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SUMMARY
Uncoupling of mRNA expression from copy number (UECN) might be a strategy for cancer cells to a tolerate
high degree of aneuploidy. To test the extent and role of UECN across cancers, we perform integrative mul-
tiomic analysis of The Cancer Genome Atlas (TCGA) dataset, encompassing �5,000 individual tumors. We
find UECN is common in cancers and is associated with increased oncogenic signaling, proliferation, and
immune suppression. UECN appears to be orchestrated by complex regulatory changes, with transcription
factors (TFs) playing a prominent role. To further dissect the regulatory mechanisms, we develop a systems-
biology approach to identify candidate TFs, which could serve as targets to disrupt UECN and reduce tumor
fitness. Applying our approach to TCGA data, we identify 21 putative targets, 42.8%of which are validated by
independent sources. Together, our study indicates that UECN is likely an important mechanism in develop-
ment of aneuploid tumors and might be therapeutically targetable.
INTRODUCTION

Aneuploidy is commonly observed in cancers.1,2 Structural

changes induced by aneuploidy are thought to increase tumor

fitness by targeting driver genes, i.e., increasing the copy num-

ber (CN) of oncogenes and decreasing those of tumor suppres-

sors, respectively. However, as these structural changes

impact large chromosomal segments, they often result in

collateral CN changes of hundreds to thousands of genes.1–4

These genes are thought to be passenger events with minimal

contribution to tumor phenotype.3 Many of the co-altered

genes appear to have uncoupling of mRNA expression from

copy number5,6 (UECN), suggesting that their CN changes

are likely deleterious to tumor fitness. Although the landscapes

of UECN have been previously surveyed,5 the roles UECN

plays to modulate the phenotype of individual tumors remain

poorly understood.

Gene expression is regulated by a number of factors including

gene CN, changes in transcription factor (TF) activity, DNA

methylation, and microRNAs (miRNAs), to name a few. These

factors have different effect sizes on gene expression. However,

their combinatorial effects, which may lead to UECN, have been

underexplored. As a consequence of dissociation between gene

CN and mRNA expression, UECN provides a powerful approach

to identify genes that are deleterious to tumor pathophysiology.

In UECN, the effects of CN on gene expression are overridden by

changes in other regulatory factors.
Cell
This is an open access article under the CC BY-N
Fitness screens using large small interfering RNA (siRNA)/

CRISPR libraries have identified genes that are context essential

for maintaining tumor cell viability,7–9 such as dependency of

MYC-driven tumors on spliceosome10 and HER2+ breast can-

cers on phosphatidylinositol 3-kinase (PI3K)/mTOR signaling.11

Unfortunately, exploring the functional impact of UECN through

fitness screens can be hampered bymultiple issues. First, ampli-

fied genes that are detrimental to tumor fitness and are silenced

are unlikely to be identified by knockdown (KD) or knockout (KO)

screens. Capturing their influence on fitness would require over-

expression (OE). Second, current whole-genome screens are

geared toward cell intrinsic viability and proliferation and cannot

realistically examine cell-extrinsic factors such as the host im-

mune system.

Dysregulation of TF activity is widely observed across

cancers,12 and targeting TFs has gained traction with the

development of novel modalities to modulate TF activity.12

Computational tools such as VIPER13 allow inference of protein

level activity of TFs from RNA data, which provides more ubiqui-

tous proteome coverage than currently available assays such as

reverse phase protein arrays (RPPAs) and mass spectrometry.

Applications of these approaches have facilitated characteriza-

tion of aberrant activity of driver TFs and led to identification of

likely therapeutic targets. We propose to extend this concept

by identifying TF targets that can offset the effects of UECN.

These TFs can be perturbed to reestablish CN-dependent

expression of specific genes or gene sets, reconstituting the
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Figure 1. Functional characterization of CpD and nCpD genes

(A) Chromosomal plot of frequently amplified/deleted genes in breast cancer on chromosome (chr) 11 and chr17. The 90th percentile copy number (CN) for all

genes is plotted in black, TCN (see STAR Methods) is plotted in green (left), and purity-corrected mRNA expression is plotted against absolute CN for genes with

highest and lowest TCN on chr11 (AMICA1 and PPFIA1) and chr17 (CCL11 and POLDIP2). Regression TCN and p values are reported.

(B) Density plot of partial Spearman correlation coefficient (r) between gene expression and CN of genes frequently amplified/deleted in each cancer. Note the

bimodal distribution r in most cancers.

(legend continued on next page)
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tumor toxic nature of those CN effects. For instance, genes in the

antigen presentation complex are frequently amplified, but

silenced in melanomas.5 By targeting the appropriate transcrip-

tional regulators, these genes can be re-expressed in a CN-

dependent manner that, in turn, is likely to result in improved

anti-tumor immunity. However, TFs generally regulate large

numbers of genes; thus, the inherent challenge is to identify

TFs that primarily regulate uncoupled genes but also have mini-

mal off-target effects. We seek to address these challenges by

creating network biological models from multiomics data to pre-

dict phenotypic effects of perturbing specific TFs.

In this study, we examined multiomics data from more than

5,000 samples across 11 cancer types in The Cancer Genome

Atlas (TCGA) as well as the complete CCLE (Cancer Cell Line

Encyclopedia) compendium.14 We present a comprehensive

functional and phenotypic characterization of the impact that

UECN has on tumor phenotype, by quantifying uncoupling

events in individual tumor samples across cancer types. Further-

more, we usemachine learning to construct cancer-specific reg-

ulatory networks to elucidate regulatory mechanisms that

govern UECN. We present an analytical framework to leverage

these regulatory networks to identify regulatory perturbations

that reverse tumor-toxic UECNs to identify therapeutic targets

for aneuploid cancers. Finally, we present TF targets that we

identified and validated in silico based on their association with

patient survival and response to immune checkpoint therapy.

RESULTS

Disconnect between gene CN and expression is
ubiquitous in cancers
Aneuploidy results in frequent CN changes of hundreds of genes

in the tumor genome (Figure S1A). These changes can be focal

(Figure 1A, top) as well as affecting large chromosomal regions

(Figures 1A, bottom; and S1B).2 These changes are thought to

be selected because they carry driver genes. However, they

also result in the collateral co-amplification/deletion of surround-

ing genes (Figures 1A and S1C). Conventionally, changes in CN

are thought to result in proportional changes in expression of the

gene. By contrast, we find that genes within the same amplicon

show a great degree of heterogeneity in terms of the correlation

between expression and CN (see STAR Methods; Figures 1A

and S1B). To assess this phenomenon at a global level for

frequently amplified and deleted genes (see STAR Methods),

we used two complementary approaches: (1) partial correlation

between CN and expression while controlling for tumor purity

along with the top 20 expression PCs (principle components)

in each cancer; and (2) regressing expression against CN while

controlling for tumor purity and the top 20 expression PCs, where

the strength of association between expression and CN is

defined by the Spearman correlation coefficient (rCN) and the
(C) Heatmap of r between TCN and strength of association of gene expression wit

type. Note: as –Ve Cox Z scores are associated with improved survival, these Z sc

Text in the box is the corresponding p value.

(D) GSEA of amplified CpD and nCpD genes using TCN (see STAR Methods); sig

pathway in nCpD genes, while red indicates enrichment of the pathway in CpD g

consistent trends.
T-value corresponding to the CN term in the regression model

(TCN), respectively. Only genes that were consistently expressed

in each tumor (90th percentile expression > 30 normalized

counts) were used in the analysis. The density distribution of

both terms (rCN and TCN) has a bimodal distribution in multiple

cancers (Figures 1B and S1D, left). This suggests that while

the expression of numerous genes is coupled with their CN

(CpD, coupled genes), the expression of a sizable proportion

of genes is uncoupled from their CN (nCpD, uncoupled genes)

(Figure S1A; see STAR Methods). We also localized each

nCpD gene to recurrent focal/regional CNVs (CN variants) and

chromosome arm level CNVs (see STAR Methods). On average,

40% of nCpD genes were associated with arm-level CN

changes; in contrast, 0.3%of nCpD geneswas found associated

with focal/regional recurrent CNVs (Figure S1E).

Tumor purity due to the presence of normal cells in the tumor

micro-environment could confound detection of UECN due to

dilution of CN and expression changes by normal cells. In the

above-mentioned analysis with bulk TCGA tumors, we explicitly

controlled for purity. We further performedCN-expression corre-

lation analysis in CCLE14 cell lines to nullify effects of tumor pu-

rity, where we observed a similar bimodal distribution of TCN (see

STARMethods; Figure S1F), suggesting that UECN is not an arti-

fact of tumor purity. Other factors that can confound identifica-

tion of UECN are (1) a gene may have low or no expression in

the tumor’s corresponding normal tissue, which could lead to

false identification of UECN in the tumor; and (2) genes whose

expression changes with differentiation status can also

confound identification of UECN. For instance, an amplified

gene, expressed in differentiated tissues, might be turned off

not because its expression is deleterious to the tumor but

because samples carrying amplifications of this gene are less

differentiated. To address these issues, we excluded genes

with low expression in normal tissue corresponding to each tu-

mor (median expression <5 transcripts per million [TPM]) and

genes whose expression changes as a function of stemness

(see STAR Methods) and performed expression-CN regression

analysis. We were able to recapture bimodal distribution of

expression-CN association in several cancers (Figure S1D, mid-

dle), with numerous genes showing low dependence of expres-

sion on CN. In some cancers, such as colon adenocarcinoma

(COAD) and ovarian cancer (OV), the bimodal distribution isn’t

as striking as previously observed (Figure S1D, left). We are how-

ever still able to identify nCpD genes in these cancers (Fig-

ure S1D, middle). These findings indicate that UECN is a real

phenomenon observed in cancers and not an artifact of tumor

purity, differentiation, or low expression of genes.

Each cancer type in TCGA consists of various distinct molecu-

lar subtypes. It is likely that the uncoupling we observe could be

driven by specific tumor subtypes. To test whether this is the

case, we performed CN-expression correlation analysis for
h phenotype (see STARMethods) for frequently amplified genes in each cancer

ores are multiplied by�1 to maintain consistency with other phenotype scores.

nificant pathways are identified at q < 0.05. Blue indicates enrichment of the

enes. Note pathways identified in at least 4 cancers are plotted here to show
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frequently amplified and deleted genes in each cancer subtype

with at least 50 samples and 1,000 genes with frequent CN

changes (see STAR Methods). Similar to our observations

mentioned above, TCN in all tested subtypes has a wide distribu-

tion, covering both +Ve (positive) and –Ve (negative) TCN values,

and many cancer subtypes also show a bimodal distribution (Fig-

ure S1D, right), suggesting that the observed UECN is not intro-

duced by having multiple subtypes but by tumor intrinsic biology.

UECN is a mechanism of maintaining tumor fitness
Structural changes often affect large chromosomal segments,

resulting in collateral CN changes of numerous genes (Figures

1 and S1B). It is likely that a subset of these CN changes can

be detrimental to tumor fitness. UECN of such genes would

therefore negate effects of toxic CN changes and allow tumor

cells to tolerate aneuploidy.

The chromosome 6p is commonly amplified in breast adeno-

carcinoma (BRCA), resulting in co-amplification of numerous

genes including TAP1 and XPO5, providing an instance of tar-

geted uncoupling of expression from CN (Figures S1B and

S1G). TAP1 is involved in major histocompatibility complex class

I (MHC class 1)-mediated antigen presentation, playing a critical

role in anti-cancer immunity.15 Elevated TAP1 is therefore asso-

ciated with increased immune infiltration and cytotoxicity (Fig-

ures S1H and S1I). Amplification of TAP1 would therefore be

detrimental to tumor fitness, and its expression is thus weakly

correlated with its CN (Figure S1B). By contrast, XPO5, which

plays a role in the pathogenesis of multiple cancers,16–18 shows

a strong coupling of CN and expression (Figure S1B).

To systematically characterize the association of nCpD genes

with fitness, we looked at the correlation between TCN and

phenotype scores (survival, apoptosis, cytotoxic immune infiltra-

tion, cell cycle, and epithelial-to-mesenchymal transition [EMT];

see STAR Methods) of amplified and deleted genes, respec-

tively. A positive correlation indicates CpD genes are associated

with the phenotype, while a negative correlation indicates nCpD

genes are associated with the phenotype. In cases of amplified

genes, we found that TCN shows a consistent positive correlation

with cell cycle and EMT, in contrast to a negative correlation with

patient cytotoxic immune infiltration and to a lesser extent with

survival and apoptosis (Figure 1C). This suggests that while

expression of amplified CpDs is associated with pro-tumor phe-

notypes, nCpDs are associatedwith anti-tumor phenotypes (Fig-

ure 1C). These trends were predominantly reversed in the cases

of deleted genes (Figure S1J). These phenotypic associations

were well conserved when the analysis was repeated after

excluding genes not expressed in normal tissue corresponding

to the tumor and genes whose expression changes as a function

of stemness (Figures S1J and S1K). Looking at pathways en-

riched for CpD and nCpD genes (see STARMethods; Figure 1D),

we found that amplified CpD genes across cancers were associ-

ated with pro-oncogenic pathways such as MYC signaling,19

unfolded protein response (UPR) response,20 and oxidative

phosphorylation.21 By contrast, nCpD genes were enriched for

pathways associated with immune response across cancers

(Figure 1D). In addition, functional analysis in CCLE cell lines, tu-

mor subtypes, and tumor types, while excluding genes that can

confound identification of UECN, showed similar patterns of
4 Cell Reports Medicine 2, 100349, July 20, 2021
function enrichment in amplified CpDs and nCpDs (Figures

S1M–S1O). These data suggest that CN changes in nCpD genes

are likely to be tumor toxic; therefore, their expression is actively

uncoupled from their CN.

Assessing the impact of UECN at the level of individual
samples
To quantify the degree of uncoupling (DUC) at the level of individ-

ual samples, we first identified the top 100 CpD genes in each

cancer. These genes were used to build a linear model to quan-

tify how gene expression is expected to change for a single

altered CN in each tumor (see STAR Methods). This model was

then applied to all frequently amplified and deleted genes to

identify samples in which their expression was uncoupled from

CN, i.e., the actual expression was lower or greater than ex-

pected expression in the case of amplifications and deletions,

respectively (see STAR Methods). nCpD genes were uncoupled

in more samples relative to CpD genes (Figure S2A), suggesting

that our approach of defining uncoupled genes at the level of

individual samples could recapture CpD and nCpD genes iden-

tified by population-level analysis. Figure S2B illustrates un-

coupled samples in PSMD12 (CpD) and STAC2 (nCpD) genes

often amplified with ERBB2 in BRCA.5

We defined the DUC in a tumor as the ratio of the number of un-

coupled genes to the number of genes with CN changes. COAD

showed the highest median DUC, while it was lowest in kidney

renal clear cell carcinoma (KIRC; Figure 2A). The distribution of

DUC was fairly similar across cancers, although some cancers

such as low grade glioma (LGG) and BRCA show distinct groups

with high and low DUC (Figure 2A). We also analyzed how DUC

varied between subtypes in each cancer (see STAR Methods).

The distribution of DUC across subtypes was similar in some can-

cer types, e.g., skin cutaneous melanoma (SKCM), OV, and glio-

blastoma multiforme (GBM), or distinctive in other cancer types,

e.g., BRCA, head and neck squamous cell (HNSC) carcinoma,

KIRC, and LGG (Figure S2C). For example, luminal A BRCAs

have much lower DUC levels relative to other subtypes. It is

known that luminal A BRCAs are less aggressive and have better

clinical prognosis.22 Furthermore, luminal A BRCAs have a lower

incidence of CN aberrations and are more likely to carry driver

mutations than other breast cancer subtypes. Another example

is basal HNSC tumors, which have higher DUC than atypical

and mesenchymal HNSC tumors. Basal tumors constitute

most tumors that carry co-amplification of 11q13/q22.23

In 7 of 11 cancers tested, DUC showed a strong positive corre-

lation with aneuploidy index (Figure 2B) from Davoli et al.24 This

was to be expected. With increased aneuploidy, the likelihood of

tumor-toxic CN changes increases, resulting in greater compen-

satory uncoupling. Intriguingly, both brain cancers analyzed

(GBM and LGG) show low correlation between DUC and aneu-

ploidy. As nCpD genes are predominantly associated with im-

mune signaling, it is likely that these CN changes aren’t tumor

toxic in brain tumors because of low immune infiltration,25 thus

negating the requirement for UECN in aneuploidy brain tumors.

In a subset of cancers—LUAD, OV, HNSC, and lung squamous

cell (LUSC) carcinoma—DUC also showed a significant negative

correlation with immune signature score (Figure 2B).24 We

further correlated DUC with sample-level phenotypic score (for
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Figure 2. Quantification of uncoupling at the level of individual samples

(A) Distribution DUC across cancers sorted by median DUC. The lines in the violin plots indicate 25th, 50th, and 75th quantiles.

(B) Heatmap of r of DUC with degree of aneuploidy (chromosomal instability) and immune signature scores. Text in each cell is the p value.

(C) Heatmap of r between DUC and phenotype scores. Text in heatmap is p value.

(D) Differentially expressed pathways in samples with high DUC relative to those with low DUC (see STAR Methods). Red indicates overexpression and blue

indicates suppression. Text in each cell is the q-value, with significance at q < 0.1.

(E) The barplot is of –log2 (q-value) multiplied with sign of the Z score from univariate survival analysis. Significance is at q < 0.1 indicated by horizontal lines (left).

Kaplan-meier plots for KIRC, reported p value, and Z score are from a multivariate survival analysis.
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Figure 3. Pictorial representation of factors that can influence expression of a gene

Gene expression is modeled as function of CN, promoter methylation, transcription factor (TF) binding at promoter and active enhancer regions, and miRNA

binding.
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apoptosis, cytotoxic immune infiltration, EMT, and cell cycle)

and found that DUC was strongly associated with increased

cell-cycle signature and decreased cytotoxic activity in tumors

(Figure 2C). These phenotypic associations were further rein-

forced by differential expression andGSEA (gene set enrichment

analysis), by comparing samples with high and low DUC (see

STAR Methods). Samples with high DUC were associated with

increased activity of oncogenic pathways (MTORC1 signaling,

glycolysis,26 UPR response, and MYC signaling, among others),

while the downregulated pathways consisted of innate and

adaptive immune response pathways (Figure 2D). We also quan-

tified the association between DUC and clinical survival. KIRC

was the only cancer where mono-variant survival analysis re-

vealed an association with survival (q < 0.1; Figure 2E, top). Sub-

sequent multivariate analysis showed that high DUC in KIRC was

associated with poor clinical survival (Figure 2E, bottom).

The strong positive correlation observed between DUC and

aneuploidy indicates that large structural changes that influence

the CN of a large number of genes are frequently accompanied

by increased gene expression and CN uncoupling, likely to

negate an increase in the number of tumor-toxic CN changes

and maintain tumor fitness. This is characterized by the

increased activity of oncogenic pathways and immune-suppres-

sive phenotypes that we observe in tumor samples with high DUC

(Figures 2C and 2D).

UECN is mediated by complex regulatory changes
To elucidate the regulatory mechanisms underlying UECN, we

built transcription regulatory networks in six cancers (BRCA,

HNSC, LUAD, LUSC, LGG, and SKCM). For each expressed

gene in a cancer, we modeled its expression as a function of its

CN, promoter methylation, regulating miRNAs, and TFs that

have binding sites in the promoter and enhancers. The model

also accounted for the binding strength of miRNAs and TFs as

well as enhancer activity. It was fit using an elastic net andmerged

to construct cancer-specific regulatory networks (Figure 3; see

STAR Methods). We compared regulatory strength, here the

b-values of regulators obtained from the regression models, be-

tween nCpD and CpD genes and found (1) CN b-values were
6 Cell Reports Medicine 2, 100349, July 20, 2021
lower for nCpD genes, suggesting their expression is relatively

insensitive to CN changes (Figure S3A) as indicated by our corre-

lation analysis (Figures 1B and S1D); (2) promoter methylation

b-values of amplified nCpD genes are more negative than those

of amplified CpD genes, suggesting the nCpD genes are more

strongly suppressed by promoter methylation (Figure S3B); (3)

TF regulators of nCpD genes show higher b-values, although

the difference is modest (Figure S3C); and (4) no significant differ-

ences appeared between b-values of miRNAs regulating nCpD

and CpD genes (Figure S3D).

DNA methylation,27,28 TFs,12 and miRNA29 are often dysregu-

lated in cancers and mediate downstream changes in the tumor

transcriptome. To assess the role of these regulatory factors in

UECN, for each uncoupled gene, we compared (1) promoter

methylation, (2) top activating TF/miRNA, and (3) top inactivating

TF/miRNA levels between uncoupled and coupled samples. We

found that in the context of amplified nCpD genes, methylation

and negative regulators are generally higher in uncoupled sam-

ples, while activating regulators are suppressed. The trends

are reversed in the context of deleted nCpD genes (Figure 4A;

Table S1). This observation indicates that UECN is mediated

by a complex orchestration of changes in epigenetic (promoter

methylation), transcriptional, and post-transcriptional regulation.

This is illustrated in the case of the nCpD gene TAP1 in BRCA

(Figure S3E). Comparing the expression of regulators of TAP1

between uncoupled and coupled samples, we find significant

differential expression of 5 TFs (Figure S3F), with the four acti-

vating TFs showing lower expression in the uncoupled samples,

while the deactivating TFs showed OE (Figure S3G).

To systematically quantify the extent to which methylation,

TFs, and miRNAs contribute to UECN, we compared promoter

methylation and expression of regulatory TFs and miRNAs be-

tween uncoupled and coupled samples for every nCpD gene

and determined whether their activity levels were significantly

changed in a direction that could explain uncoupling based in

a regulatory context (see STAR Methods). For instance, in the

case of an amplified uncoupled gene, samples where the gene’s

expression is uncoupled from its CN could have increased pro-

moter methylation or decreased expression of an activating
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Figure 4. Regulatory trends associated

with gene CN and expression uncoupling

(A) Violin plots of T-values comparing levels of

promoter methylation and top regulators of

amplified and deleted nCpD genes between

coupled and uncoupled samples across 6 can-

cers. The lines in the violin plots indicate 25th, 50th,

and 75th quantiles. The red line marks T-value = 0.

Pairwise Tukey’s test q-values are in Table S1.

(B) Barplot of fraction of nCpD genes in each

cancer where uncoupling can be explained by a

regulator or a combination of regulators.
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TF. These regulatory changes could indicate that reduced/main-

tained expression of the gene, despite an increase in CN, is a

result of epigenetic silencing or inactivation of transcriptional ac-

tivators. We next quantified the fraction of nCpD genes in cancer

where uncoupling could be explained by changes in promoter

methylation levels, TFs, and miRNA expression, or a combina-

tion of these regulatory factors (Figure 4B). On average, across

cancers, we were able to identify at least one regulatory factor

that could mediate uncoupling for 85.2% of nCpD genes, with
Cell Re
the dominant factor being regulation by

TFs. On average, 81.5% of nCpD genes

had at least one TF differentially ex-

pressed between uncoupled and

coupled samples in a direction that could

explain uncoupling.

Targeting cancers by
reestablishing expression coupling
of silenced tumor-toxic gene CN
changes
Since transcriptional control mediated

much of the uncoupling (Figure 4B), we

hypothesized that by targeting appro-

priate TFs, we can reverse UECN by

reestablishing expression coupling of tu-

mor-toxic gene CN changes. This should

result in a flux of signaling—likely

strengthened by the CN changes—that

is detrimental to tumor fitness. To identify

such TFs, we propose the following

analytical framework (see STARMethods;

Figures S4A–S4C). We first identify

clusters of co-expressed amplified/

deleted nCpDs separately using whole-

genome co-expression networks analysis

(WGCNA)30 and their association with

phenotypes of interest (see STAR

Methods). The scores are merged into a

single phenotype score (PhenoClusC:

sum of correlation coefficients of anti-tu-

mor phenotypes minus the correlation co-

efficients of pro-tumor phenotypes) for

every cluster ‘‘C.’’ We next identify TFs

that preferentially activate or suppress
these clusters by defining a regulatory score for each TF cluster

pair (Rscore(TF,C); see STAR Methods). The score weights up

TFs that are strong regulators of genes in cluster and regulates

them in the samedirection. It alsoweights up TFs likely tomediate

uncoupling of these genes and strongly regulates genes that are

more central in PPI (protein-protein interaction) networks. Finally,

we model the phenotypic impact of perturbing identified TFs us-

ing an insulated heat diffusion model.31 This allows us to identify

and exclude TFs that, when targeted, can result in unwanted
ports Medicine 2, 100349, July 20, 2021 7
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Figure 5. Identifying clusters of co-expressed nCpD genes and TFs that can be perturbed to reestablish their gene CN and expression

coupling in LUAD

(A) Heatmap showing phenotypic association of clusters of co-expressed amplified nCpDs. Text in each cell shows the r and p value between the eigen gene

expression of the cluster with sample level phenotypic measures. Clusters of interest are identified at p < 0.05 and PhenoClus > 0 (see STAR Methods). Three

clusters, CEC1, CEC10, and CEC12, satisfy these criteria.

(B) Heatmaps of phenotypic impact of perturbing TF that activate clusters of interest (Rscore > 0) inferred using insulated heat diffusion. Red indicates increase in

the phenotype, and blue indicates reduction in the phenotype.

(C) A network representation of phenotypically interesting CECs (from A) and TFs that regulate them (from B). Red arrow, activator; blue arrow, suppressor. AMP,

a cluster of amplified nCpDs; color of the cluster indicates its PhenoClus score (red > 0 and blue < 0).
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phenotypic consequences. Briefly, for each phenotype-TF pair, a

weighted sum is computed across all genes that are significantly

associated with the phenotype (q < 0.01; see STARMethods). In-

dividual phenotype scores were merged into a single phenotype

score for a TF (PhenoTFtf) capturing the net pro- or anti-tumor

phenotypic effect of its perturbation. The score prioritizes TFs

that strongly regulate phenotype-associated genes in a direction

that elicits a consistent phenotypic change.

The analytical framework first identifies clusters of amplified/

deleted nCpD genes that are phenotypically disadvantageous/

advantageous to tumor fitness, respectively. In the context of

amplification, the goal is to re-express the cluster of nCpD genes

by either overexpressing an activating TF or knocking out a

repressive TF, with the trends being reversed in the context of

deleted nCpD genes. Perturbing a TF would, however, affect

various other genes that are directly and indirectly regulated by

the TF in addition to the intended nCpD genes, which could

result in unwanted phenotypic consequences. We therefore

modeled the flow of such perturbations in the regulatory network
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to identify all genes that might be directly or indirectly affected

and used them to define a net phenotypic impact the perturba-

tion might have. Ideally TFs that are targeted for OE should

promote anti-cancer phenotypes (apoptosis and immune infiltra-

tion), while not resulting in increased cell cycle or metastasis.

These phenotypic trends are reversed in the case of KO candi-

dates (see STAR Methods; Figure S4D).

We applied this analytical technique to 6 cancer types in TCGA

(BRCA, HNSC, LGG, LUAD, LUSC, and SKCM) and identified 21

TFs as putative targets (Figure S4E; Table S2).

For instance, in LUAD we identified 3 clusters of amplified

nCpD genes—CEC (co-expression cluster) 1 (suppression of

cell cycle and EMT), CEC12 (increase in apoptosis and cyto-

toxic infiltration), and CEC10 (increased cytotoxic infiltration

and decreased EMT and cell cycle)—that were associated

with anti-tumor phenotype (PhenoClusC > 0 and p % 0.05; Fig-

ure 5A). These clusters of genes are regulated by 5 TFs (Figures

5B and 5C). CEC10 and CEC12, which show strong association

with increased cyto-infiltration (Figure 5A), show enrichment



A

C

B Figure 6. In silico validation of targets identi-

fied

(A) Barplot of –log2 (P)*sign (Z) of validated targets,

where P and Z are Cox regression p value and Z

score, respectively, quantifying association of gene

expression with survival in indicated cancer.

(B) Heatmap of survival Z score (Cox regression)

quantifying the association of the gene’s expression

with progression-free survival (PFS) and overall

survival (OS) in three immunotherapy cohorts. Text

in each cell is the p value.

(C) Heatmap of log2-fold change in expression in

responders versus non-responders in same cohorts

as (B). Text in each cell is the p value. Note: for all

figures, significance is called at p value < 0.05.
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(q < 0.05) for genes associated with interferon (IFN) signaling,

interleukin signaling, T cell receptor (TCR) signaling, and other

pathways associated with immune response (Figures S4G

and S4H). Interestingly, CEC10, which is associated with

decreased cell-cycle progression, is also enriched for negative

regulators of the PI3K/AKT signaling network, which is a regu-

lator of cell-cycle progression and oncogenic transformation

(Figure S4G).32 Our model proposes that CEC10 and CEC12

are activated by two TFs—IRF1 and ETS1. Furthermore, our

perturbation model suggests that OE of IRF1 and ETS1 is likely

to have an anti-tumor effect due to increased cytotoxic immune

infiltration (Figure 5B). GSEA of the regulatory footprint of IRF1

and ETS1 across cancers suggests they are positive regulators

of immune-associated pathways (Figures S5A and S5B). CEC1,

associated with suppression of cell cycle, EMT, and immune

infiltration, is activated by 4 TFs including IRF1 and TRIM21.

Regulatory footprint of TRIM21 like IRF1 suggests it is a posi-

tive regulator of immune-related pathways (Figure S5C). Inter-

estingly, TRIM21 also suppresses EMT-related genes in

LUAD, consistent with the negative association of CEC1 with

EMT and the negative correlation of TRIM21 expression with

EMT in LUAD (p = 0.013; Figure S5H).
Cell R
IRF1andTRIM21areTFs identifiedas tar-

getswhenOEmight reestablish expression-

CN coupling of nCpD gene CECs inmultiple

cancers (FigureS4E). IRF1 is generally asso-

ciated with activation of CECs associated

with increasedcytotoxic infiltration (Figure5,

LUAD; Figure S4F, HNSC, LUSC, and

BRCA), while TRIM21 activates CECs

associated with increased cytotoxic infiltra-

tion and suppression of EMT (Figure 5,

LUAD; Figure S4F, HNSC). TRIM21 and

IRF1 are positive regulators of immune

pathways and strongly activate genes in

the antigen presentation pathway (Figures

S5A, S5C, and S5E). Upregulation of IRF1

or TRIM21 is thus likely to activate expres-

sion of these pro-cytotoxic clusters and re-

establish expression-CN coupling, resulting

in improved anti-tumor immunity. Consis-

tent with these observations, expression of
IRF1 and TRIM21 was associated with increased expression of

thecytolyticmarkersGZMAandPRF1 (FigureS5F).Theexpression

of IRF1 and TRIM21was also associatedwith increased infiltration

of CD8 T cells, natural killer (NK) cells, andM1macrophages, while

resulting in exclusion of anti-inflammatory M2 macrophages and

inactive NK and CD4 T cells (Figure S5G). These data suggest

that OE of TRIM21 and IRF1 in aneuploid tumors can reestablish

expression CN coupling of immune-associated genes, inducing

immune signaling and cytotoxic immune infiltration into the tumor.

Another interesting target regulating CECs of nCpD genes in

LUSC is SNAI2 (Figure S4F) where it is an activator of the ampli-

fied nCpD genes in CEC2. SNAI2 is a EMT gene, and its

increased expression induces EMT,33 consistent with the regula-

tory footprint of SNAI2 and positive correlation of its expression

with EMT scores (Figures S5D and S5I). Interestingly, in our anal-

ysis, OE of SNAI2 in LUSC is predicted to suppress the cell cycle

(Figure S4F); in agreement, we find SNAI2 expression is inversely

correlated with proliferation in LUSC (Figure S5J).

In silico validations of predicted targets
To validate the putative targets, we make use of three comple-

mentary in silico approaches (Figure 6): (1) association with
eports Medicine 2, 100349, July 20, 2021 9
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survival outcome in corresponding TCGA tumor type, (2) associ-

ation with overall survival (OS) and progression-free survival

(PFS) in immunotherapy cohorts,34–36 and (3) differential expres-

sion in responders relative to non-responders in immunotherapy

cohorts.34–36 Positive examples are, in the context of amplified

nCpDs, OE candidates associated with improved survival or

overexpressed in responders, while these trends are reversed

for KO candidates (Figure S4D). These associations are ex-

pected to be reversed for targets identified in the context of

deleted nCpDs (Figure S4D). Using this approach, 14.2% (3/

21) of identified targets show expected survival trends in corre-

sponding cancers (Figure 6A); 33.3% (7/21) were associated

with OS/PFS in immune therapy cohorts consistent with the

context they were identified in (Figure 6B); and 14.2% (3/21) of

targets regulating amplified nCpD gene clusters were overex-

pressed in responders (Figure 6C). In total, 42.8% (9/21) of the

putative targets satisfied our validation criteria. We further

used a randomization-based approach to compute an empirical

p values for our validation rate. We found that the validation rate

(42.8%) is unlikely to be obtained by chance (p = 0.045; see

STAR Methods and Figure S6A).

Most of the targets were identified in the context of anti-cancer

immunity (Figures 6B and 6C). IRF1, an OE target identified in

LUAD, LUSC, BRCA, and HNSC (Figure S4E), plays a prominent

role in anti-cancer immunity by promoting cytolytic immune cell

infiltration (Figures S5E–S5G). IRF1 expression is also associ-

ated with improved prognosis in BRCA (Figure 6A) and also pre-

dicts improved response to anti-PD1 immunotherapy (Figures

6B and 6C). IRF1 is downstream of IFNg, a cytokine critical for

innate and adaptive immunity, and mediates its signaling.37

Interestingly, IRF1 is frequently deleted in patients that do not

respond to CTLA4 inhibition.38 Furthermore, IRF1 is a strong

transcriptional activator of the MHC class I antigen presentation

complex (Figure S5E), which plays a critical role in anti-tumor im-

munity by presenting neo-epitopes and stimulating T cell-medi-

ated tumor killing.39,40 TRIM21 is another OE candidate (in LUAD

and HNSC). TRIM21 also predicted response to anti-CTLA4

immunotherapy (Figure 6B). Although the role of TRIM21 in

anti-tumor immunity isn’t clear, it is known to play a role in

anti-viral immune responses.41 Furthermore, TRIM21 has been

shown to be associated with improved survival in breast can-

cers42 and to suppress metastasis in breast cancers by

increased ubiquitination and proteosomal degradation of

Snail.43 SPI1 identified in LUSC regulates a pro-inflammatory

gene cluster (Figure S4F) and has been found to regulate im-

mune-associated networks.44

DISCUSSION

Aneuploidy is a common hallmark of cancer and is associated

with advanced stage and poor prognosis.1 In contrast to malig-

nant contexts, aneuploidy is poorly tolerated by normal cells.45

How cancer cells tolerate and thrive in an aneuploidy context

and whether aneuploidy represents a therapeutic opportunity

are largely unclear due to both analytical and experimental chal-

lenges.1 To help fill this knowledge gap, we performed compre-

hensive, multiomics analysis of 11 cancers in TCGA. We found

extensive UECN in genes whose CNs were affected by aneu-
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ploidy. Functional analysis of nCpD genes suggests CN changes

in these genes are tumor toxic (Figure 1). In individual tumors, we

find UECN increases with aneuploidy and suppresses pathways

detrimental to tumor fitness (Figure 2). Regulatory analysis of

nCpD genes suggests UECN is mediated by complex regulatory

changes (Figure 4). Consequently, targeting these regulators can

potentially reestablish CN expression coupling of nCpD genes,

resulting in a flux of signaling detrimental to tumor fitness (Fig-

ure S4D). We therefore identified TFs that regulate clusters of

co-expressed nCpDs that could potentially be targeted to

negate UECN (Figures S4A–S4C).

Using elastic nets, we modeled gene expressed as a function

of various regulators (Figure 3). This approach allows us to quan-

tify the gene modulation direction and magnitude. Elastic nets

use a mixture of L1 and L2 norm to fit the model; it sets non-sig-

nificant terms to 0, while capturing subtle regulatory effects. This

allowed us to build weighted and directed regulatory networks

vital for perturbation modeling (Figure S4C). We selected TFs

that can reverse UECN based on how they regulate clusters of

co-expressed nCpD. However, to account for off-target effect,

wemodeled the net effect of perturbing a TF and its likely pheno-

typic consequences using heat diffusion. We focused on sets of

co-expressed nCpDs rather than single genes, as this facilitates

the identification of TFs that regulate a set of functionally similar

genes that are likely to have similar expression patterns in the tu-

mor. Thus, a single TF can be perturbed to cover numerous con-

texts, in which different sets of nCpD genes in a CEC may have

their expression uncoupled from CN.

Aneuploidy has been linkedwith decreases in tumor infiltrating

lymphocytes, resulting in immunologically cold tumors and poor

responses to immune checkpoint therapy.24 These observations

seem to contradict several studies that inducing aneuploidy in

cell lines elicits anti-tumor immunity in vivo.46–48 Interestingly,

aneuploidy CT26 murine cancer cells passaged under immune

selection developed an immune evasive phenotype by epige-

netic silencing of genes associated with antigen presentation.49

Interestingly, we find that aneuploidy can be paradoxically asso-

ciated with the amplification of genes in multiple immune-asso-

ciated pathways (Figure 1D). They are, however, frequently

nCpD genes; hence, their tumor-toxic effects are negated. We

also find that these pathways are suppressed in samples with

increased DUC, suggesting that UECN allows tumors to bypass

aneuploidy-induced immune response and attain an immune-

evasive phenotype, while maintaining oncogenic signaling (Fig-

ure 2D). Interestingly, in addition to epigenetic silencing of genes

in the antigen presentation pathway in aneuploid tumors, as

shown by Tripathi et al.,49 we find TFs such as IRF1 and

TRIM21 regulate clusters of co-expressed genes that are

strongly associated with immune infiltration and cytotoxicity

(Figures 5 and S4G and S4H). Perturbation modeling of IRF1

and TRIM21 suggests their OE could turn immunologically cold

aneuploid tumors into inflammatory tumors and improve

response to immunotherapy. Although TFs have traditionally

been difficult to target, some small-molecule inhibitors have

been developed to target them.50,51 Development of new ap-

proaches to target TFs allows for effectively targeting TFs.52

These, together with our analysis of regulatory changes medi-

ating UECN, suggest that targeting appropriate TFs may be a
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feasible approach to treat chromosomally unstable (high DUC) tu-

mors, especially in the context of cancer therapies that modulate

the immune system.

For in silico validation of targets, we looked at (1) association

with survival in corresponding cancer type and (2) differential

expression and survival impact in the context of checkpoint ther-

apy. We make use of 3 checkpoint therapy datasets34–36

covering both PD1 and CTLA4 inhibition. While KO screens,7,8

which are routinely applied for such target gene validation can

identify genes associated with proliferation and viability through

siRNA or guide RNA (gRNA) dropout, as they are currently de-

signed they do not characterize EMT or anti-tumor immunity,

due to the lack of a micro-environment. Furthermore, KO

screens would not identify OE candidates. By utilizing clinical

and immunotherapy data, we circumvent some of these limita-

tions and validate 42.8% of predicted targets. Intriguingly, only

3 of 21 targets showed survival advantage in TCGA in contrast

to a third of the targets showing survival advantages in immuno-

therapy datasets. This indicates that the survival advantage we

expect to see is more likely to be observed in patients who

have received immune-modulating agents. However, given the

small sample size of immunotherapy datasets, it’s likely our

validation analysis is underpowered. Detailed experimental ex-

amination of these targets in appropriate contexts is required

to capture more true positive targets.

In addition to immune-associated genes, amplified nCpD

genes are also enriched for genes associated with apoptosis.

Intriguingly, cell lines with low activity of the apoptotic pathway

and extensive amplifications in apoptotic genes show nominally

greater sensitivity to azacitidine (p = 0.0812), a DNA demethyla-

tion agent (see Figures S6B and S6C; Table S3). This is

consistent with our observation that amplified nCpD genes are

epigenetically silenced (Figure 4). This association was not

observed in cell lines that don’t have extensive amplifications

in apoptotic genes (Figure S6D; Table S3). These observations

further indicate that reversing UECN could have therapeutic po-

tential in cancers.

In conclusion, aneuploidy can result in CN changes that are

toxic to the tumor. The tumor therefore uncouples the CN of

these genes from their expression to maintain tumor fitness.

UECN also seems to be a prominent mechanism by which aneu-

ploid tumors evade the host immune system. These toxic CN

compensations are mediated by complex changes in epigenetic

and transcriptional regulation that can be targeted to the detri-

ment of the tumor, presenting a novel approach by which aneu-

ploid tumors can be targeted.

Limitations of study
Malignant cells in tumors are extensively heterogeneous with

distinct genomic and transcriptomic profiles. Accounting for

this clonal diversity and its impact on UECN is extremely difficult

from bulk data. To study rare sub-clonal UECN events, which

may be especially interesting in cases of acquired resistance

to therapy, co-profiling of RNA and DNA at the level of single

cells is required.

The precise mechanism of development of UECN also re-

mains unknown.We hypothesize that certain selective pressures

might cause CN changes in specific genes to be tumor toxic,
thus favoring tumor cells that neutralize these CN changes.

This could consequently select for regulatory rewiring, silencing

such tumor-toxic CN changes resulting in UECN. Identifying and

studying these selective pressures will require development of

experimental models where such evolution can be tracked

over time. Further development of statistical tools that can call

UECN events in single samples, coupled with longitudinal data

starting from pre-tumorous lesions to full developed malig-

nancies, might provide an alternative approach to study selec-

tive pressures that result in UECN.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

gage; RRID:SCR_017067 Bioconductor https://bioconductor.org/packages/

release/bioc/html/gage.html

ProliferativeIndex R library https://cran.r-project.org/web/packages/

ProliferativeIndex/index.html

survival; RRID:SCR_021137 R library https://cran.r-project.org/web/packages/

survival/index.html

FindOverlap (GenomicRanges);

RRID:SCR_000025

Bioconductor https://bioconductor.org/packages/

release/bioc/html/GenomicRanges.html

DEseq2; RRID:SCR_015687 Bioconductor https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

TFBSTools Bioconductor https://bioconductor.org/packages/

release/bioc/html/TFBSTools.html

caret; RRID:SCR_021138 R library https://cran.r-project.org/web/packages/

caret/index.html

glmnet; RRID:SCR_015505 R library https://cran.r-project.org/web/packages/

glmnet/index.html

WGCNA; RRID:SCR_003302 R library https://cran.r-project.org/web/packages/

WGCNA/index.html

HotNet2 Leiserson et al.31 https://github.com/raphael-group/hotnet2

GSVA; RRID:SCR_021058 Bioconductor https://bioconductor.org/packages/

release/bioc/html/GSVA.html
RESOURCE AVAILABILITY

Lead contact
Please direct queries about the study to the Lead Contact Dr. Ken Chen (kchen3@mdanderson.org), Associate Professor, Depart-

ment of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Materials availability
This study did not generate any new unique reagents.

Data and code availability
All data used in the study is publically available and detailed in the Method details section. No unique code was generated in this

study.

METHOD DETAILS

Datasets
mRNA expression (RNaseqV2; counts and log2 normalized counts), miRNA expression (miRNaseq; log2 RPM), protein expression

(RPPA), DNA methylation (450K) and tumor subtype data for TCGA samples were obtained from UCSC Xena (https://xenabrowser.

net/datapages/). TCGA clinical data were obtained from Firehose (https://gdac.broadinstitute.org/). Frequent focal/regional and

chromosome arm CNVs are obtained from Firehose. TCGA purity measurements were obtained from Aran et al.53 and the combined

purity estimate was used. Absolute gene copy numbers and CIBERSORT54 quantification for TCGA samples were obtained from

Thorsson et al.44 Expression and CN data for CCLE14 cell lines were obtained from (https://depmap.org/portal/download/). Enhancer

locations and the gene promoters they interact with were obtained from FANTOM555, expression of these enhancers in TCGA sam-

ples were quantified from RNaseq BAM file obtained from GDC (https://portal.gdc.cancer.gov/), as described by Chen et al.56.

miRNA binding data were obtained from TargetScan57 binding site predictions (http://www.targetscan.org/cgi-bin/targetscan/

data_download.vert72.cgi). mRNA expression levels for immune-therapy samples were obtained from three studies.34–36 Gene
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expression (TPM) in normal tissue was obtained fromGTEx58 using UCSCXena. Hallmark pathway59 definitions were used for GSEA,

which was performed using gage.60 Cell line drug sensitivity data was obtained from CTRPv2.61 Samples sizes of the omics and clin-

ical datasets are detailed in Table S4.

Associating gene expression with phenotype
Immune infiltration, apoptosis, cell cycle and EMT scores were defined for each sample based on definedmarkers.62 Two was raised

to the power of the expression of the markers and the average of this value for positive markers was divided by the average value for

negative markers. Proliferation rate was inferred from RNaseq using the R library ProliferativeIndex (https://cran.r-project.org/web/

packages/ProliferativeIndex/vignettes/ProliferativeIndexVignette.html). Gene expression was then regressed against phenotype

scores in individual tumor types and a corresponding T-value is extracted. A positive T-value indicated that the gene’s expression

was positively associated with the phenotype.

Relationship of gene expression with survival was identified using cox-hazard regression implemented in the R library survival,

while controlling for age and tumor stage. A positive cox Z score indicates increased expression of the gene is associated with

poor survival while a negative Z score indicates improved survival.

Population level analysis of uncoupling and pathway analysis
Analysis was performed in each individual cancer type. First, genes with low expression level were excluded (90th quantile expres-

sion < 30 normalized reads). Top 5000 variably expressed genes in each cancer were used to perform PCA (Principle component

analysis). Frequently amplified and deleted genes were then identified using absolute CN. Genes with CN = 1 in 25% of samples

were considered to be frequently deleted (or deleted) while genes with CN = 3,4 in 25% samples and CN > 4 in 5% of samples

were defined as frequently amplified (or amplified). Expression of frequently amplified/deleted genes was then regressed against

CN while controlling for tumor purity and top 20 expression PCs. Regression T-value (TCN) of the CN term was used to stratify genes.

TCN < 4.5 indicates nCpD gene, while TCN > = 4.5 indicate CpD gene (Figure S1D). COSMIC63 consensus driver genes were excluded

from nCpD and CpD genes.

Pathway analysis was carried out for amplified and deleted genes separately. TCN was centered on 4.5 so that nCpD genes had

negative scores andCpD genes positive scores. These scoreswere then used to performGSEA to identify pathways enriched in CpD

and nCpD genes (q < 0.05). Similar analysis with deleted genes didn’t consistently (in at least four cancer) identify pathways enriched

in CpD and nCpD genes.

Localizing nCpD genes to frequent CNV events
FindOverlaps was used to identify nCpD genes in recurrent CNVs. An amplified nCpD was linked to a recurrent CNV if 1. It shared

genomic locations with the CNV, 2. CN of the gene and CNV correlated strongly (q < 0. 1 and Spearman correlation > 0.5) and 3. The

CNV was called amplification or both by GISTIC2. The same statistical cutoff was used in the case of deleted nCpD genes, but the

GISTIC2 call for the event was either deletion or both.

Analysis of CCLE data
Genes with low expression (90th percentile expression < 1TPM) were excluded from the analysis. Frequently amplified and deleted

geneswere identified as geneswith CN > 2 in 20%andCN< 2 in 10%of cell lines respectively andCOSMIC63 consensus geneswere

filtered out. For all frequently amplified/deleted genes, their expression was regressed against CN with tumor type as a covariant.

T-values for the CN term were extracted, and genes with T-value < 4.5 were considered nCpD. For the functional analysis, T-values

were centered on 4.5 and used for GSEA analysis, and significant pathways were identified at q < 0.05 (Figure S1M).

Analysis controlling for stemness associate genes and genes with low expression in normal tissue
Expression of all expressed genes in each cancer were regressed against stemness. Regression p values for the stemness term was

corrected for multiple testing by FDR. Genes with q < 0.01 and absolute stemness T-value > 75th percentile of all absolute T-values in

the cancer are excluded from the analysis. To exclude genes with low/no expression in corresponding normal tissues we calculated

mean expression of genes in the corresponding GTEx tissue and excluded all genes with mean expression < 5TPM from further anal-

ysis. Expression – CN regression analysis, phenotypic association and pathways analysis was performed as described above for

frequently amplified or deleted genes in each cancer after excluding genes that meet the exclusion criteria.

Analysis of tumor subtypes
For tumor subtypes with at least 50 samples and > 1000 frequently amplified and deleted genes, we computed TCN for frequently

amplified and deleted genes as described above. For functional analysis, TCN was centered at 2.5 and the resultant vector was

used for GSEA analysis. Significant pathways were identified at q < 0.05 (Figure S1N).

To compare degree of uncoupling (see below) between different cancer subtypes, cancers with at least two subtypes with mini-

mally 50 samples and > 1000 frequently amplified and deleted genes were used. The degree of uncoupling was compared between

all groups using ANOVA and pairwise post hoc testing was performed using Tukey test. Significance was defined at q < 0.1.
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Sample level analysis of uncoupling
The analysis was carried out in each tumor type separately. Gene expression was corrected for purity by regressing expression of

each gene against tumor purity, and the residual expression was extracted and Z-transformed. Expression and CN of the top 100

coupled genes, based on the TCN, as discussed above, were coalesced and expression was regressed against CN. The regression

coefficient (bCN) defines the expected change in expression for a unit change in CN. For a gene g in sample j with copy number I, the

expected expression was defined as:

Egj = Eg2 + bCN � ðI� 2Þ;
where Eg2 and Sg2 aremean and standard deviation of expression of g in samples with CN= 2.Agj is the observed expression of gene

g in sample j. If g is amplified in (I > 2) and its expression was lower than estimated expression (i.e., Agj < Egj – Sg2) it’s expression was

considered uncoupled from its CN. If g was deleted in (I < 2) and its expression is higher than estimated expression (i.e., Agj > Egj –

Sg2) it’s expression was considered uncoupled from its CN (Figure S2B).

To assess the functional impact of uncoupling, the degree of uncoupling (DUC) was computed for each sample as the ratio of num-

ber uncoupled genes to number amplified/deleted genes. For each tumor type, samples were sorted based on the degree of uncou-

pling, and differential expression analysis using DESeq264 was performed, comparing samples with high DUC (top 30%) to those with

low DUC (bottom 30%). T statistic from the differential expression analysis was used to perform GSEA analysis, significant pathways

were identified at q < 0.1.

Degree of uncoupling survival analysis
To quantify association of DUCwith survival we first performed univariate cox regression analysis to identify cancers in which DUCwas

significantly associated with survival (q < 0.1). In cancers where significant association with survival was identified we performed

multi-variant cox regression analysis while controlling for age at diagnosis, stage, chromosomal instability and tumor subtype.

Building regulatory models
To build regulatory models, we first identified static miRNA and transcription binding sites. Human transcription factor PWMs (po-

sition weight matrices) were obtained from CIS-BP.65 The Bioconductor package TFBSTools66 was used to scan promoters

(TSS-500 to TSS+1500) and FAMTOM5 enhancers55. At each promoter/enhancer, the TFMPvalue() function was used to compute

a p value for the binding sites. Predicted binding sites with p value < 1e-4 were retained. The binding score from TFBSTools was used

as a surrogate for TF binding strength. miRNA binding was obtained by multiplying the absolute context score from TargetScan57 by

ten.

mRNAs (90th%ile expression < 30 normalized reads), miRNAs (90th%ile expression < 1) and enhancers (expressed (> 1RPM (read

permillion)) in < 10%of samples) with low expression were excluded. mRNA,miRNA, enhancer expression andmethylationM values

were corrected for purity by regressing against tumor purity estimates and extracting the residual. These corrected values were used

for regulatory modeling. For each gene, a linear regression model was constructed to explain its expression, which consists of: CN,

promoter methylation, promoter and enhancer binding TFs and miRNAs. The model also took into account transcription factor and

miRNA binding affinity and enhancer expression. The linear model was given by the following equation:

Eg � CNg + Mg +
X

i ε pTF

mg;i Ei +
X

i ε Enhg

X

j ε iTF

eEi di;j Ej +
X

l ε miRNAg

ag;l mEl ;

Where Eg, CNg andMg are the expression, CN and methylation of gene g, respectively. pTF is the set of TFs with a binding site in the

promoter region of g. mg,i is the binding strength of a TF i (i˛ pTF) in the promoter of g. If multiple binding sites are present, the average

binding score was used. Enhg is the set of enhancers associated with g. For an enhancer i in Enhg, iTF is the set of TFs with a binding

site in i and eEi is the expression of the enhancer. di,j is the binding score of a TF j (j ˛ iTF) in enhancer i. If multiple binding sites exist,

their average binding score is used.miRNAg is the set of miRNA with a binding site in g. If l is a miRNA inmiRNAg, ag,l is the average

binding affinity of all binding sites of l in g andmEl is the expression level of the miRNA l. The model was trained using the R package

caret (https://topepo.github.io/caret/), using elastic nets (glmnet: https://cran.r-project.org/web/packages/glmnet/index.html) with

10-fold cross validation. 80% of the data was used for training and 20% for testing. Low quality regulatory models (test R2 < 0.4)

were discarded. Regression coefficients from the model quantify how each regulatory factor (transcription factors, miRNAs, CN

and methylation) impact expression of the gene in question. The regression coefficients for TFs and miRNAs were used to construct

a weighted directed transcriptional regulatory network (Note: methylation regression coefficient bM, regression coefficient of tran-

scription factor or miRNA bTF).

The regulatory footprint of a TF is defined as the genes directly regulated by the TF. Weights corresponding to these interactions

from the adjacency matrix are used to perform GSEA to define pathways regulated by the TF, significant pathways are defined at q <

0.1.

Identifying regulators that mediate uncoupling of expression from CN for individual genes
For every amplified or deleted gene in a cancer, purity correctedmethylation levels were compared between uncoupled and coupled

amplified (CN > 2) and deleted (CN < 2) samples respectively. A p value was obtained using a Wilcox signed-rank test and a T-value
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https://topepo.github.io/caret/
https://cran.r-project.org/web/packages/glmnet/index.html


Article
ll

OPEN ACCESS
using a t test, FDR (false discovery rate) correction was performed on the p values. Methylation is considered to mediate uncoupling

of a gene’s expression if 1) regulatory models predict that methylation suppresses expression of the gene (bM < 0), and 2) there was a

significant change in promoter methylation of the gene between uncoupled and coupled samples in the appropriate direction de-

pending on context (q < 0.01 and T-value > 0/ < 0 for amplified and deleted genes, respectively).

A similar approach was used for TFs and miRNAs. For a gene of interest, the purity corrected expression of regulatory molecules

(TFs and miRNAs) were compared between coupled and uncoupled samples using a Wilcox signed-rank test to compute a p value

and t test for t-value, and p values were corrected for multiple testing using FDR. A regulatory factor was considered to facilitate un-

coupling if 1) it shows significant differential expression between coupled and uncoupled samples (q < 0.01) and 2) its direction of

regulation and change in expression explains the uncoupling (Amplified genes: bTF*t-value < 0 or Deleted genes: bTF*t-value > 0).

Co-expression modules of uncoupled genes
Co-expressed modules of amplified or deleted nCpD genes were identified using the WGCNA,30 using purity corrected expression.

The blockwiseModules() function was run on the expression data with corType = ‘‘bicor’’ to construct a signed network and identify

module (size > = 10) of co-expressed genes. The clusters were further given an association score for 4 phenotypes (immune infiltra-

tion, apoptosis, cell cycle and EMT) by correlating the eigen-gene vector with sample phenotype scores using Spearman correlation

and a p value was computed using the function corPvalueFisher(). Functional enrichment of the cluster was performed using enrich-

Pathway(), with significantly enriched pathways identified at q < 0.05 after a FDR correction.

Predicting phenotypic consequences of gene perturbation using heat diffusion
Tomodel the phenotypic effect of perturbing a TF, wemade use of insulated heat diffusion described in Hotnet2.31 Briefly, the original

adjacency matrix (W) of the regulatory network is used to generate two additional matrices, A: weights were converted to absolute

values and normalized and I: an unweighted adjacency matrix. I was used to calculate shortest paths between TF’s and all genes in

the network. To model the effect that a unit positive perturbation of a TF has on other genes, we used an insulated heat diffusion

model where b is the insulation parameter governing the amount of heat a node holds on to, and F gives the degree to which the

perturbation spreads to other nodes.

F = bðI� ð1� bÞAÞ�1

The optimal value of bwas determined by running the diffusion model on b values between 0 and 1 in increments of 0.05. The optimal

b values maximizes heat in neighboring nodes compared to non-neighbors. To access the direction of impact on a target node (n)

when a TF (s) is perturbed, we used the product of the signs of edge weights in W along the shortest path (shpath(s,n)) between s and

n. IF is the matrix of these values, where each entry was defined as:

IFn;s =
Y

ij ˛shpathðs;nÞ
Aij

���Aij

��

The impact of perturbing a TF (Ptf) depends on the genes it influences, defined by F and IF and the individual phenotypic associations

of these genes defined by the regression coefficient bPheno (see above). Note that only genes significantly associated with the

phenotype (q < 0.01) were used for the analysis andwere denoted by the setG. The equation belowdescribes howPtf was computed.

This score is the weighted sum across gene whose expression is associated with the phenotype (q < 0.01), where the terms are

weighted by 1) the amount of perturbation flowing to the gene, 2) the strength and direction of association of the gene’s expression

with the phenotype (b-value) and 3) direction of impact of the perturbation on the gene’s expression.

Ptf =
X

g ˛G

Fðtf; gÞ IFðtf ;gÞ bPhenog
Target selection
To identify potential TFs, we first identified clusters of amplified/deleted nCpD genes using WGCNA (see above). For each cluster,

TF’s were picked based on 3 criteria, briefly:

1. Regulatory score is the weighted sum across genes in the cluster C regulated by the TF, the weights account for 1) weather the

TF is likely to mediate uncoupling of the gene (differentially expressed between coupled and uncoupled samples in direction to

explain uncoupling of the regulated gene), 2) strength of the regulatory interaction and 3) importance of the regulated gene in signaling

networks. Regulatory score weights up TF’s that consistently regulate a cluster of genes in the same direction and strongly regulate

central genes in PPI (protein-protein interactions) networks. The score also weighs up TF’s whose expression is significantly different

between uncoupled and coupled samples (q < 0.01). For a cluster Cwith genes g and a transcription factor tf, the score is defined as

Rscoreðtf ;CÞ =
X

i ˛g

� 1a Tðtf ; iÞ Aðtf ; iÞ EigenCðiÞ;

where a is 1 for amplified nCpD clusters and 0 for deleted nCpD clusters, T is the t-value matrix with TF’s as rows and genes as col-

umns. Each entry is the t-value for expression of a TF compared between uncoupled and coupled samples of a gene. A Wilcox
Cell Reports Medicine 2, 100349, July 20, 2021 e4
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signed-rank test is used to calculate a p value for each entry, which is in turn used for FDR. Entries with q > 0.01 are set to t-value/

absolute(t-value). A is the adjacency matrix of the TF-gene regulator network and EigenC(i) gives the eigenvector centrality of i in the

PPI network. An empirical p value was computed for Rscore by generating 100 random adjacency matrices by randomly swapping

input node of two randomly picked edges. This procedure was repeated 0.4 times the total number of edges to generate a single

randommatrix. A vector of 100 randomRscores (rRscore) was generated for each of the random adjacencymatrices and the p values

(RscoreP) was defined as:

IfRscore > 0 : R scoreP=
lengthðrRscore >RscoreÞ

lengthðrRscoreÞ ;or
IfRscore < 0 : RscoreP=
lengthðrRscore <RscoreÞ

lengthðrRscoreÞ
2. TF phenotype scoresPhenoTFtf = (Ptf(apoptosis) + Ptf(infiltration)) – (Ptf(cell cycle) + Ptf(EMT)). Ptf(S)were computed for every phenotype ‘S’

using heat diffusion, as described above. A positive PhenoTFtf score indicates that an increasing expression of the TF increases

apoptosis/infiltration or decreased cell cycle/EMT. The score if Z-transformed for all TF’s regulating a cluster and TFs with absolute

PhenoTFtf > 1.5 were considered for further analysis. Note in each cancer if a phenotype has < 5% of genes significantly associated

with the phenotype (q < 0.01) the phenotype was excluded to reduce noise.

3. Individual phenotype scores for a cluster ‘C’ (seeWGCNA section) were combined asPhenoClusC = (PC(apoptosis) + PC(infiltration)) –

(PC(cell cycle) + PC(EMT)), Pc(i) – denote individual score of phenotype i. A p value was computed by randomizing the phenotype score of

samples and re-computing PhenoClus (and Pc(i)). For each of the thousand randomizations, p value was calculated similar to the

Rscore (see above).

Targets were selected based on Rscore(tf,c), PhenoTFtf and PhenoClusC. In the case of cluster of amplified nCpDs PhenoClusC >

0 and p % 0.05 were selected. We then selected TF’s associated with these cluster such that Rscore(tf,c)* PhenoTFtf > 0 and

RscorePtf % 0.01. In case of cluster of deleted nCPDs PhenoClusC < 0 and p % 0.05 and Rscore(tf,c)* PhenoTFtf < 0 and RscorePtf

% 0.01, see Figure S4D for pictorial representation. Additionally, TF’s that regulate at least 10% of the genes in the cluster were

selected.

Immuno-therapy datasets analysis
Gene expression and clinical data were obtained from three immunotherapy datasets Liu et al.,34 Hugo et al.,35 and Riaz et al.36 Liu

et al.34 and Hugo et al.35 had normalized expression data while counts were obtained for Riaz et al.36 The datasets were analyzed as

follows: 1. Liu et al.34 For all predicted targets, identified association of expression with overall and progression free survival was

quantified using Cox regression, while controlling for gender and tumor stage. Differential expression of these genes in responders

relative to non-responders was quantified usingWilcox signed-rank. 2. Hugo et al.35 was analyzed in the sameway as Liu et al.,34 with

the exception that only over-all survival was quantified. 3. Riaz et al.36 Differential expression of genes between responders and non-

responders was performed using DESeq264 and target TFs were extracted. Survival analysis was performed as described above,

controlling for stage, cohort and sub-type of the cancer. All survival analysis was performed using the R library survival. Significance

of differential expression and survival analysis was defined at p % 0.05.

Randomized testing to obtain empirical p value for fraction of TFs validated
To quantify a degree of significance for the fraction of putative TF targets validated by the in silico approach above, wemade use of a

randomization based approach. A random set of TFs were constructed after excluding TFs identified above. These TFs were then

randomly assigned to the 6 cancers types and the validation analysis was repeated to identify the fraction of genes validated.

This analysis was repeated 1000 times to obtain a distribution of fraction of genes validated (X), p value was defined as the number

of values in X > 0.428 divided by 1000.

Analysis of sensitivity to azacitidine
We calculated average CN across genes in the hallmark apoptosis pathway and it’s activity (ssGSEA implemented in GSVA67) in

CCLE cell lines (Figure S6B).14 Apoptotic pathway activity was factorized into two levels, low (< = median) and high (> median).

We then quantified the association between response to azacitidine and activity of apoptotic pathway using the linear model:

AUC � Pa � tissue_of_origin
where AUC is area under the drug response curve of azacitidine obtained from CTRPv2,61 Pa is activity level of apoptotic

pathway and tissue_of_origine is the normal tissue of origin of the cancer cell line. aCN is the average CN of apoptotic genes

in the cell lines. Lower AUC values indicate greater sensitivity to the drug. The analysis was carried out in non-amplified cell

lines (aCN % 2.5) and amplified cell lines separately (aCN > 2.5) (Figures S6C and S6D). The regression statistics are reported

in Table S3.
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Statistical analysis was performed in R. linear association between continuous variables (or continuous and nominal variables like

CN) we quantified using linear regression or Spearman correlation. Difference between continuous distributions were tested using

1. Two sided Wilcox test/ t test in case of two variables and 2. ANOVA in cases with more than two variables. Survival analysis

was performed using COX-regression analysis implemented in the R library survival. Correction for false discovery was performed

with 1. FDR using the function p.adjust() or 2. By randomization when indicated. Significance is defined at p < 0.05 and q < 0.1 (in

case of correction for multiple testing) unless specified otherwise.
Cell Reports Medicine 2, 100349, July 20, 2021 e6


	Uncoupling of gene expression from copy number presents therapeutic opportunities in aneuploid cancers
	Introduction
	Results
	Disconnect between gene CN and expression is ubiquitous in cancers
	UECN is a mechanism of maintaining tumor fitness
	Assessing the impact of UECN at the level of individual samples
	UECN is mediated by complex regulatory changes
	Targeting cancers by reestablishing expression coupling of silenced tumor-toxic gene CN changes
	In silico validations of predicted targets

	Discussion
	Limitations of study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Datasets
	Associating gene expression with phenotype
	Population level analysis of uncoupling and pathway analysis
	Localizing nCpD genes to frequent CNV events
	Analysis of CCLE data
	Analysis controlling for stemness associate genes and genes with low expression in normal tissue
	Analysis of tumor subtypes
	Sample level analysis of uncoupling
	Degree of uncoupling survival analysis
	Building regulatory models
	Identifying regulators that mediate uncoupling of expression from CN for individual genes
	Co-expression modules of uncoupled genes
	Predicting phenotypic consequences of gene perturbation using heat diffusion
	Target selection
	Immuno-therapy datasets analysis
	Randomized testing to obtain empirical p value for fraction of TFs validated
	Analysis of sensitivity to azacitidine

	Quantification and statistical analysis





