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Abstract

Genome-wide association studies (GWAS) have become increasingly common due to advances in technology and have
permitted the identification of differences in single nucleotide polymorphism (SNP) alleles that are associated with diseases.
However, while typical GWAS analysis techniques treat markers individually, complex diseases (cancers, diabetes, and
Alzheimers, amongst others) are unlikely to have a single causative gene. Thus, there is a pressing need for multi-SNP analysis
methods that can reveal system-level differences in cases and controls. Here, we present a novel multi–SNP GWAS analysis
method called Pathways of Distinction Analysis (PoDA). The method uses GWAS data and known pathway–gene and gene–
SNP associations to identify pathways that permit, ideally, the distinction of cases from controls. The technique is based upon
the hypothesis that if a pathway is related to disease risk, cases will appear more similar to other cases than to controls (or vice
versa) for the SNPs associated with that pathway. By systematically applying the method to all pathways of potential interest,
we can identify those for which the hypothesis holds true, i.e., pathways containing SNPs for which the samples exhibit greater
within-class similarity than across classes. Importantly, PoDA improves on existing single–SNP and SNP–set enrichment
analyses, in that it does not require the SNPs in a pathway to exhibit independent main effects. This permits PoDA to reveal
pathways in which epistatic interactions drive risk. In this paper, we detail the PoDA method and apply it to two GWAS: one of
breast cancer and the other of liver cancer. The results obtained strongly suggest that there exist pathway-wide genomic
differences that contribute to disease susceptibility. PoDA thus provides an analytical tool that is complementary to existing
techniques and has the power to enrich our understanding of disease genomics at the systems-level.
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Introduction

Genome-wide association studies (GWAS) have become a

powerful and increasingly affordable tool to study the genetic

variants associated with disease. Modern GWAS yield information

on millions of single nucleotide polymorphism (SNPs) loci

distributed across the human genome, and have already yielded

insights into the genetic basis of complex diseases [1,2], including

diabetes, inflammatory bowel disease, and several cancers [3–7]; a

complete list of published GWAS can be found at the National

Cancer Institute–National Human Genome Research Institute

(NCI-NHGRI) catalog of published genome-wide association

studies [8].

Typically, the data produced in GWAS are analyzed by

considering each SNP independently, testing the alleles at each

locus for association with case status; significant association is

indicative of a nearby genetic variation which may play a role in

disease susceptibility. Genomic regions of interest may also be

subject to haplotype analysis, in which a handful of alleles

transmitted together on the same chromosome are tested for

association with disease; in this case, the loci which are jointly

considered are located within a small genomic region, often

confined to the neighborhood of a single gene.

Recently, however, there has been increasing interest in

multilocus, systems-based analyses. This interest is motivated by

a variety of factors. First, few loci identified in GWAS have large

effect sizes (the problem of ‘‘missing heritability’’) and it is likely

that the common–disease, common–variant hypothesis [9,10] does

not hold in the case of complex diseases. Second, single marker

associations identified in GWAS often fail to replicate. This

phenomenon has been attributed to underlying epistasis [11], and

a similar problem in gene expression profiling has been mitigated

through the use of gene-set statistics. Most importantly, it is now

well understood that because biological systems are driven by

complex biomolecular interactions, multi-gene effects will play an

important role in mapping genotypes to phenotypes; recent

reviews by Moore and coworkers describe this issue well [10,12].

Additionally, the finding that epistasis and pleiotropy appear to be

inherent properties of biomolecular networks [13] rather than

isolated occurences motivates the need for systems-level under-

standing of human genetics.

The impact that biological interaction networks have on our

ability to identify genomic causes of complex disease is readily

apparent. Consider a biologically crucial mechanism with several

potential points of failure, such that an alteration to any will confer

disease risk. Because no single alteration is predominant amongst
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cases, none attain a significant association; indeed, it has long been

observed that even in histologically identical tumors, only a

fraction may share the same set of mutations (see references in [14]

for examples). Additionally, in a robust system, multiple alterations

may be necessary to alter the activity of an interaction network;

here, healthy individuals may share a subset of the deleterious

alleles found in cases, and again these loci will not be detected.

This complexity, noted by [10,12–14] and others, has generated

considerable interest in multi-locus analysis techniques that take

advantage of known interaction information.

Several multi-SNP GWAS analysis approaches have been

described in the literature. Thorough reviews are provided in

[15,16], and we briefly describe several here. Building on the well-

established Gene Set Enrichment Analysis [17] method initially

developed for gene expression data, two articles have proposed an

extension of GSEA for SNP data [18,19]. In these techniques,

each SNP is assigned a statistic based on a x2 test of association

with the phenotype; a running sum is then used to assess whether

large statistics occur more frequently amongst a SNP set of interest

than could be expected by chance. While GSEA-type approaches

have proven quite useful, their reliance on single-marker statistics

means that systematic yet subtle changes in a gene set will be

missed if the individual genes do not have a strong marginal

association. In the case of a purely epistatic interaction between

two SNPs in a set, the set may fail to reach significance altogether.

To address this issue, Yang and colleagues proposed SNPHar-

vester [20], designed to detect multi-SNP associations even when

the marginal effects are weak. To reduce the search space of

possible multi-SNP effects, SNPHarvester [20] first removes any

SNPs with univarite significance. Using a novel searching

algorithm, they identify groups of l SNPs that show association

with status in a x2 test with 3l{1 degrees of freedom. While this

approach can reveal epistatic effects that would be missed by the

GSEA-type schemes [18,19], it has other drawbacks. First, the

combinatorial explosion of SNP groups puts a limit on the number

of SNPs l that may simultaneously be examined. Second, the the

arbitrary groupings of SNPs and the exclusion of SNPs with

marginal effects can make the biological interpretation of the

analysis results difficult.

The notion that cases will more closely resemble other cases

than they will controls has motivated a number of interesting

distance-based approaches for detecting epistasis. Multi-dimen-

sionality reduction (MDR) has been proposed and applied to SNP

data [21–23]. In this technique, sets of l SNPs are exhaustively

searched for combinations that will best partition the samples by

examining the 3l cells in that space (corresponding to homozygous

minor, heterozygous, or homozygous major alleles for each locus)

for overrepresentation of cases. While this method both finds

epistatic interactions without requiring marginal effects and can be

structured to incorporate expert knowledge, it is limited by the fact

the the total number of loci to be combinatorially explored must

be restricted to limit computational cost. To address this, an

‘‘interleaving’’ approach in which models are constructed

hierarchically has been suggested [22] to reduce the combinatorial

search space. A recent and powerful MDR implementation [24]

taking advantange of the CUDA parallel computing architecture

for graphics processors has made feasible a genome-wide analysis

of pairwise SNP interactions. Still, MDR remains computationally

challenging, such that expanding the search to other SNP set sizes

(rather than restricting to pairwise interactions) can be impeded by

combinatorial complexity if an exhaustive search is to be

performed.

In order to narrow down the combinatorial complexity of

discovering SNP sets using techniques such as MDR, feature

selection may be employed. Of particular importance here is the

distance-based approach of the Relief family of algorithms [25–

28]. These are designed to identify features of interest by weighting

each feature through a nearest-neighbor approach. The weights

are constructed in the following way: for each attribute, one selects

samples at random and asks whether the nearest neighbor (across

all attributes) from the same class and the nearest neighbor from

the other class have the same or different values from the

randomly chosen sample. Attributes for which in-class nearest

neighbors tend to have the same value are weighted more strongly.

Because the distances are computed across all attributes, Relief-

type algorithms can identify SNPs that form part of an epistatic

group and they provide a means of filtration that does not have the

drawbacks of other significance filters.

While these methods have so far been applied to finding small

groups of interacting SNPs, one may instead be interested in

whether cases and controls exhibit differential distance when

considering a large number of genes. A multi-SNP statistic has

been proposed in the literature [29–31] for determining whether

an individual of interest is on average (across a large number of

SNPs) ‘‘closer’’ to one population sample than to another. The

method, originally proposed by Homer [29], is motivated by the

idea that a subtle but systematic variation across a large number of

SNPs can produce a discernible difference in the closeness of an

individual to one population sample relative to another. While this

statistic was originally designed to identify the proband as a

member of one of the population samples, it was shown in [30]

that out-of-pool cases from a case-control breast cancer study were

in general closer (as defined by the statistic presented in [29]) to in-

pool cases than they were to in-pool controls, suggesting that the

combination of multiple alleles has the potential to distinguish

cases from controls.

Building on these ideas, we present a new technique that finds

pathway-based SNP-sets that differentiate cases from controls; we

call this method Pathways of Distinction Analysis (PoDA). In

PoDA, SNP sets are defined based on known relationships (e.g.,

SNPs in genes sharing a common pathway), and thus incorporate

expert knowledge to reduce the search space and provide

biological interpretability. Motivated by the differential ‘‘close-

ness’’ of cases and controls as discussed about and as observed in

[30], we hypothesize that if the SNPs come from a pathway that

plays a role in disease, there will be greater in-class similarity than

across-class similarity in the genotypes for those SNPs; i.e., a case

will show greater genetic similarity to other cases than to controls

for the SNPs on a disease-related pathway, but will be equidistant

Author Summary

We present a novel method for multi–SNP analysis of
genome-wide association studies. The method is motivat-
ed by the intuition that, if a set of SNPs is associated with
disease, cases and controls will exhibit more within-group
similarity than across-group similarity for the SNPs in the
set of interest. Our method, Pathways of Distinction
Analysis (PoDA), uses GWAS data and known pathway–
gene and gene–SNP associations to identify pathways that
permit the distinction of cases from controls. By system-
atically applying the method to all pathways of potential
interest, we can identify pathways containing SNPs for
which the cases and controls are distinguished and infer
those pathways’ role in disease. We detail the PoDA
method and describe its results in breast and liver cancer
GWAS data, demonstrating its utility as a method for
systems-level analysis of GWAS data.

Pathways of Distinction Analysis

PLoS Genetics | www.plosgenetics.org 2 June 2011 | Volume 7 | Issue 6 | e1002101



for the SNPs on a non-disease-related pathway. Based on this

notion, PoDA seeks to identify pathways for which differential

heterogeneity is exhibited in cases and controls. In each pathway,

PoDA returns a statistic S for each sample that quantifies that

sample’s distance to the remaining cases relative to its distance to

the remaining controls for a given pathway’s SNPs. PoDA then

examines whether the distributions of S for the controls differ from

those of the cases by computing and testing for significance a

Pathway Distinction Score DS that quantifies the differences in

case and control S distributions. In this manuscript, we detail the

PoDA method and report the results of its application to two data

sets.

As we will describe, PoDA improves and complements existing

approaches in a number of respects. First, it permits the

investigation of arbitrarily large pathways, circumventing the

dimensionality issues that are encountered with MDR and SNP-

Harvester. Second, it is able to detect pathways that contain an

over-abundance of highly-significant markers as well as pathways

whose markers have a small but consistent association that would

be missed by GSEA-type approaches. Finally, it uses a leave-one-

out technique to return for each sample an unsupervised relative

distance statistic that can then be used to model disease risk via

logistic regression. In addition to providing an effect size for the

pathway, this allows the odds of disease for new samples to be

obtained by computing its relative distance statistic with respect to

the known samples and applying the model.

Methods

Following our conjecture that SNPs associated with the genes in

a pathway involved in disease will exhibit more within-group

similarity than across-group similarity, we propose Pathways of

Distinction Analysis (PoDA), a method designed to address the

following questions:

N Given some set of SNPs, do we find that, on average, cases are

‘‘closer’’ to other cases than to controls (or that controls are

‘‘closer’’ to other controls than to cases)?

N If we look for these distinctions systematically over all SNP-sets

of potential interest, can we use it to single out SNP-sets which

may be associated with disease?

In PoDA, a set of SNPs are selected, and for each sample we

compute whether it is closer to the pool of remaining cases or

controls across that SNP set, using the relative distance statistic

described below. Once this is done for every sample, the

distribution of the relative distance statistic is compared in the

cases and controls using a nonparametric statistic, addressing the

first question above. This may be carried out amongst all SNP sets

of interest, adjusting the p-value for the multiple hypotheses, to

find SNP sets for which cases more strongly resemble the

population of remaining cases while controls more strongly

resemble the population of remaining controls.

We begin with a discussion of how we measure the relative

distance of an individual to the other cases vs. other controls. A

simple but computationally intensive approach is to represent each

sample by a vector in an l-dimensional space, where l is the

number of SNPs in the group of interest. One can then compute,

between each sample pair, their distance in this l-dimensional

space using a Euclidean, Manhattan, or Hamming metric. For

each sample, we would define its relative distance statistic as the

mean of its distance to other controls minus the mean of its

distance to other cases; a sample that is more similar to cases will

exhibit a positive statistic, whereas one that is more similar to other

controls will exhibit a negative statistic. For the given SNP set, we

would then have for each sample a value quantifying its relative

distance that was computed without knowledge of that sample’s

class (i.e., using a leave-one-out scheme) and could then be used in

further tests. By doing this for all pathways of interest, one derives

a relative distance value for each sample in each pathway.

This brute-force approach, while conceptually clear, has two

significant drawbacks. The first is that the distance computation is

O(l:n2) where n is the total number of samples in the study–a

considerable undertaking, particularly if many SNP sets are to be

analyzed, and one that becomes exceedingly troublesome in the

context of permutation tests. The second drawback is that because

we are taking the mean of the distances, a sample that is situated

squarely within a cluster of cases may have a large case-distance

value due to the dispersion of cases around it. Both of these issues

are circumvented by instead considering the relative distance to

the centroids of the cases and controls in the l-dimensional space, a

computation that can be performed in O(l:n) for all n samples. It is

this approach that PoDA employs, as follows:

In [29,30], the authors consider a measure of individual Y ’s

distance to two population samples F and G at locus i,

DY ,i~ yi{fij j{ yi{gij j: ð1Þ

where fi and gi are the minor allele frequencies (MAFs) of SNP i in

samples F and G, and yi [ f0,0:5,1g is Y ’s genotype at i
corresponding to homozygous major, heterozygous, and homozy-

gous minor alleles, respectively (i.e., the frequency of minor allele

in that individual. The first term quantifies how different Y ’s MAF

is from F ’s for a given locus i; the second term quantifies how

different Y ’s MAF is from G’s at locus i; and so DY ,i gives the

distance of Y relative to F and G at locus i. Since the minor allele

frequencies fi and gi are computed by averaging the genotypes

(again, written as f0,0:5,1g) in samples F and G respectively, it is

clear that yi{fij j is the distance from Y to the centroid of F along

the coordinate i (and likewise for the gi term). It can be seen from

Eq. 1 that positive DY ,i implies that yi is closer to gi than to fi, and

that negative DY ,i implies that yi is closer to fi than to gi.

By computing DY ,i at each locus i and taking the standardized

mean across the l loci, [29] obtain a distance score S which

quantifies how close Y is relative to F and G across all l loci under

consideration,

SY ~
E(DY ,i)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(DY ,i)=l
p , ð2Þ

where E(DY ,i) denotes the mean of DY ,i across all loci i. That is, S

provides a means to quantify whether Y ’s MAFs are closer to G’s

MAFs or F ’s MAFs on average for the loci under consideration. It

is instructive to consider the geometrical interpretation of Eq. 2. Is

clear upon inspection that the numerator in Eq. 2 is equal, up to a

factor of l, to the difference in Manhattan distances between Y
and the (nonstandardized) G centroid and Y and the (nonstan-

dardized) F centroid; in this sense, Eq. 2 resembles a nearest-

centroid classifier. However, the denominator scales the relative

distances by their variance across the l SNPs; that is, a sample Y
who is consistently closer to G than to F for each of the l SNPs will

obtain a higher S than an individual who is variously closer to

either across the l SNPs under consideration.

By assigning the (non-Y ) controls as F and the (non-Y ) cases as

G, we can compute a statistic SY quantifying Y ’s distance to other

cases relative to Y ’s distance to other controls. If we then apply

this systematically to all individuals in the study population

(removing that individual, computing the MAF’s fi and gi for the

Pathways of Distinction Analysis
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remaining individuals who comprise F and G, and then

computing SY in a leave-one-out manner), we can obtain

distributions of SY statistics in cases and controls that may be

compared. Here, the null hypothesis is that case and control SY

distributions do not differ, with the alternative hypothesis that the

cases have higher S values than do controls, i.e., that they are

closer (via Eqs. 1–2) to other cases than are controls.

We can use S in the following manner to answer the questions

posed above by applying it in a leave-one-out manner in each

pathway:

1. For a given pathway P, select the lP SNPs associated with that

pathway;

2. For every sample Y , remove Y from the case or control group

as needed, and compute SY ,P with respect to the remaining

cases and controls using the SNPs chosen in step 1.

3. Quantify the differences in distribution of SY ,P’s for the case

samples versus that of the controls and test for significance.

By systematically carrying out the above steps on all pathways of

interest, we can identify pathways for which there appears to be

differential homogeneity in cases and controls, indicating that the

pathway may play a disease-related role. The details of the

algorithm are explained below, and summarized in Table 1.

In [30], we examined Eqs. 1–2 and found that the magnitude of

S is influenced both by the MAF differences fi{gi (that is, how

distant the centroids of F and G are) and by correlations between

the SNPs under consideration (due to the penalization for variance

in Di provided by the denominator of Eq. 2. These properties are

extremely well-suited to the application we propose: pathways with

few highly-significant SNPs will yield large S differences (due to

the influence of fi{gi), as will pathways with SNPs that are highly

correlated yet have subtle individual MAF differences, corre-

sponding to the concerted action of multiple SNPs.

At the same time, however, we wish to ensure that the pathways

we select as having differential S are not being influenced large LD

blocks covered by the SNPs in the genes on the pathway. That is,

we wish to ensure that the SNP correlations which drive S are

reflective of epistatic effects between different genes rather than

recombination events within a gene. To this end, we select a single

SNP to represent each gene, based on the desire to detect multi-

gene rather than multi-SNP effects.

In practice, SNPs are selected as follows: for each pathway

represented in the Pathway Interaction Database [32] (PID,

http://www.pid.nci.gov, containing annotations from BioCarta,

Reactome, and the NCI/Nature database [32]) and KEGG [33],

we select the associated genes. Using dbSNP [34], we retrieve the

SNPs associated with the pathway genes that are present in the

data, excluding those with w20% missing data or with minor

allele frequency v0:05 in either case of control group. We

necessarily exclude pathways for which only one gene is probed by

the remaining SNPs. Because we are interested in S values that are

driven by correlations across genes (and not in individual genes

covered by many SNPs with high LD), we select for each gene its

most significant SNP in a univariate test of association (Fisher’s

exact test). It should be noted here that while the SNP chosen for

each gene is the most significant of that gene’s SNPs, it is not

necessarily significantly associated with disease. Our goal here is

not to filter based on SNP significance, but rather to select, for

each gene, a single marker that is as informative as possible.

Having selected the SNPs of interest, we compute DY ,i at each

locus for every sample by selectively removing it and comparing it

to the remaining cases and controls, as described above. For each

pathway P, we compute SY ,P for lP the SNPs i that comprise it,

yielding a distribution of SY ,P for cases and another distribution

for controls. The difference in the location of the case and control

SY ,P distributions is then quantified nonparametrically by

computing the Wilcoxon rank sum statistic, defined as

WP~
X

Y[case

RY ,P{
ncase(ncasez1)

2
ð3Þ

where RY ,P is the rank of SY ,P amongst all samples Y for a given

pathway P. Eq. 3 thus quantifies, non-parametrically, the degree

to which cases are ‘‘closer’’ to other cases and controls ‘‘closer’’ to

other controls across a set of SNPs for all individuals in the

GWAS.

To illustrate the above, we consider a simulated GWAS of 250

cases and 250 controls and 50 SNPs, shown in Figure 1, and ask

whether we are able to detect a 12-SNP pathway in which a subset

of SNPs appear to have an epistatic interaction. Alleles were

simulated as binomial samples from a source population with

MAFs ranging from 0.1 to 0.4 across the 50 SNPs, and case labels

were assigned such that a combintion of homozygous minor alleles

at SNPs 1 and 2 or 3 (i.e., (y1~1) ^ ((y2~1) _ (y2~1)))
conferred a three-fold relative risk, mimicking an epistatic

interaction between SNPs 1 and 2 and SNPs 1 and 3 (Figure 1a).

Alone, none of the 50 SNPs showed any association with case

status, nor was any SNP significantly out of HWE in either cases or

controls. However, the ‘‘shared pattern’’ in SNPs 1–3 is such that a

12 SNP pathway comprising SNPs 1–12 yields greater S in cases

than in controls as can been seen in Figure 1b, while a random 12

SNP pathway selected from the 50 SNPs (that includes SNP 3, but

neither SNP 1 or 2) shows no difference in S values as seen in

Figure 1c.

While the Wilcoxon statistic W is normal in the large-sample

limit and can be directly compared to a Gaussian, to truly evaluate

Table 1. Procedure for Pathways of Distinction Analysis.

1. For a each pathway P, select all associated genes from pathway database such as PID [32];

2. For each gene on the pathway, select associated SNPs (e.g., using dbSNP) and choose the one with the strongest association with case status,
determined using Fisher’s exact test;

3. For each sample Y in the GWAS, select the controls F and cases G which do not include it, compute MAFs fi and gi for the SNPs i selected in
step 2, and compute SY ,P for each sample Y ;

4. Compare the distribution of SY ,P obtained in step 2 for cases to that of controls by computing the Wilcoxon statistic WP based on
the SY ,P for that pathway;

5. Repeat steps 2–5 using permuted case/control labels, and normalize WP by the distribution of W �
P obtained with permuted labels, yielding the

distinction score DSP ;

6. Compare the distinction score DSP obtained in step 5 to that obtained for random sets of lP genes, where lP is the number of genes in
the pathway of interest.

Pathways of Distinction Analysis
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the significance of WP for a given pathway P, we must address two

sources of bias: the number of SNPs per gene, and the size of the

pathway. To address these issues, we introduce a normalized

Pathway Distinction Score DSP that we test for significance using

a resampling procedure.

First, we expect that because we have selected for each gene the

single most informative SNP, we are pre-disposed to seeing higher

WP for pathways that contain large genes. Because large genes will

be more likely to contain highly-significant SNPs by chance, the

concern has been raised that [18,35] selecting the single most

significant SNP as a proxy for the gene (as is done here) will lead to

a bias toward pathways that contain an abundance of large genes.

To account for this, we follow the approach in [18] and normalize

the score via a permutation-based procedure. First, we permute

the phenotype labels and in each permutation recalculate WP as

described above, but using the permuted case and control labels.

The permuted labels are used both to select the most informative

SNP per gene and to compute fi, gi, and WP in Eqns. 1–3). This

yields a distribution of W �
P under the null hypothesis that the

magnitude of W is independent of the true case/control

classifications. We then normalize the true WP by the distribution

from the permutation procedure, yielding a Distinction Score DSP

for pathway P that effectively adjusts for different sizes of genes

and preserves correlations of SNPs in the same gene:

DSP~
WP{E(W �

P)

SD(W �
P)

, ð4Þ

where W �
P are the set of WP obtained for pathway P across the

permutations. (In practice, 100 permutations are used.) Because

the permuted labels are used in the SNP selection, this

normalization adjusts for the bias introduced by the fact that

large genes have more opportunity to contain significant SNPs by

chance. The Pathway Distinction Score DSP thus provides a

model-free, gene-size adjusted metric for quantifying the degree to

which cases are ‘‘closer’’ to other cases (higher SP) than controls.

To test whether DSP is significant, we note that larger pathways

may yield high DSP values simply due to the fact that they sample

the case anc control differences more thoroughly. Indeed, the

question of significance that we wish to address is not simply

whether a pathway permits the distinction of cases and controls,

but whether it does so better than a random collection of as many SNPs,

wherein the SNPs are still selected to be the most informative by

gene. To account for the fact that the pathways are of differing

sizes, significance of the Distinction Score for a given pathway is

assessed through resampling by choosing, at random, the same

number of SNPs that are present in that pathway (lP) from the

total set of most-informative-SNP-per-gene and recomputing DSP

for the random pathway. The p value is obtained by counting the

fraction of random lP-SNP sets which give a larger DSP than the

true pathway SNPs in 104 resamplings. In this way, we are able to

detect pathways that yield large differences of case and control S
distributions due to their particular SNPs, rather than simply being

the result of choosing many SNPs. The p value obtained addresses

the question of whether the pathway under consideration permits

Figure 1. PoDA applied to simulated data. Alleles at 50 loci for 250
cases and 250 controls were simulated such that each SNP was in HWE
and not associated with case status, but homozygous minor (red) at
both loci 1 and 2 or 1 and 3 yielded a three-fold relative risk (a). A 12-
SNP pathway comprising SNPs 1–12 shows differential S distributions
(b); a random 12-SNP pathway does not (c). Boxplots are overlayed on
the scatterplots of S for clarity.
doi:10.1371/journal.pgen.1002101.g001

Pathways of Distinction Analysis
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greater separation of cases and controls than would a random

collection of most-informative-SNP-per-gene, i.e., whether there

exists a more extreme aggregated effect in that pathway than

expected by chance.

Results

We applied PoDA to 2287 genotypes obtained from the Cancer

Genomic Markers of Susceptibility (CGEMS) breast cancer study.

The samples were sourced as described in [4]. Briefly, the samples

comprised 1145 breast cancer cases and a comparable number

(1142) of matched controls from the participants of the Nurses

Health Study. All the participants were American women of

European descent. The samples were genotyped against the

Illumina 550K arrays, which assays over 550,000 SNPs across the

genome.

We also applied it to a smaller liver cancer GWAS [36]

comprising 386 hepatocellular carcinoma (HCC) patients and 587

healthy controls from a Korean population. Samples were

genotyped against Affymetrix SNP6.0 arrays, which provides

SNP information at approximately one million loci.

Breast cancer GWAS results
We begin by applying PoDA to the CGEMS breast cancer

GWAS data. Having observed (Figure 1) that PoDA performs as

expected for the simulated data, we first turn our attention to a

simple test in which we select a SNP set comprising the four SNPs

in intron 2 of FGFR2 that were reported to show significant

association with case status in [4] (rs11200014, rs2981579,

rs1219648, rs2420946). We expect to see a strong difference in

the test case and test control distributions, and indeed we do: the

cases more frequently have positive S than do controls in Figure 2.

(The discrete peaks in the distribution are a result of the fact that

with four SNPs there exist fewer available values of S.) Using a

nonparametric Wilcoxon rank sum test with the alternative

hypothesis that cases have greater S than controls,

p~1:016:10{6 is obtained, confirming our intuition.

We next applied PoDA systematically to the pathways

represented in PID [32] using CGEMS data. Associations between

genes and SNPs were made using dbSNP build 129 [34]. 1081

pathways were non-trivially covered in the data set; 69453 SNPs in

the data could be associated with at least one of the pathways.

Because these 69453 SNPs were associated with 4446 unique

genes, 4446 were kept in the analysis (the most significant SNP for

each gene of interest). The 1081 pathways ranged from 2 to 229

genes, with a mean of 19. SY ,P was computed in each pathway P
for each of the 2287 samples Y via Eq. 2, and the distinction score

DSP (Eq. 4) quantifying differential S distributions in cases and

controls was computed for each pathway. Significance was

assessed as described above, by resampling ‘‘dummy’’ pathways

of the same length and computing the fraction of greater DSP

scores.

Because PoDA provides for each sample a measure S (Eq. 2 of

that sample’s relative distance from the remaining ones that is

obtained without regard to that sample’s true class membership,

we can use the S value as a metric by which to predict the odds of

disease. Here, we construct a logistic regression model of case

status as a function of S to obtain the odds ratio. p-values were

adjusted for the multiplicity of pathways using FDR adjustment

[37,38].

Pathways with significant DSP and odds ratios are reported in

Table 2 and plots of S for four of them are illustrated in Figure 3.

Although the cases and controls are not crisply separable, a unit

increase in S over its range from approximately 23 to 3 yields

between a 1.5 and 2.0-fold increase in odds. Importantly, given

known minor allele frequencies for cases and controls for this set of

SNPs, we can model the increase in odds for an unknown

individual based on her ‘‘closeness’’ to other cases.

In order to ensure that the pathways listed were not

interrogating the same set of genes, we carried out two checks.

First, we computed the SNP overlap between all pairs of

significant pathways, sequentially removing pathways that shared

in excess of 60% of their genes with another pathway. Because this

is done using a greedy algorithm that depends on the order of the

pathways input, the culling algorithm was run with different

starting orders, and the most frequent output was kept. No

pathway remaining in Table 2 shares more than 60% of its SNPs

with another pathway. (An un-culled list may be found in Table

S1.) Second, we computed the correlation of S values between

each pair of pathways to assess whether any pathway’s S statistic

was reflecting the same genetic variation as another (i.e., whether

samples that had high S values for one pathway consistently did so

in another). The maximum correlation of S values observed

between any two pathways in Table 2 was 0.58, suggesting that a

different subset of samples is affected in each pathway.

Many of the pathways listed in Table 2 fulfill biological

functions that are well known to be cancer-associated, playing a

strong role in cell proliferation and migration, processes which are

perturbed in malignancies. Purine metabolism–the most signifi-

cantly associated pathway–has been observed to be altered in

cancer cells [39,40], and the majority of the other significant

pathways are directly related to cell migration (e.g., ErbB signaling

and gap junction pathways) and cellular signalling (e.g., calcium

signaling, PKC-catalyzed phosphorylation of myosin phosphatase,

attenuation of GPCR signaling, and activation of PKC through

GPCRs) processes that have been implicated in a variety of

cancers. In addition, eicosanoids and unsaturated fatty acid

metabolism have been associated with breast cancer specifically

[41]. In general, the findings in Table 2 suggest that there exist

germline genetic differences in these mechanisms that confer a

predisposition to disease.

Figure 2. PoDA applied to four highly-significant SNPs. Shown is
the distribution of S values in CGEMS cases (red) and controls (black) for
a SNP-set comprised of four highly-significant SNPs located in the
FGFR2 gene [4]. As expected, there is a substantial difference in case
and control S values, with the cases having higher S (i.e., closer to other
cases) than controls. The discreteness of the distributions are due to the
fact that with four SNPs, a finite number of S values are possible.
doi:10.1371/journal.pgen.1002101.g002
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Interestingly, the GnRH (gonadotropin releasing hormone)

signaling pathway appears to be significant. GnRH has been

linked with HR-positive breast cancer and the use of GnRH

analogues in breast cancer treatment has already been

proposed [42,43]. However, a recent large sequencing study

found no association of GnRH1 or GnRH receptor gene

polymorphisms with breast cancer risk [44], contrary to the

author’s hypothesis that common, functional polymorphisms of

GnRH1 and GnRHR could influence breast cancer risk by

modifying hormone production. In contrast to their null

findings, our result suggests that there are system-wide

variations in GnRH signalling that contribute to risk that are

not evident when considering the GnRH1 and GnRHR SNPs

independently.

Of the 1081 pathways considered, four–FGF signaling, MAPK

signaling, regulation of actin cytoskeleton, and prostate cancer–

contained FGFR2, the gene found to be significantly associated in

the initial CGEMS analysis [4]. However, only one–prostate

cancer–was significant in comparison to randomly generated

pathways of the same length. It may reasonably be asked, then,

whether the high significance of the prostate cancer pathway in

Table 2 is a result of FGFR2. To address this, we eliminated the

FGFR2 SNP from the prostate cancer pathway; the resampling-

based test remained significant (p(DSP)~0:044,OR~0:3,
q(OR)~ 8.2e-09), suggesting that the association of the prostate

cancer pathway is not driven solely by differences in FGFR2.

Liver cancer GWAS results
We carried out the same procedure in using data from the liver

cancer GWAS described above. Here, 1049 pathways were non-

trivially covered in the data set; 53079 SNPs in the data could be

associated with at least one of the pathways. Because these 53079

SNPs were associated with 3718 unique genes, 3718 were kept in

the analysis (the most significant SNP for each gene of interest).

The 1081 pathways ranged from 2 to 193 genes, with a mean of

16. As above, DSP scores for differential S distributions in cases

and controls were computed for each pathway, resampled p values

obtained for each pathway size, odds ratios for S were obtained,

and the multiple hypotheses were corrected using FDR adjustment

[37,38]. Significant pathways are listed in Table 3, and plots of the

top three pathways are given in Figure 4a–4d. As in the breast

cancer data above, we removed pathways which had over 60%

their SNPs covered by another pathway (a complete list, with

overlapping pathways, is give in Table S2) and examined the

correlation in S for all remaining pathways (maximum r~0:42).

The results here are interesting. First, we observe that a couple

pathways are significant in both the CGEMS breast and liver GWAS

with similar effect sizes, namely ErbB signaling and biosynthesis of

unsaturated fatty acids. ErbB has a well–established association with

cancer; unsaturated fatty acid biosynthesis may link diet to cancer

risk, and its appearance may suggest a gene-environment interaction.

The commonality of these known cancer-associated pathways across

the two studies suggest that there may exist genetic patterns that

Table 2. PID pathways with significant DSP in the CGEMS breast cancer GWAS.

Pathway Source Length DSP p(DSP) O.R. q(O.R.)

Purine metabolism Kegg 136 1.86 6.36e-03 1.59 4.15e-21

Calcium signaling pathway Kegg 100 1.38 1.82e-03 1.55 6.99e-20

Melanogenesis Kegg 84 2.36 4.55e-03 1.53 1.47e-18

Gap junction Kegg 80 1.54 5.45e-03 1.49 1.49e-16

ErbB signaling pathway Kegg 81 1.36 1.45e-02 1.46 4.68e-15

Long-term potentiation Kegg 60 1.71 9.09e-04 1.45 4.34e-15

GnRH signaling pathway Kegg 79 1.36 1.18e-02 1.44 1.32e-14

TCR signaling in naive CD4+ T cells NCI-Nature 60 2.11 5.45e-03 1.42 7.80e-13

Prostate cancer Kegg 75 1.45 4.09e-02 1.38 4.37e-11

PKC-catalyzed phosphorylation myosin phosphatase BioCarta 20 1.97 v1e-04 1.30 5.82e-09

CCR3 signaling in eosinophils BioCarta 21 1.59 1.09e-02 1.29 8.86e-08

Biosynthesis of unsaturated fatty acids Kegg 18 1.69 2.45e-02 1.26 1.38e-06

Attenuation of GPCR signaling BioCarta 11 1.75 1.09e-02 1.25 2.41e-06

Stathmin and breast cancer resistance to
antimicrotubule agents

BioCarta 18 1.84 4.82e-02 1.24 4.96e-06

Visual signal transduction: Cones NCI-Nature 20 1.56 4.73e-02 1.24 2.24e-06

Dentatorubropallidoluysian atrophy (DRPLA) Kegg 11 1.84 2.73e-03 1.24 2.24e-06

Intrinsic prothrombin activation pathway BioCarta 22 1.35 3.18e-02 1.23 4.61e-06

Eicosanoid metabolism BioCarta 19 1.69 1.91e-02 1.23 3.44e-06

Effects of botulinum toxin NCI-Nature 7 1.44 2.27e-02 1.20 3.50e-05

Activation of PKC through G-protein coupled receptors BioCarta 10 1.50 9.09e-03 1.20 8.42e-06

Streptomycin biosynthesis Kegg 9 1.36 3.55e-02 1.17 1.89e-04

PECAM1 interactions Reactome 6 2.70 5.45e-03 1.17 7.28e-05

HDL-mediated lipid transport Reactome 8 1.47 2.00e-02 1.14 1.59e-03

Granzyme A mediated apoptosis pathway BioCarta 8 1.97 1.73e-02 1.12 6.60e-04

(Pathways with over 60% SNPs covered by another pathway have been removed; for the complete list, see Table S1). Pathway-length based resampled p-values,
denoted p(DSP), are given for significant pathways, along with the odds ratios and associated FDRs for a logistic regression model.
doi:10.1371/journal.pgen.1002101.t002
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confer carcinogenesis risk irrespective of the disease site. Along with

those shared in the breast cancer data, many of the other significant

pathways in the liver cancer data well known to be tumorassociated,

including cell adhesion molecules, Wnt signaling, c-Kit receptor, and

angiogenesis pathways, further supporting the notion that germline

genetic differences in these mechanisms contribute to cancer risk. The

appearance of many neuronal pathways is also supported by our

understanding of carcinogenesis: thes contain well-known signal

transduction molecules including Ras and PKA that may both be

driving their conferring increased cancer risk and driving the

significance of the pathway [45].

Additionally, six of the 25 significant liver cancer pathways are

immune– and inflammation–related, namely, antigen processing

and presentation (two, with v60% overlap), classical complement

pathway, corticosteroids, IL12 signaling mediated by STAT4, and

NO2-dependent IL-12 pathway in NK cells. This is a particularly

interesting finding in light of the fact that the original analysis of the

liver data [36] suggested that altered T-cell activation plays a direct

role in the onset of liver cancer. The involvement of the immune

system in liver cancer development has been established in clinical

studies and research involving model organisms. Increased activity

of helper T-cells, which promote inflammation, is associated with

Figure 3. Four significant pathways in breast cancer data. Scatter plots of SY ,P for each pathway are overlayed with boxplots are given in the
left panel; higher values of S indicate that the sample is closer to other cases than it is to other controls. Distributions of S for cases (red) and controls
(black) are given to the right. A significant shift toward higher S values is seen in the cases. Odds ratios and FDR-adjusted OR p values are given.
doi:10.1371/journal.pgen.1002101.g003
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hepatocellular carcinogenesis [46] while activation and proliferation

of cytotoxic T-lymphocytes is suppressed in liver cancers [47,48].

The inflammatory immune response, mediated by interleukins, has

also been closely connected to liver cancers in mice [49] and

humans [50–52]. These findings, coupled with the observation of

several significant immune-related pathways in our data, are

suggestive of germline polymorphisms in immune response that

lead to hepatocellular carcinoma risk.

Combining pathways
In both the breast and liver cancer results, we see observe that

even though significant pathways yield between a 1.5 and 2.0-fold

increase in odds for each unit increase in S (over its typical range

of approximately –3 to 3), the cases and controls are not crisply

separable based on S values. These findings suggest that it may be

possible to combine pathways to yield a model that is more

predictive than a single pathway alone. However, the S values

must not simply be put into the regression model because the

overlap in pathways will result in some SNPs being double-

counted. Rather, we combine pathways by taking the union of

their SNPs, and recomputing the statistics. Doing this sequentially

for the top pathways in the order as listed in Table 2 and Table 3

yields the values given in Table 4 and Table 5, respectively.

Considerably higher ORs are obtained when combining the

significant pathways. An illustration of the case and control

distributions when using a ‘‘superpathway’’ comprised of the top

three pathways in the breast and liver data, respectively, is given in

Figure 5. These findings support the notion that the genomic

variation contributing to risk is spread over several mechanisms,

rather than being concentrated in a single gene.

Discussion

We have introduced the Pathways of Distinction analysis method

(PoDA) for identifying pathways which can be used to distinguish

between phenotype groups. PoDA identifies sets of SNPs in GWAS

studies for which cases and controls exhibit differential ‘‘closeness’’

to other cases and controls; that is, it permits one to infer whether

cases are more similar to other cases than are controls across a given

set of SNPs. Because PoDA is designed to detect the joint effects of

multiple SNPs, it presents an approach to GWAS analysis that

augments single-SNP or single-gene tests.

We applied PoDA to two GWAS data sets, with highly

promising results. In the breast cancer data, we found a number

of pathways which are known to play a role in cancers generally

and breast cancer specifically, suggesting that differences in these

mechanisms which confer disease risk may exist at the germline

DNA level. In the liver cancer data, we found an extreme

abundance of immune-related pathways, further corroborating the

known link between inflammation and hepatocellular carcinoma,

and bolstering the observation in [36] that germ-line differences in

immune function may play a role in liver carcinogenesis.

Table 3. PID pathways with significant DSP in the liver cancer GWAS.

Pathway Source Length DSP p(DSP) O.R. q(O.R.)

Cell adhesion molecules (CAMs) Kegg 86 1.57 9.09e-03 1.66 3.56e-13

ErbB signaling pathway Kegg 76 1.45 3.45e-02 1.61 2.59e-10

Signaling events mediated by Stem cell factor receptor (c-Kit) NCI-Nature 40 2.35 5.45e-03 1.58 7.31e-10

Neurotrophic factor-mediated Trk receptor signaling NCI-Nature 50 1.60 2.36e-02 1.55 2.49e-08

Lissencephaly gene (LIS1) in neuronal migration and development NCI-Nature 21 2.02 7.27e-03 1.52 1.44e-07

Angiopoietin receptor Tie2-mediated signaling NCI-Nature 40 2.36 1.36e-02 1.51 5.77e-08

Reelin signaling pathway NCI-Nature 28 1.62 5.45e-03 1.46 7.35e-08

Syndecan-4-mediated signaling events NCI-Nature 27 1.74 1.64e-02 1.46 1.19e-06

Galactose metabolism Kegg 19 1.65 2.27e-02 1.44 5.01e-06

Vibrio cholerae infection Kegg 35 1.84 2.64e-02 1.43 6.67e-07

Paxillin-independent events mediated by a4b1 and a4b7 NCI-Nature 19 2.14 1.00e-02 1.40 6.67e-07

Antigen processing and presentation Kegg 34 3.26 1.36e-02 1.40 3.71e-08

Corticosteroids and Cardioprotection BioCarta 21 1.98 3.55e-02 1.39 1.24e-05

Lissencephaly gene (Lis1) in neuronal migration and development BioCarta 15 1.60 1.36e-02 1.37 2.52e-05

IL12 signaling mediated by STAT4 NCI-Nature 25 1.93 4.55e-02 1.37 1.58e-05

Biosynthesis of unsaturated fatty acids Kegg 13 1.76 1.64e-02 1.36 6.44e-05

Growth hormone signaling pathway BioCarta 18 1.75 3.18e-02 1.36 7.46e-05

Canonical Wnt signaling pathway NCI-Nature 28 1.92 4.73e-02 1.35 9.36e-06

NO2-dependent IL-12 pathway in NK cells BioCarta 8 1.82 2.73e-03 1.32 5.83e-05

Signaling events mediated by HDAC Class III NCI-Nature 19 2.12 3.91e-02 1.32 4.19e-05

Removal of aminoterminal propeptides from c-carboxylated proteins Reactome 7 3.12 5.45e-03 1.29 8.46e-05

Aminophosphonate metabolism Kegg 13 1.91 3.36e-02 1.26 8.17e-04

Antigen processing and presentation BioCarta 6 2.61 1.82e-03 1.22 3.36e-05

Classical complement pathway BioCarta 12 2.27 1.55e-02 1.19 1.67e-04

Chylomicron-mediated lipid transport Reactome 7 1.94 3.27e-02 1.16 1.49e-02

(Pathways with over 60% SNPs covered by another pathway have been removed; for the complete list, see Table S2). Pathway-length based resampled p-values,
denoted p(DSP), are given for significant pathways, along with the odds ratios and associated FDRs for a logistic regression model.
doi:10.1371/journal.pgen.1002101.t003
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PoDA may be used as a complement to other multi-SNP

analysis techniques [18–21]. Unlike gene-set enrichment type

approaches [17–19], which search for an overabundance of

significant markers in a gene set of interest, PoDA finds both sets

containing highly significant markers as well as sets that have a

subtle but consistent pattern across all the markers in the set. This

permits the detection of pathways in which the joint action of

several alterations produce a phenotype and those for which any of

several possible alterations, none of them the dominant one, confer

predisposition to disease. Indeed, many of the pathways indicated

in our analysis of the breast cancer data (Table 2) were not

detected using SNP-set enrichment [17–19] (data not shown),

including the highly significant purine metabolism and GnRH

signaling pathways, both of which are biologically relevant (purine

metabolism has been implicated in cancers generally due to its role

in DNA and RNA synthesis [40], and GnRH has been shown to

be clinically important in breast and gynecological cancers [53]).

These pathways, along with others that were indicated using

PoDA but not enrichment analysis (data not shown), have a

statistically significant difference in case and control S distributions

and remain significant in comparison with randomly-generated

pathways of the same length.

Because PoDA effectively measures the closeness of each

individual to remaining cases and controls, it bears a conceptual

Figure 4. Four significant pathways in liver cancer data. Scatter plots of SY ,P for each pathway are overlayed with boxplots are given in the
left panel; higher values of S indicate that the sample is closer to other cases than it is to other controls. Distributions of S for cases (red) and controls
(black) are given to the right. A significant shift toward higher S values is seen in the cases. Odds ratios and FDR-adjusted OR p values are given.
doi:10.1371/journal.pgen.1002101.g004

Pathways of Distinction Analysis

PLoS Genetics | www.plosgenetics.org 10 June 2011 | Volume 7 | Issue 6 | e1002101



relationship to nearest-neighbor and nearest-centroid classifiers

[54,55], as well as to the distance-based feature selection

algorithms like Relief-F and its derivatives [25–28]. However, it

must be remembered that the goal of PoDA is to indicate

mechanisms that may be deleteriously hit at the genomic level even

when those hits are heterogeneous, whereas the goal of nearest-

centroid classifiers and Relief-F–type feature selection is to derive a

minimal set of markers that best classify cases and controls (and

thus are the most homogeneously hit). These approaches are

complementary, and one can easily envision an application in

which (e.g.) Relief-F is run within pathways that are highly

significant in the PoDA analysis in order to single out the SNPs

driving the effect. In fact, this approach may improve ReliefF’s

ability to find those genes, since the nearest neighbors from which

the Relief SNP weights are calculated would be the nearest-

neighbors for that specific pathway, thus discounting heterogeneity

introduced by mechanistically unrelated genes. For instance, in the

provided example (Figure 1), ReliefF fails to identify the

significance of SNPs 1–3 when run using the complete 50-SNP

data, but places at least two of SNPs 1, 2 or 3 in the top third of

selected features when restricted to SNPs 1–12.

While PoDA has many benefits, it should be noted that when

epistasis drives a phenotype with no differences in the minor allele

frequencies for the epistatically-interacting genes (as opposed to a

slight yet consistent one shown in the example), PoDA as

computed via Eqs. 1,2 will miss the pathway. Geometrically, such

a situation would mean that the case and control groups have the

same centroids while having a different distribution of samples

about those centroids. A famous example of this is provided

through the non-linearly separable XOR (exclusive or): consider

two epistatic loci (X ,Y ) such that all controls have genotypes in

the set f(0,0),(1,1)g and all cases have genotypes in the set

f(0,1),(1,0)g (i.e., that a genotype of 1 at either locus can be

compensated by a genotype of 1 at the other, but having just one

alone–1 at exclusively X or Y–is deleterious). If the loci X and Y

each have the same MAF in cases and controls, it is plain to see

that the centroids will be in the same location for both groups, and

Eq. 1 will yield zero for both cases and controls. If instead of using

Eq. 1, we compute pairwise sample-sample distances, we can

circumvent this limitation and find such epistatic situations (it is

this pairwise approach that permits Relief-F to also uncover

nonlinearly interacting SNPs). While we provide the facility for

this in the PoDA package, the cost of carrying out the pairwise

computation is a considerable increase in computational com-

plexity.

A number of potential avenues exist to extend the application of

PoDA further. One possible application is in improving the

reproducibility of GWAS results. We note that several of the pathways

identified in the breast cancer GWAS data were also implicated in the

liver cancer data, which suggests that there may be common features

which distinguish individuals to cancer generally. Because different

GWA studies–even those of the same phenotypes–often yield different

results at the SNP level, it may be possible to find common alterations

at the pathway level across disparate GWAS using PoDA.

Extending PoDA further, the DSP scores obtained for each

pathway may be examined for over-representation of extreme

values in pathways that comprise a particular biological subsystem–

one may think of this as a ‘‘pathway-set’’ enrichment analysis (which

Table 4. PoDA results for sucessive unions of significant
pathways in the CGEMS breast cancer data.

Pathway Length p(DSP) O.R. q(O.R.)

Top-2 318 v1e-04 2.02 1.63e-46

Top-3 397 1.00e-04 2.19 2.07e-54

Top-4 474 v1e-04 2.33 3.65e-62

Top-5 522 v1e-04 2.45 6.83e-66

Top-6 544 v1e-04 2.44 8.51e-66

Top-7 558 2.00e-04 2.47 1.22e-67

Top-8 626 v1e-04 2.59 1.01e-73

Top-9 658 v1e-04 2.64 9.84e-75

Top-10 700 v1e-04 2.77 9.72e-79

Top-11 710 v1e-04 2.80 1.42e-79

Top-12 723 v1e-04 2.82 2.06e-80

Top-13 739 v1e-04 2.89 3.31e-82

Top-14 744 v1e-04 2.93 2.86e-83

Top-15 770 v1e-04 2.96 6.41e-85

Top-16 774 v1e-04 2.97 5.10e-85

Top-17 791 v1e-04 2.95 2.43e-85

Top-18 800 v1e-04 3.06 1.15e-87

Top-19 814 v1e-04 3.14 1.19e-89

Top-20 832 v1e-04 3.26 4.51e-92

Top-21 837 v1e-04 3.28 2.92e-92

Top-22 839 v1e-04 3.29 2.41e-92

Top-23 845 v1e-04 3.34 1.45e-93

Top-24 854 v1e-04 3.38 4.62e-95

Pathway-length based resampled p values, denoted p(DSP), are given along
with the odds ratios and associated FDRs for a logistic regression model.
doi:10.1371/journal.pgen.1002101.t004

Table 5. PoDA results for sucessive unions of significant
pathways in the liver cancer data.

Pathway Length p(DSP) O.R. q(O.R.)

Top-2 321 5.38e-02 2.37 1.20e-27

Top-3 402 2.80e-03 2.63 1.40e-34

Top-4 474 1.10e-03 2.86 6.50e-38

Top-5 539 9.00e-04 3.22 4.03e-42

Top-6 560 1.00e-04 3.39 1.19e-43

Top-7 580 v1e-04 3.50 1.39e-44

Top-8 589 6.00e-04 3.50 1.35e-44

Top-9 603 4.00e-04 3.52 1.23e-44

Top-10 624 v1e-04 3.60 1.33e-45

Top-11 640 v1e-04 3.73 3.69e-47

Top-12 646 v1e-04 3.78 1.68e-47

Top-13 667 v1e-04 3.81 9.29e-48

Top-14 709 3.00e-04 3.88 1.90e-48

Top-15 751 v1e-04 4.09 2.11e-49

Top-16 761 v1e-04 4.09 1.76e-49

Top-17 797 v1e-04 4.45 1.29e-50

Top-18 805 v1e-04 4.46 5.24e-51

Top-19 823 v1e-04 4.56 2.20e-51

Top-20 838 v1e-04 4.56 1.73e-51

Pathway-length based resampled p values, denoted p(DSP), are given along
with the odds ratios and associated FDRs for a logistic regression model.
doi:10.1371/journal.pgen.1002101.t005
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would be conducted using the a running-sum statistic analogous

GSEA [17]), and could use it to answer whether (e.g.) immune-

related pathways are hit in liver cancer more often than expected by

chance. Alternatively, boosting [56,57] could be used to find sets of

pathways which are more predictive of case status than individual

pathways. Either of these approaches would yield a richer, systems-

wide view of the connection between genotype and phenotype.

Finally, because PID contains topological information regarding

pathway connectivity, one may consider sub-networks of pathways,

permitting one to find potential chemopreventive and therapeutic

targets. Alternatively, Relief-F can be used, as mentioned above, in

a pathway–specific manner to yield the subset of SNPs that drive the

distinction of cases and controls in high-DSP pathways.

PoDA provides an advantage over existing GWAS analysis

methods. Because it does not rely on the significance of individual

markers, it has the power to aid in identifying the genomic causes

of complex diseases that would not be detected in single-gene tests

or enrichment analyses. The size of the SNP set is not limited in

PoDA, and since PoDA leverages known biological relationships to

find multi-SNP effects, the results are readily interpretable. PoDA

may thus be used to augment existing analysis techniques and

provide a richer, systems-level understanding of genomics.

Availability
R software to carry out the PoDA computation is available via

http://braun.tx0.org/PoDA.

Supporting Information

Table S1 Full list PID pathways with significant DSP in the

breast cancer GWAS, including highly ‘‘overlapping’’ pathways.
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Table S2 Full list PID pathways with significant DSP in the liver
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FDRs for a logistic regression model.

(PDF)
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