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ABSTRACT
Molybdenum dinitrogen complexes supported by monodentate arylsilylamido ligand,
[Ar(Me3Si)N]3MoN2Mg(THF)2[N(SiMe3)Ar] (5) and [Ar(Me3Si)N]3MoN2SiMe3 (6)
(Ar= 3,5-Me2C6H3) were synthesized and structurally characterized, and proved to be effective catalysts
for the disproportionation of cyclohexadienes and isomerization of terminal alkenes.The 1HNMR
spectrum suggested that the bridging nitrogen ligand remains intact during the catalytic reaction, indicating
possible catalytic ability of theMo-N=Nmotif.

Keywords: dinitrogen fixation, dinitrogen-metal complex, catalytic ability, disproportionation,
isomerization

INTRODUCTION
Exploring the reactivity of N2 units of transition
metal-nitrogen complexes is of great significance,
but challenging in nitrogen transformation chem-
istry [1,2]. Since the first Ru-N2 complex was
prepared in 1965 [3], numerous well-defined
transition metal-dinitrogen complexes have been
preparedwith different bondingmodes, showing the
potential to activate the inert dinitrogen molecule
through coordination chemistry and allowing direct
transformation of N2 units [4–12]. In many cases,
terminal end-on M-N2 complexes as the most
prevalent bonding mode were proved effective to
catalyze reductive reactions ofN2 to afford ammonia
or silylamines [13–16]; moreover, because of the
nucleophilicity of the dinitrogen moiety, activated
dinitrogen ligands in M-N2 (M = Mo [17–28],
W [17–19,21,24–26], Fe [29,30], Co [29])
complexes were transformed into N-containing
organic compounds with carbon-based elec-
trophiles. On the other hand, late-transition metal-
N2 complexes (M = Co [31–36], Ru [37–42], Ir
[43], Fe [44–48]) have also been reported as precat-
alysts for organometallic transformations, including
cycloaddition and hydrofunctionalization of olefins
[31–35,44–48], semihydrogenation of alkynes
[36], transfer hydrogenation of ketones [38,39] and
acceptorless dehydrogenation of alcohols [40–42].

In these systems, dinitrogen (N2) as a weakly
π -accepting ligand to stabilize highly reactive and
low valence-electron species, was proved not to be
involved in the catalytic processes. Actually, there
are only a few examples of M-N2 units as active sites
in catalytic organic transformations. In 2004, Hidai
reported that Ti-W heterobimetallic dinitrogen
complexes were excellent precursors for copoly-
merization of ethylene and 1-hexene, in which the
W-N2 fragment acted as a unique spectator ligand
to the catalytically active titanium center [49].
The intriguing results hint at potential reactivity
of the coordinated N2 units in organometallic
catalysis. Herein, we synthesized and structurally
characterized molybdenum-nitrogen complexes
supported by monodentate arylsilylamido ligand
(L = [N(SiMe3)Ar]). Meanwhile, we observed
catalytic reactivity of the Mo-N2 unit as a key
motif in disproportionation of cyclohexadienes and
isomerization of terminal alkenes where the -N2
ligands unusually remain intact. In this catalytic
reaction, the Mo-N=N motif was considered as a
possible catalytic site to advance the hydrogen
transfer (Scheme 1).

Inspired by gradually understanding the struc-
ture and mechanism of nitrogenase FeMo–cofactor
in the reduction of atmospheric N2 [50–54], the
chemistry ofMo-N2 complexes has been studied for
decades, with Mo showing its uniqueness in terms
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Scheme 1. (a) Typical reactivity modes of -N2 units in transition metal-dinitrogen com-
plexes. (b) This work: catalytic reactivity of Mo-N2 units in the disproportionation of
cyclohexadienes and isomerization of terminal alkenes.

Scheme 2. Synthesis of molybdenum complexes 3–6.

of variable oxidation states and readily forming com-
plexes with N2 [55–61]. To investigate the catalytic
reactivity of molybdenum complexes with different
structure characteristics in N2 fixation, various sup-
porting ligands were designed and developed, such
as phosphine [17–22,24–26,62,63], triamidoamine
[64–68] and pincer [69–72] ligands. Seminal
studies by Cummins and co-workers demonstrated
the ability of alkylarylamido ligands to stabilize low
valent Mo(III) complexes and cleave N2 [73,74].
As surrogates of this ligand set, monodentate
N-aryl-N-silylamido ligands have not yet been in-
vestigated in a similar system, although -N(SiMe3)2
[75–78] or silylated multidentate amido ligands

-[(R3SiNCH2CH2)3N]3− (R3Si = Me3Si or
tBuMe2Si) [79–82], -[N(SiMe2CH2PiPr2)2]−

[83], -[PhP(CH2SiMe2NSiMe2CH2)2PPh]2−

[84] and -[PhP(CH2SiMe2NPh)2]2− [85] have
been used to support transition-metal dinitrogen
complexes since 1990. We envisaged that the ready
introduction of the bulky silyl group would intrin-
sically tune the steric and electronic coordination
sphere of amido donors, inducing new reactivity
patterns of coordinated dinitrogen ligands in the
Mo-N2 complexes.

RESULTS AND DISCUSSION
The reaction of MoCl3(THF)3 (1) with
1.5 equivalents of lithium N-(trimethylsilyl)anilide
(2) in Et2O for 5 h afforded the corresponding
tris-anilide complex of Mo[N(SiMe3)Ar]3 (3) in
moderate yield (Scheme 2, a). X-ray diffraction on
single crystals revealed that three-coordinate 3 was
mononuclear with silylamino substituents arrange-
ment above the trigonal plane of MoN3 core
(Fig. 1, a). Compared with complex
Mo[N(tBu)Ar]3 [73,74], a long Mo-N1 dis-
tance (1.985 Å) and small Mo-N-Si bond angles
(126◦) might arise from the slightly different steric
hindrance and electronic pattern of silylamido
ligand around the Mo center. We then carried out
reaction 3 with N2 in the condition for conver-
sion of Mo[N(tBu)Ar]3 to N≡Mo[N(tBu)Ar]3
(1 atm of N2, d8-toluene, −35◦C). With less
electron negativity and the poor electron donating
ability of silicon (Si), 3 was proved unreactive with
N2 molecules even at −35◦C for 5 days. Lengthen-
ing the reaction time of MoCl3(THF)3 and lithium
amide, the 1H NMR spectrum of the crude product
mixture showed that MoIII 3 had disappeared.
The MoIV-Cl complex 4 was observed as the only
product, along with a small amount of free ligand
HN(SiMe3)Ar (Scheme 2, b). A similar result was
reported by the Fürstner group to isolate complex
ClMo[N(tBu)Ar]3 (Ar = 3,5-dimethoxyphenyl)
[86].

Reduction of the MoIV-Cl reaction mixture
with magnesium powder under N2 atmosphere
(1 atm) produced the Mo-N2 complex (Scheme
2, c). Diamagnetic signals in the proton NMR
spectrum indicated a high oxidation state of the Mo
center. X-ray study gave the unambiguous structure
of [Ar(Me3Si)N]3MoN2Mg(THF)2[N(SiMe3)Ar]
(5), in which Mo and Mg were both supported
by silylamido ligand, and bridged by dinitrogen
ligand to form the heterobimetallic dinitrogen
complex (Fig. 2, a). The bond length of N–N
is 1.194 Å, indicating the possible feature of
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Figure 1. Molecular structures of 3–4 with thermal ellipsoids set at 10% proba-
bility. (a) Mo[N(SiMe3)Ar]3, 3; (b) ClMo[N(SiMe3)Ar]3, 4. Hydrogen atoms have been
omitted for clarity. Selected bond lengths (Å) and angles (◦): 3 Mo1-N1, 1.9854(16);
N1-Si1, 1.7507(15); N1-Mo1-N1, 119.755(6); Mo1-N1-Si1, 126.306(112). 4 Mo1-N1,
1.9576(40); Mo1-N2, 1.9635(36); Mo1-N3, 1.9618(38); Mo1-Cl1, 2.3221(16); N1-Mo1-
N2, 119.055(160); Cl1-Mo1-N1, 95.977(127).

N=N double bond, similar to those found in the
diazenido species {[N3N]Mo-N=N}2Mg(THF)2
(1.195(13) Å and 1.164(13) Å) [80]. Additionally,
5 could be silylated by trimethylsilyl chloride
(Me3SiCl) at the β (terminal) nitrogen atom to
afford [Ar(Me3Si)N]3MoN2SiMe3 (6) (Scheme 2,
d). An X-ray analysis of this complex showed a
long N–N bond (1.214 Å) (Fig. 2, b). An analo-
gous Mo-N=N-Mg complex supported by other
silylamido ligand –N(SiMe2tBu)Ar was prepared
using similar procedures and characterized by X-ray
chromatography (Fig. S6). Unfortunately, attempts
to obtain analytically pure material failed.

According to those structural features, we envi-
sioned that the hydrazine-like Mo-N=N-Mg back-
bone (5) with synergetic effects of both alkaline-
earth metal and transition metal might be a good
precursor to transfer two nitrogen atoms to organic

molecules through [4 + 2] cycloaddition [87,88].
However, after treatment of 5 with a stoichiometric
amount of 1,3-cyclohexadiene (7) inC6D6 at 100◦C
for24h, itwas found that featured signals of the com-
plex remained in the 1H NMR spectrum of the re-
action mixture, implying the remarkable stability of
5 under the reaction conditions.The substrate 7was
completely consumed and two new sets of 1HNMR
signals appeared, which were a perfect fit for the dis-
proportionation products benzene (8) and cyclo-
hexene (9) (Fig. S7). Such disproportionation has
been studiedwithdifferent transition-metal catalysts
[89–96], but the catalytic ability of complexes with
metal-dinitrogen moiety, particularly from N2 gas,
has not yet been observed. This study could stim-
ulate new avenues to develop efficient catalysts di-
rectly from N2. On the other hand, identification of
the active centers (MoorMg) of the bimetallic com-
plex and their exact behaviors also attracted us to un-
veiling of the catalytic disproportionation.

To prove the catalytic reactivity of 5, two
experimental protocols were followed. Firstly,
having confirmed the stoichiometric conversion of
1,3-cyclohexadiene, we added an additional amount
of the substrate up to 60 equivalents in portions.
Indeed, 90% of 7 converted to 8 and 9 after
18 days (Fig. S8, catalyst/substrate = 0.016/1),
showing that the catalyst remained active. We also
conducted the reaction by adding 60 equivalents
of 7 into the C6D6 solution of 5 in one portion.
After 180 h, the conversion of 7 was 99%, moni-
tored by in situ NMR (Fig. S9). A small amount of
cyclohexane (10) was detected during the process,
suggesting potential hydrogen-transfer reduction of
non-conjugate alkene with this catalyst. Isomerized
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Figure 2. Molecular structures of 5–6 with thermal ellipsoids set at 10% probability. (a) [Ar(Me3Si)
N]3MoN2Mg(THF)2[N(SiMe3)Ar], 5; (b) [Ar(Me3Si)N]3MoN2SiMe3, 6. Hydrogen atoms have been omitted for clarity.
Selected bond lengths (Å) and angles (◦): 5 Mo1-N1, 1.998(4); Mo1-N2, 2.0066(34); Mo1-N3, 2.0150(39); Mo1-N4,
1.8110(34); N4-N5, 1.1942(48); Mg1-N5, 1.9621(35); Mg1-N6, 1.9924(31); Mo1-N4-N5, 178.107(287); N4-N5-Mg1,
171.026(282). 6 Mo1-N1, 1.9815(14); Mo1-N2, 1.9911(12); Mo1-N3, 1.9785(12); Mo1-N4, 1.7707(12); N4-N5, 1.2139(18);
Si4-N5, 1.7092(16); Mo1-N4-N5, 174.306(118); N4-N5-Si4, 160.513(136).
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Table 1. Catalytic disproportionation reaction of 1,3-cyclohexadienea.

Entry Catalysts Conv. (%)a,b

1 5 (24 h) 99%
2 6 (12 h) 94%
3 5 (24 h), Ar 98%c

4 5 (24 h), N2 (10 atm) 99%d

5 3 (24 h) 15%
6 4 (24 h) 13%
7 Mg[N(SiMe3)Ar]2 (36 h) NR
8 Li[N(SiMe3)Ar] (19 h) NR
aConditions: 1,3-cyclohexadiene (0.30 mmol), catalyst (10 mol%), 100 ◦C, C6D6 (0.5 mL), N2 atmo-
sphere (1 atm). bDetermined by 1H NMR spectroscopy. cIn an Ar atmosphere. dThe reaction was carried
out in an autoclave pressurized with 10 atm of N2.

Scheme 3. Proposed mechanism for the disproportionation of 1,3-cyclohexadiene.

1,4-cyclohexadiene (11) was also observed, which
could also further transform into 8 and 9 by catalytic
disproportionation (Fig. S13). The reaction path-
way was different from a previously reported case
in which a cationic molybdenum nitride species
transferred a hydrogen atom from 11 to afford
molybdenum imide complex and 8 in a stoichio-
metric manner [97].

Attempts were made to gain insight into the cat-
alytic reaction (Table 1). Complex 5 exhibited com-
parable activity towards the disproportionation un-
der 100◦C for 24 h on a 0.30 mmol scale (en-

try 1), while 6 displayed high catalytic reactiv-
ity with 94% conversion within 12 h (entry 2).
It was noteworthy that those catalysts remained
intact after complete conversion of 7 (Figs S10 and
S14), suggesting that the activated -N2 units were
retained during catalysis. These observations were
different from previously reported catalytic transfor-
mations in which the electrically neutral and weakly
activated N2 units were substitutable ligands for
substrate binding [31–48]. When performed under
an Ar atmosphere or 10 atm of N2, reactions also
smoothly occurred (entry 3 and 4). Unlike Mo-
N2 complexes, featured signals of 3 could not be
detected after heating at 100◦C for a short time
(< 5 h) despite its low catalytic competence (en-
try 5). Related [N]3MoIV-Cl complex failed to
promote such disproportionation efficiently (entry
6). Magnesium and lithium N-(trimethylsilyl)-3,5-
dimethylanilides were also tested, but failed (entry
7 and 8). Therefore, these results indicate that Mo-
N=Nmoiety was a key structure and the active site
was located at theMocenter. Kinetic studies showed
that the initial rate of disproportionation dependent
on the concentration of catalyst 5 was first order
(Fig. S25), further evidence that 5 was not a precat-
alyst in the transformation.

Based on these observations, we proposed a
plausible catalytic pathway shown in Scheme 3.
After coordination of diene 7 to the Mo center
(A), the resulting activated allylic hydrogen was
transferred from 1,3-cyclohexadiene to Nα atom
through ligand-to-ligandhydrogen transfer (LLHT)
[98–101], to form a cyclohexadienyl-Mo complex
(B) with hydrazine as a ligand. β-hydride elim-
ination of B released benzene and afforded the
key intermediate Mo-H species (C), which coordi-
nated with another molecule of 1,3-cyclohexadiene
with subsequent insertion (or hydromolybdation)
to generate a cyclohexenyl-Mo species (E), further
undergoing reverse LLHT to produce cyclohexene
and regenerate the catalyst.

According to the above proposal, complex
5 should be suitable to catalyze alkene isomeriza-
tion through LLHT-reverse LLHT process. We
examined allylbenzene (12) as substrate and found
that the isomerization indeed took place at high
efficiency to afford thermodynamic trans-adduct 13
as the product (Scheme 4, eq 2). 1-Hexene (14) was
also submitted to the reaction system and internal
alkenes were produced, albeit with poor site- and
regio-selectivity (Scheme 4, eq 3). Kinetic studies
indicated that C-H cleavage was not involved in
the rate-determining step (Scheme 4, eq 4–6),
consistent with the feature of hydrogen transfer
between ligands [99].

Page 4 of 8



Natl Sci Rev, 2021, Vol. 8, nwaa290

Scheme 4. Catalytic isomerization of terminal alkenes and kinetic isotope effect
experiment.

CONCLUSIONS
In summary, we demonstrated that monodentate
silylamido substituents could serve as excellent
ligands for supporting low-valence complexes
[N]3Mo and heterobimetallic dinitrogen complexes
[N]3Mo-N2-Mg[N], which showed great catalytic
ability in the disproportionation of cyclohexediene
and isomerization of terminal alkenes with -N2
ligands intact. Preliminary mechanistic studies
indicated that the active catalytic center was the
Mo-N2 moiety through a ligand-to-ligand hydrogen
transfer process. The detailed mechanism and new
catalytic applications of these M-N2 complexes
in organic transformations are currently under
consideration.
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