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Abstract

Telocytes (TCs) are new cellular entities of mesenchymal origin described almost ubiquitously in human and mammalian organs (www.telo-
cytes.com). Different subtypes of TCs were described, all forming networks in the interstitial space by homo- and heterocellular junctions. Pre-
vious studies analysed the gene expression profiles of chromosomes 1, 2, 3, 17 and 18 of murine pulmonary TCs. In this study, we analysed by
bioinformatics tools the gene expression profiles of chromosome 4 for murine pulmonary TCs and compared it with mesenchymal stem cells
(MSCs), fibroblasts (Fbs), alveolar type II cells (ATII), airway basal cells, proximal airway cells, CD8(+) T cells from bronchial lymph nodes (T-
BL) and CD8(+) T cells from lungs (T-L). Key functional genes were identified with the aid of the reference library of the National Center for
Biotechnology Information Gene Expression Omnibus database. Seventeen genes were up-regulated and 56 genes were down-regulated in
chromosome 4 of TCs compared with other cells. Four genes (Akap2, Gpr153, Sdc3 and Tbc1d2) were up-regulated between one and fourfold
and one gene, Svep1, was overexpressed over fourfold. The main functional networks were identified and analysed, pointing out to a TCs
involvement in cellular signalling, regulation of tissue inflammation and cell expansion and movement.
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Introduction

Telocytes (TCs) are newly described cells of the interstitial space [1,
2] which are ubiquitously distributed in mice and humans [3–17].
Telocytes are likely to have a mesenchymal origin [18] and are best
characterized by very long extensions called telopodes (Tps) (for
details see reviews [17, 19]. They were characterized in terms of
ultrastructure [20, 21], immunophenotype [22], proteomic [23], gene
profile [24–26] and miRNA imprint [27–29] and shown to be different
from fibroblasts, mesenchymal cells or endothelial cells. Moreover,
TCs display distinct electrophysiological properties [30–33]. The very

long (tens to hundreds of micrometres) Tps classically described as
an alternation of dilated regions—podoms and filamentous regions—
podomers, were recently viewed by FIB-SEM tomography 3D recon-
struction [2]. Therefore, the real aspect of Tps consists in regions
with classical aspect of beads on a string appearance and ‘ribbon-like’
regions [34].

Telocytes were suggested to participate in intercellular informa-
tion exchange and interactions by extracellular vesicle release [29,
35]. In addition, their secretome might have a modulatory role in
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Table 1 Summary of up-regulated genes in TCs, as compared with others. (A) Genes up-regulated between zero and onefold in TCs as

compared with others. (B) Genes up-regulated between one and fourfold in TCs as compared with others. (C) Genes up-regulated >fourfold

in TCs as compared with others

Compared pairs/fold up-regulated >0 >1 >4

TC5 versus others 51 13 3

TC10 versus others 34 8 1

TCs versus others 17 5 1

Gene symbol

Folds (TC5 versus others/TC10 versus others)

Fibroblast Stem ATII CD8_T_BL CD8_T_LL Basal_cell Duct_cell

(A)

1700009N14Rik �0.98/�0.99 �0.97/�0.97 �0.72/�0.8 �0.41/�0.6 �0.23/�0.47 �0.47/�0.64 �0.49/�0.65

Aurkaip1 �0.37/�0.09 �0.46/�0.22 �0.35/�0.32 �0.43/�0.42 �0.48/�0.47 �0.61/�0.6 �0.51/�0.5

Fam176b �0.73/�0.73 �0.86/�0.86 �0.09/�0.34 �0.36/�0.55 �0.56/�0.69 �0.88/�0.92 �0.94/�0.96

Fbxo6 �0.33/�0.17 �0.56/�0.45 �0.6/�0.64 �0.83/�0.85 �0.89/�0.9 �0.77/�0.8 �0.84/�0.86

Hspg2 �0.62/�0.7 �0.21/�0.38 �0.69/�0.82 �0.7/�0.83 �0.6/�0.77 �0.76/�0.87 �0.84/�0.91

Macf1 �0.74/�0.66 �0.5/�0.35 �0.64/�0.67 �0.52/�0.56 �0.47/�0.51 �0.65/�0.68 �0.46/�0.51

Mast2 �0.48/�0.15 �0.62/�0.38 �0.92/�0.9 �0.96/�0.95 �0.95/�0.94 �0.81/�0.79 �0.87/�0.85

Otud3 �0.61/�0.5 �0.79/�0.73 �0.4/�0.43 �0.09/�0.16 �0.18/�0.24 �0.12/�0.2 �0.11/�0.19

Plekhm2 �0.36/�0.6 �0.17/�0.49 �0.46/�0.76 �0.51/�0.78 �0.47/�0.77 �0.77/�0.9 �0.72/�0.87

Tm2d1 �0.32/�0.14 �0.43/�0.27 �0.39/�0.44 �0.27/�0.35 �0.36/�0.42 �0.28/�0.35 �0.23/�0.31

Tmem59 �0.51/�0.43 �0.45/�0.36 �0.99/�0.99 �0.99/�0.99 �0.99/�0.99 �1/�1 �1/�1

Zcchc17 �0.53/�0.45 �0.67/�0.61 �0.54/�0.61 �0.08/�0.23 �0.59/�0.65 �0.62/�0.69 �0.76/�0.8

(B)

Akap2 �0.89/�0.81 �0.73/�0.54 �0.78/�0.73 �0.78/�0.74 �0.82/�0.78 �0.79/�0.75 �0.82/�0.78

Gpr153 �0.93/�0.92 �0.66/�0.61 �0.67/�0.72 �0.98/�0.99 �0.96/�0.97 �0.98/�0.99 �0.92/�0.93

Sdc3 �0.74/�0.62 �0.88/�0.83 �0.65/�0.62 �0.84/�0.83 �0.73/�0.71 �0.79/�0.78 �0.87/�0.87

Tbc1d2 �0.91/�0.78 �0.99/�0.97 �0.78/�0.6 �0.99/�0.98 �0.97/�0.94 �0.8/�0.65 �0.94/�0.9

(C)

Svep1 �0.97/�0.97 �0.84/�0.83 �0.9/�0.92 �0.95/�0.96 �0.95/�0.97 �0.95/�0.96 �0.94/�0.95

Fig. 1 Expression profiles of the selected genes as an active group of chromosome 4 of telocytes (TCs) isolated and cultured from mouse lungs on

days 5 (D5) and 10 (D10), as compared with fibroblasts (Fbs), mesenchymal stem cells (MSCs), alveolar type II cells (ATII), airway basal cells

(ABCs), proximal airway cells (PACs), CD8+ T cells come from bronchial lymph nodes (T-BL), and CD8+ T cells from lung (T-L) respectively (A).
The profiles for entire genes are described in Supplementary Document 1. The selected core network and whole mouse network are linked by the

documented functional interactions from various databases (see Materials and methods). Genes in each network are indicated in red and some of

their nearest neighbours are indicated by dark grey nodes. A group of telocyte genes up-regulated and down-regulated more than zerofold as com-

pared with all other cells and existed in telocytes on days 10 and 5 were selected as telocyte-specific or dominated genes in chromosome 4 (A).
Top 50 up- or down-regulated genes of each cells were also evaluated and their distribution within chromosome 4 genes showed the difference

between cells (B). Details of the selected network in each cell type are in Figures S1–S9.
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Table 2 Summary of down-regulated genes in TCs, as compared with others. (A) Genes down-regulated between zero and onefold in TCs as

compared with others. (B) Genes down-regulated between one and fourfold in TCs as compared with others

Compared pairs/fold down-regulated >0 >1 >4

TC5 versus others 70 3 0

TC10 versus others 142 10 0

TCs versus others 56 2 0

Gene symbol

Folds (TC5 versus others/TC10 versus others)

Fibroblast Stem ATII CD8_T_BL CD8_T_LL Basal_cell Duct_cell

(A)

1700013G24Rik 0.18/0.28 0.34/0.45 1.43/0.93 0.39/0.07 5.42/4.01 50.81/38.78 22.78/17.36

2210012G02Rik 1.36/0.8 0.68/0.28 31.01/16.83 100.21/53.77 56/30.27 44.47/23.55 21.26/11.08

2610301B20Rik 1.63/1.75 1.3/1.41 7.41/5.43 4.38/2.99 0.97/0.48 3.12/2.05 1.17/0.61

2610528B01Rik 0.66/0.34 15.64/12.46 17.59/9.98 49.88/28.21 12.65/6.94 31.04/17.35 15.34/8.41

4930535I16Rik 10.92/6.52 0.98/0.25 11.07/4.56 1.28/0.02 2/0.36 17.05/7.07 18.12/7.59

5430416O09Rik 0.44/0.78 0.21/0.5 22.22/19.97 1.13/0.87 1.01/0.79 3.05/2.55 1.3/1.03

9430015G10Rik 0.98/1.38 0.12/0.35 7.93/6.85 34.35/29.18 26.31/22.64 20.37/17.21 12.22/10.32

9930104L06Rik 0.4/0.68 0.4/0.68 0.43/0.25 2.83/2.26 2.36/1.9 8.44/7.02 1.86/1.44

AA415398 0.6/0.16 0.38/0.01 8.93/4.29 3.07/1.11 8.47/3.97 20.5/10.11 17.32/8.52

Agmat 0.35/0.57 0.09/0.27 3.74/3.04 4.14/3.26 7.97/6.53 19.18/15.67 13.9/11.38

Anp32b 0.43/0.8 1.35/1.96 1.59/1.39 2.42/2.07 1.88/1.62 14.09/12.48 14.37/12.8

BC057079 0.14/0.46 0.33/0.7 3.03/2.77 7.53/6.75 6.72/6.1 3.87/3.41 6.1/5.47

Btf3l4 0.49/1.07 0.11/0.53 2.78/2.84 2.63/2.58 1.29/1.29 4.31/4.22 3.69/3.63

C430048L16Rik 1.28/2.16 0.75/1.43 0.23/0.25 1.2/1.17 2.54/2.53 3.67/3.59 1.08/1.06

Cap1 3.57/6.8 3.03/5.89 0.2/0.5 1.47/1.99 0.48/0.81 2.88/3.7 3.74/4.77

Casp8ap2 0.1/0.45 0.29/0.7 3.9/3.71 38.04/35.47 51.64/48.86 4.79/4.4 1.56/1.4

Ccnl2 0.52/1.57 0.07/0.8 1.09/1.57 16.55/20.03 15.86/19.48 4.59/5.69 3.58/4.51

Chd5 0.87/0.28 7.33/4.71 21.45/10.24 40.34/19.1 36.74/17.61 69.19/33.06 27.74/13.02

Clcnkb 1.03/1.24 1.08/1.3 12.27/9.73 1.13/0.67 0.44/0.15 8.62/6.54 4.45/3.29

Col16a1 0.43/0.3 3.97/3.52 2.13/1.08 1.25/0.45 2.43/1.25 4.61/2.62 2.81/1.47

Cyp4a31 7.9/17.22 5.85/13.02 0.04/0.56 0.8/1.62 1.47/2.64 7.54/11.38 0.96/1.86

Dennd4c 0.44/0.82 0.06/0.34 167.81/154.43 223.55/199.84 388.03/351.76 177.75/158.54 132.18/118.48

Dnajc11 0.04/0.35 0.16/0.51 7.39/6.99 11.28/10.37 4.03/3.71 5.72/5.21 4.66/4.25

Eif2b3 0.31/0.56 0.72/1.05 6.17/5.24 4.11/3.32 2.29/1.82 7.03/5.77 7.08/5.85

Gja10 0.28/1.02 0.2/0.9 0.91/1.21 1.69/2.01 7.08/8.17 7.59/8.6 2.81/3.28

Gng10 0.15/0.05 0.94/0.77 1.94/0.97 17.25/10.86 10.63/6.66 3.4/1.85 2.47/1.26
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Table 2. Continued

Gene symbol

Folds (TC5 versus others/TC10 versus others)

Fibroblast Stem ATII CD8_T_BL CD8_T_LL Basal_cell Duct_cell

Gpr3 0.71/1.32 0.61/1.18 0.55/0.54 0.9/0.83 2.68/2.59 6.6/6.3 2.08/1.97

Guca2b 0.49/1.03 0.39/0.89 6.42/6.38 20.5/19.76 0.41/0.38 1.58/1.49 1.93/1.83

Htr6 0.05/0.32 0.11/0.39 2.89/2.55 6.02/5.23 3.42/2.98 17.29/15.2 7.1/6.21

Itgb3bp 1.69/3.05 0.19/0.8 0.32/0.46 1.37/1.54 1.09/1.27 2.05/2.26 2.07/2.29

Lrp8 1.39/1.05 0.33/0.14 1.94/0.85 3.72/1.88 8.57/4.92 8.29/4.66 6.82/3.79

Mdn1 0.05/0.2 4.47/5.26 2.63/2.04 22.03/17.71 17.2/13.99 3.22/2.42 3.95/3.03

Mrpl50 1.02/1.86 0.62/1.3 1.23/1.32 1.47/1.49 0.87/0.91 5.43/5.46 3.48/3.53

Mysm1 0.25/0.63 0.1/0.43 1.13/1.03 5.56/5.09 9.49/8.87 1.59/1.4 0.57/0.46

Nfx1 0.43/0.7 0.47/0.75 6.99/5.95 12.45/10.37 7.26/6.08 16.28/13.58 11.53/9.63

Padi1 2.1/2.28 0.69/0.79 1.6/1.01 3.92/2.7 1.26/0.72 53.37/39.8 39.89/29.84

Pnrc2 0.51/0.96 0.52/0.96 0.52/0.44 2.07/1.82 1.01/0.87 4.13/3.69 2.29/2.02

Ppie 0.2/0.42 0.02/0.21 8.3/7.04 25.22/21.02 12.55/10.53 12.31/10.15 9.68/7.99

Ppp1r8 0.03/0.39 0.59/1.14 14.59/14.36 16.61/15.85 8.84/8.55 9.57/9.09 12.5/11.96

Prpf4 0.29/0.99 1.69/3.16 2.13/2.53 2.49/2.83 2.09/2.44 2.16/2.46 2.69/3.06

Psip1 0.7/1.66 1.75/3.31 0.03/0.18 6.21/7.02 4.28/4.95 0.41/0.56 0.73/0.93

Rbm12b 0.85/1.48 0.01/0.36 0.77/0.74 3.16/2.96 1.96/1.86 42.69/40.57 21.65/20.66

Rere 0.04/0.53 0.03/0.53 114.9/123.97 372.04/389.75 288.69/306.63 246.05/257.22 213.01/223.85

Sit1 0.93/1.91 0.02/0.55 18.38/20.41 58.46/62.81 54.15/59.01 8.62/9.3 3.99/4.38

Slc1a7 0.2/0.6 1.06/1.75 5.81/5.62 1.34/1.21 6.5/6.18 6.15/5.74 2.64/2.45

Slc24a2 0.97/0.64 0.33/0.11 9.22/5.23 3.07/1.41 8.6/4.76 12.23/6.81 18.21/10.41

Smpdl3b 0.11/0.34 1.56/2.08 8.18/7.07 2.69/2.16 7.17/6.08 2.72/2.17 3.6/2.94

Snip1 0.2/0.24 0.14/0.17 23.93/17.75 54.13/39.28 68.21/50.28 13.91/9.87 7.79/5.45

Tle1 0.01/0.37 0.21/0.65 4.58/4.54 1.34/1.26 1.77/1.71 0.43/0.37 0.85/0.79

Trim14 0.45/0.52 0.26/0.32 19.25/14.53 112.18/83.33 51.76/38.86 21.63/15.83 3.67/2.49

Txndc12 2.21/2.33 0.22/0.26 10.57/7.78 4.87/3.33 1.62/0.96 7.28/5.08 6.21/4.33

Ubxn11 4.39/4.71 0.2/0.27 12.07/9.12 21.95/16.25 12.9/9.6 9.9/7.17 4.79/3.37

Usp1 0.72/1.35 0.1/0.51 0.77/0.78 5.14/4.97 3.1/3.04 1.59/1.51 1.81/1.74

Wwp1 0.01/0.12 0.27/0.41 43.21/34.92 46.36/36.37 61.11/48.69 81.23/63.75 83.25/65.68

(B)

Masp2 13.13/11.07 3.8/3.1 9.4/5.49 23.91/14.1 38.75/23.43 27.31/16.13 20.68/12.18

Rngtt 1.03/1.48 1.25/1.75 1.26/1.02 7.58/6.44 4.49/3.83 2.87/2.35 2.3/1.87
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stem cell proliferation and differentiation [36]. Other hypotheses,
plead in favour of a role as progenitor cells during inflammatory/re-
pair processes [37]. Telocytes have recently been shown to act as
progenitor cells in adulthood, being able to differentiate in cells like
interstitial cells of Cajal, myofibroblasts and even in fibroblasts
[38]. Also, during morphogenesis, it might be possible to behave
like inductors/regulators of differentiation for parenchymal cells
[38, 39].

Our previous studies identified characters and patterns of TCs-
specific or TCs-dominated gene profiles in chromosome 1, 2, 3, 17
and 18 using global comparison between TCs and other cell types
found in the mouse lung tissue [24–26]. To further study the charac-
ters and patterns of TC-specific or TC-dominated gene expression
profiles, we currently performed a detailed analysis for chromosome
4, and investigated the characteristic gene networks and potential
functional association using bioinformatics tools. Pulmonary TCs in
cell culture, harvested on day 5 (TC5) and on day 10 (TC10) were
compared with mesenchymal stem cells (MSCs), fibroblasts (Fbs),
alveolar type II cells (ATII), airway basal cells (ABCs), proximal airway
cells (PACs), CD8+ T cells from bronchial lymph nodes (T-BL) and
CD8+ T cells from lung (T-L). Key functional genes were identified
with the aid of the reference library of the National Center for Biotech-
nology Information (NCBI) Gene Expression Omnibus database.

Material and methods

Isolation and culture

Telocytes were isolated from the lung tissues of mice, primary cultured in

a concentration of 1 9 105 cells/cm2, and harvested on days 5 (TC5) and

on days 10 (TC10), as previously described [28]. RNA isolation, prepara-

tion, labelling and hybridization for DNA microarray (The Mouse 4 9 44K
Gene Expression Array; Agilent, Shanghai, China), we gained about

39,000+ mouse genes and transcripts represented with public domain

annotations, according to the protocol of One-Color Microarray-Based
Gene Expression Analysis. The hybridized arrays were washed, fixed and

scanned by the Agilent DNA Microarray Scanner (part number G2505B).

Data collection and mining

The gene expression profiles of pulmonary TC5 and TC10, Fbs and

MSCs were collected from a previous study [28]. Gene expression pro-

files for ATII, ABCs, PACs, T-BL and T-L were obtained from the NCBI
Gene Expression Omnibus database (GSE6846 [40], GSE27379 [41],

GSE28651 [42]). The microarray was composed of 45,101 probes. First,

we eliminated the probe sets without corresponding official symbol,
leaving 39,417 probes and 21,680 genes.

Identification of differentially expressed genes

The identification of differentially expressed genes was done as the

method described in our previous study [24]. Briefly, after the acquired

data normalized with quantile normalization, the probe level
(*_norm_RMA.pair) files and gene level (*_RMA.calls) files were gener-

ated. Subsequent data processing was further analysed with Agilent Gene-

Spring GX software (version 11.5.1) software package and differentially

expressed genes were identified through fold change filtering. Hierarchi-
cally clustered was performed with the Agilent GeneSpring GX software

(version 11.5.1). Gene Ontology analysis and String Network analyses

were performed with the standard enrichment computation method to
uncover the relevance among variant proteins expressed by variant genes.

Eight-five per cent of mouse genes (approx. 20,000–25,000 genes) is

very similar with the human genes. This study investigates gene expres-

sion profiles of chromosome 4 in different lung cell populations to search
for TC-specific regulated genes. Up- or down-regulated folds of TC-genes

were calculated by comparison with other cells and subtracted its own

multiple of TC, after the average of gene expression in each cells.

Results

Table 1 presents the global analysis of chromosome 4 genes in lung
TCs. We found that 17 genes were up-regulated and 56 genes were
down-regulated in chromosome 4 of TCs. Among the up-regulated
genes, 12 genes (1700009N14Rik, Aurkaip1, Fam176b, Fbxo6,
Hspg2, Macf1, Mast2, Otud3, Plekhm2, Tm2d1, Tmem59, Zcchc17)
were overexpressed between zero and onefold (Table 1A), 4 genes
(Akap2, Gpr153, Sdc3, Tbc1d2) were up-regulated between one and
fourfold (Table 1B) and one gene, Svep1, was overexpressed over
fourfold, in both TC D5 and TC D10, as compared with other cells
(Table 1C). The genes highly expressed in TC5 were similar with

Fig. 2 Hierarchical cluster analysis of the differentially expressed genes

on chromosomes 4 among telocytes (TCs), mesenchymal stem cells

(MSCs), fibroblasts (Fbs), lymphocytes from lungs (T-LL) and from
bronchial lymph nodes (T-BL), alveolar type II cells (ATII), proximal air-

way cells (PAC) and airway basal cells (ABC). The differences are

described by fold changes and the expression value of genes in TC5 are

controls.
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those in TC10 and different from MSCs, Fbs, ATII, ABCs, PACs, T-BL
or T-L. The direct (physical) and indirect (functional) relationships,
including associations, of these genes were analysed by String Net-
work analysis and the interactions and potential functional links
between these genes are displayed in Figure 1.

Among the down-regulated genes, 54 genes were expressed zero
and onefold in TCs than in other cells (Table 2A) and 2 genes, Masp2
and Rngtt (Table 2B) were one to fourfold lower in TCs than in other
cells.

Details of up- or down gene variations of chromosome 4 were
listed in Table S1. The hierarchical cluster plot of the differentially
expressed genes illustrated as coded colours (Fig. 2) clearly shows
that TCs are less related with the other cells.

Table 3 presents a set of genes were found specifically up- or
down-regulated in pulmonary TCs, as compared with Fbs, MSCs,
ATII, ABCs, PACs, T-BL or T-L respectively. A set of genes up- or
down-regulated more than onefold in TC5 were 233 or 49, 249 or 46,
78 or 408, 123 or 378, 125 or 375, whereas the genes up- or down-

regulated more than onefold in TC10 were 163 or 92, 164 or 94, 71 or
410, 133 or 372 and 123 or 368.

Discussion

Mouse genome is extremely valuable for research since the human
and mouse genomes are remarkably similar not only in the structure
of their chromosomes but also at the level of DNA sequence. Chromo-
some 4 represents more than 6 per cent of the total DNA in cells and
likely contains 1000–1100 genes [43]. In humans, many genetic dis-
orders stemming from chromosome 4 genes are described, e.g.
achondroplasia, facioscapulohumeral muscular dystrophy, Hunting-
ton’s disease, to name but a few. Mouse chromosome 4 has a total
number of genes of 2430 which encode a number of 1270 proteins.

This study was dedicated to the global analysis of chromosome 4
genes of lung TCs compared with Fbs, MSCs, ATII, ABCs, PACs, T-BL
and T-L of which 720 genes were measured by bioinformatics tools.

Table 3 The number of genes specifically up- or down-regulated in pulmonary TCs as compared with other cells respectively

Compared pairs Up >0 Up >1 Up >4 Down >0 Down >1 Down >4

TC10 versus fibroblast 367 163 53 353 92 23

TC5 versus fibroblast 510 233 69 210 49 12

TCs versus fibroblast 354 149 45 197 42 12

TC10 versus stem 425 164 43 295 94 19

TC5 versus stem 551 249 59 169 46 11

TCs versus stem 419 144 33 163 45 11

TC10 versus ATII 171 71 17 549 410 229

TC5 versus ATII 174 78 20 546 408 225

TCs versus ATII 147 61 12 522 383 201

TC10 versus CD8BL 225 133 60 495 372 201

TC5 versus CD8BL 229 123 65 491 378 205

TCs versus CD8BL 204 110 52 470 346 181

TC10 versus CD8LL 208 123 56 512 368 194

TC5 versus CD8LL 217 125 59 503 375 208

TCs versus CD8LL 185 107 50 480 342 178

TC10 versus basal cell 128 57 16 592 497 308

TC5 versus basal cell 131 57 20 589 499 316

TCs versus basal cell 111 44 13 572 472 287

TC10 versus duct cell 156 85 32 564 464 267

TC5 versus duct cell 155 82 33 565 461 271

TCs versus duct cell 144 69 27 553 436 239
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We found that 17 genes were up-regulated and 56 genes were down-
regulated in chromosome 4 of TCs as compared with other cell types.

Four genes, Akap2, Gpr153, Sdc3, Tbc1d2, were found to be more
than onefold up-regulated in TCs as compared with other cell types.
Akap2 (A-kinase (PRKA) anchor protein 2) gene encodes a protein
involved in signalling pathways (G Protein signalling pathways and
signal transduction PKA) and in modulation of actin filament dynam-
ics [44, 45]. Gpr153 (G protein-coupled receptor 153) gene encodes
an orphan receptor with elusive functions [46]. Sdc3 (syndecan 3)
gene encodes a cell surface proteoglycan (heparan sulphate) involved
in the organization of cell shape by affecting the actin cytoskeleton,
possibly by transferring signals from the cell surface which seems to
have a selectively pro-inflammatory function [47]. Tbc1d2 (TBC1
domain family member 2A) gene encodes a protein found in cell junc-
tions and cytoplasmic vesicles and is apparently involved in positive
regulation of GTPase activity and vesicle trafficking [48]. Svep1
(sushi, von Willebrand factor type A, EGF and pentraxin domain con-
taining 1) gene encodes a protein involved in cell adhesion [49].
Small GTP ases regulate intracellular trafficking (budding, transport
and fusion of vesicles) [50] and also intervene in cytoskeletal remod-
elling, migration and adhesion events [51]. Therefore, all these up-
regulated genes encode proteins involved in cell signalling pathways
and cytoskeleton organization and imply that TCs could integrate sig-
nals and auto-regulate its own fate, integrating autophagy with endo-
cytic trafficking [52]. Moreover, since there are no data regarding the
involvement of these four genes in any pulmonary pathology, the pre-
cise significance of those up-regulated genes in TCs still remains
unclear.

Among the down-expressed genes in TCs, Masp2 (mannan-bind-
ing lectin serine peptidase 2) and Rngtt (RNA guanylyltransferase and
50-phosphatase) genes were one to fourfold lower comparative with
other cells.

Conclusion

Our data showed, by global analyses, that 73 TCs-specific or domi-
nant genes in chromosome 4 are different from other lung tissue resi-
dent cells or immune migrated cells. Current findings are supportive
for our previous studies of TC-specific gene profiles and potential
functional correlations, pointing out the same suggested roles for TCs
[24–26]. Thus, TCs appear once more to have a significant role in cel-
lular signalling, regulation of tissue inflammation, and cell expansion
and movement.
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