maintained through repetitive firing in the following theta cycles without any inputs.

FIGURE 7 | The figure on the left shows the network performance with different time jitters in the input. The performance drops as the time jitter increases from 1 to 5,

but it is not sensitive to assembly size. It is evident that the larger input assembly size leads to greater time jitters introduced to the network. And the figure on the right

illustrates better network performance in the wake of larger input assembly size when fixing the same missing spike number.
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We find that even though the overlap ratio is increased to 75%,
the network still succeeds in learning the target features. The
result is drawn in Figure 4C. It indicates that the proposed
model is qualified to learn tiny differences between patterns.
In our actual hardware implementation, the overlap ratio is
set as 50%.

4.3. Period of Theta and Gamma Oscillation
In our proposed model, each memory item is encoded by
firings in different gamma cycles. Specifically, memorized items
representing for episodic memory are serially activated in
sequential gamma subcycles of one theta period. It suggests
that the recall rate is negatively related to gamma period.
Thus accordingly, we expect to attain faster hardware speed by
decreasing gamma period. In the experiment, gamma period
is set to be 1–25 ms, with theta to gamma frequency ratio
being 3/20 to keep the memory capacity unchanged referring
to Kamiński et al. (2011). And for the reason that the repetitive
firing of neuron assembly is based on the matching of ADP and
theta oscillation, the ratio of ADP time constant and gamma
period is set as a constant 12 simultaneously for the sake
of simplicity.

The experimental results reveal that the gamma period has
relatively little impact on the inter-layer connectivity. In spite
of that, proper intra-layer connectivity depends heavily on the
repetitive firings of neurons at appropriate timing. In the course
of decreasing the gamma period, we reveal the fact that the
poormatching of after-depolarizing potential (ADP) and external
theta input may lead to temporally undistinguishable patterns in
Layer II. The result when gamma period is 5 ms is illustrated
in Figure 4D.

5. CONCLUSION

In this work, we implement a hierarchical memory model on
FPGA. Population coding is employed in this model where
information is transmitted as temporal structured spikes. Such

mechanism is more preferred in terms of the conformity
with our brains. Thus, temporal learning rules, i.e., tempotron
and STDP, are applied accordingly. In particular, simple LIF
neuron model is adopted as basic elements of the network
out of the purpose of hardware-friendly. Moreover, four
associative memory items and one episodic memory item
are stored in the network and can be recalled properly.
For the consideration of hardware cost and memory recall
speed, additional validation experiments are performed to
tune appropriate network parameters. Studies focusing on
deploying deep neuron network on neuromorphic hardware have
attracted most of the attention. However, classic recognition
and classification tasks are limited to achieve real intelligence,
hence this work is a preliminary attempt to build neuromorphic
cognitive systems on hardware.
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