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Abstract

b-elemene, a compound derived from Rhizoma zedoariae, is a promising new plant-derived drug with broad-spectrum anticancer activity.
However, the underlying mechanism by which this agent inhibits human lung cancer cell growth has not been well elucidated. In this study, we
showed that b-elemene inhibited human non-small cell lung carcinoma (NSCLC) cell growth, and increased phosphorylation of ERK1/2, Akt and
AMPKa. Moreover, b-elemene inhibited expression of DNA methyltransferase 1 (DNMT1), which was not observed in the presence of the spe-
cific inhibitors of ERK (PD98059) or AMPK (compound C). Overexpression of DNMT1 reversed the effect of b-elemene on cell growth. Interest-
ingly, metformin not only reversed the effect of b-elemene on phosphorylation of Akt but also strengthened the b-elemene-reduced DNMT1. In
addition, b-elemene suppressed Sp1 protein expression, which was eliminated by either ERK1/2 or AMPK inhibitor. Conversely, overexpression
of Sp1 antagonized the effect of b-elemene on DNMT1 protein expression and cell growth. Taken together, our results show that b-elemene
inhibits NSCLC cell growth via ERK1/2- and AMPKa-mediated inhibition of transcription factor Sp1, followed by reduction in DNMT1 protein
expression. Metformin augments the effect of b-elemene by blockade of Akt signalling and additively inhibition of DNMT1 protein expression.
The reciprocal ERK1/2 and AMPKa signalling pathways contribute to the overall responses of b-elemene. This study reveals a potential novel
mechanism by which b-elemene inhibits growth of NSCLC cells.
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Introduction

Lung cancer especially non-small cell lung cancer (NSCLC) is the
most common type of malignancy and the leading cause of cancer-
related mortality worldwide with low 5-year survival rate [1]. At the
time of presentation, most patients are at an advanced stage with
poor outcome. Traditional Chinese Medicine (TCM) plays an impor-
tant role in protecting cancer patients against suffering from compli-

cations, helping patients to live well, assisting in supportive and
palliative care by reducing side effects of conventional treatment and
improving quality of life [2]. However, the molecular mechanisms by
which TCM in improving the therapeutic efficiency against the lung
malignancies remains poorly understood.

b-elemene (1-methyl-1-vinyl-2,4-diisopropenyl-cyclohexane), a
naturally occurring compound isolated from the TCM herb Curcumae
Radix, has been used to target various solid tumours including lung
cancer [3, 4]. b-elemene has been shown to inhibit the growth and
DNA synthesis of multiple types of tumour cells, resulting in the
apoptosis or suppressed growth of tumours without severe side
effects [3, 5]. However, the underlying mechanisms associated with
its efficacy in targeting lung cancer are largely unknown.

Tumour suppressor gene silencing by DNA hypermethylation
contributes to tumourigenesis in various cancer types. This
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aberrant methylation may be due to increased expression and
activity of methyltransferases, which catalyse the transfer of
methyl groups from s-adenosylmethionine to cytosines in CpG di-
nucleotides. DNA methyltransferase 1 (DNMT1) is a major enzyme
involved in the somatic inheritance of DNA methylation and thus
plays a critical role in epigenomic stability. Dysregulation of
DNMT1 is implicated in a variety of diseases [6], and aberrant
methylation contributes to the pathogenesis of human cancers [7].
In addition, increased expression of DNMT1 has been found in
several tumour types including lung and caused silence of tumour
suppressor genes [8–10]. Thus, inhibition of DNMT1 may repre-
sent a promising approach for the prevention and treatment of
many cancers [10–13].

In this study, we investigated the potential mechanism of b-
elemene for its efficacy in suppressing lung cancer cell growth.
We showed for the first time that b-elemene inhibits growth of
NSCLC cells via both extracellular signal-regulated kinase 1/2
(ERK1/2)- and AMP-activated protein kinase alpha (AMPKa)-medi-
ated inhibition of transcription factor Sp1, followed by reduction in
DNMT1 expression.

Materials and methods

Reagents and cell cultures

Monoclonal antibodies specific for total ERK1/2, AMPKa, Akt and the

phosphor-forms were purchased from Cell Signaling Technology Inc.

(Beverly, MA, USA). The Sp1 and DNMT1 antibodies were obtained

from Epitomics (Burlingame, CA, USA). PD98059 (ERK inhibitor),
compound C (a special inhibitor of AMPK) and metformin (an activa-

tor of AMPK) were purchased from Merck Millipore (Darmstadt, Ger-

many), MTT powder was purchased from Sigma-Aldrich (St. Louis,
MO, USA). Sp1 small interfering RNAs (siRNAs) were obtained from

Santa Cruz (Santa Cruz, CA, USA). Lipofectamine 3000 reagent was

purchased from Invitrogen (Carlsbad, CA, USA). b-elemene was pur-

chased from Chengdu Must Bio-technology Company (Chengdu, Sich-
uan, China). The drugs were freshly diluted to the final concentration

with culture medium before treatment. Human lung adenocarcinoma

cells (PC9, H1299, H1650, A549, H358 and H1975) and one bron-

chial epithelial cell line BEAS-2B were obtained from the Chinese
Academy of Sciences Cell Bank of Type Culture Collection (Shanghai,

China) and the Cell Line Bank at the Laboratory Animal Center of

Sun Yat-sen University (Guangzhou, China). The cells were cultured
at 37°C in a humidified atmosphere containing 5% CO2. The culture

medium consisted of RPMI 1640 medium (Gibco, Beijing, China)

supplemented with 10% (v/v) heat-inactivated foetal bovine serum

(Thermo Fisher Scientific Inc, MA, USA), 100 lg/ml streptomycin and
100 U/ml penicillin. When cells reached 70% confluence, they were

digested with 0.25% trypsin for passage for the following

experiments.

Cell viability assay

Cell viability was measured using the 3-(4, 5-dimethylthiazol-2-yl)-2,

5-diphenyltetrazolium bromide (MTT) assay. Briefly, NSCLC cells were

harvested, counted and seeded into a 96-well microtitre plate,
2.5 9 103 cells/well. The cells were treated with increasing concentra-

tions of b-elemene for up to 72 hrs. After incubation, 20 ll MTT

solution (5 g/l) was added to each well and NSCLC cells were incu-

bated at 37°C for an additional 6 hrs. Supernatant was removed, then
150–200 ll solvent dimethyl sulfoxide was added to each well and

oscillated for 10 min. Absorbance at 490 nm was determined through

the use of ELISA reader (Perkin Elmer, Victor X5, Waltham, MA, USA).
Cell viability (%) was calculated as (absorbance of test sample/absor-

bance of control) 9100%.

Western blot analysis

The whole cell lysates were obtained from cells and protein concentra-
tions were determined using the Bio-Rad (Hercules, CA, USA) protein

assay. Afterwards, whole cell lysates were solubilized in 49 SDS sam-

ple buffer and separated on 10% SDS polyacrylamide gels. Mem-
branes (Millipore, Billerica, MA, USA) were incubated with antibodies

against ERK1/2, AMPKa, pERK1/2, p-AMPKa, Sp1 and DNMT1

(1:1000). The membranes were washed and incubated with a second-

ary antibody raised against rabbit IgG conjugated to horseradish per-
oxidase (Cell Signaling, Beijing, China). The membranes were washed

again and transferred to freshly made ECL solution (Immobilon Wes-

tern; Millipore, Shanghai, China), followed by observing signals under

the Gel Imagine System (Bio-Rad) for up to 1 min., or exposed to
X-ray film.

Treatment with Sp1 small interfering RNAs
(siRNAs)

For transfection, cells were seeded in six-well or 96-well culture plates

in RPMI 1640 medium containing 5% FBS (no antibodies), grown to

60–70% confluence before incubation with siRNAs. Sp1 and control
siRNAs (up to 25 nM) were transfected using the lipofectamine 3000

reagent according to the manufacturer’s instructions and incubated

with MEM medium for 30 min. at room temperature before the mix-
ture was added to the cells. After culturing for up to 30 hrs, the cells

were washed and resuspended in fresh media in the presence

or absence of b-elemene for an additional 24 hrs for all other

experiments.

Electroporated transfection assays

NSCLC cells (5 9 107 cells/ml) were transferred into conical tubes
and centrifuged at 140 9g for 10 min. After centrifuging, medium

was removed and the cells were washed with 19 PBS, and centri-

fuged again at 140 9 g. for 5 min. Afterwards, the PBS was aspirated
and added Bio-Rad Gene Pulser electroporation buffer. After resu-

spending the cells, the desired control (pCMV-6) or DNMT1 expres-

sion vector (RG226414, pCMV6-AC-GFP, obtained from Rockville, Inc.

MD, USA), control (pcDNA3.1) and Sp1 overexpression vector
(pcDNA3.1Sp1/flu, kindly provided by Dr. Thomas E. Eling (NIEHS,

Research Triangle Park, NC) [14] at a final concentration of 2 lg/ml

were added and the electroporation plate were put in the MX cell plate

chamber and closed the lid in Gene Pulser II Electroporation System
(Bio-Rad). The electroporation conditions on the plates to deliver

ª 2014 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

631

J. Cell. Mol. Med. Vol 19, No 3, 2015



0 5 10 20 40 80 120 200
0

25

50

75

100

125
24 hr
48 hr
72 hr

*
* * * * * * * *

* * *

***

0 2.5 5 10 20 30 40 60 80 120
0

25
50
75

100
125

24 hr
48 hr
72 hr

*
* *

*
**

*

** *
*
*
* *

*
*

* * *

β-Elemene, μg/ml

A

B

A549

PC9

C
el

l v
ia

bi
lit

y 
(O

D
49

0)
%

 o
f C

on
C

el
l v

ia
bi

lit
y 

(O
D

49
0)

%
 o

f C
on

BEAS-2B H35
8

H19
75

H16
50

H12
99

0.00

0.25

0.50

0.75

1.00

Con

β-Elemene

* *

* *

C
el

l v
ia

bi
lit

y 
(O

D
49

0)
   

   
  

C

G0/G1 S
G2/M

0

25

50

75

Con
5 μg/ml
20 μg/ml
40 μg/ml*

*

R
el

at
iv

e 
pe

rc
en

ta
ge

 (%
)

D

40 μg/ml 

Con 5 μg/ml 20 μg/ml

Fig. 1 b-elemene inhibited human NSCLC cell growth in the time- and dose-dependent manner. A549 (A) and PC9 (B) cells were treated with

increased concentrations of b-elemene for up to 72 hrs to examine the cell viability. (C) NSCLC cell lines indicated were treated with b-elemene

(40 lg/ml) for 48 hrs. The cell viability was determined using the MTT assay as described in the Materials and Methods Section and was expressed

as percentage of control in the mean � SD of three separate experiments. *indicates significant difference as compared to the untreated control
group (P < 0.05). (D) A549 cells were treated with increased doses of b-elemene for 24 hrs. Afterwards, the cells were collected and processed for

analysis of cell cycle distribution by flow cytometry after propidium iodide (PI) staining. And the percentages of the cell population in each phase

(G0/G1, S and G2/M) of cell cycle were assessed by Multicycle AV DNA Analysis Software. Data are expressed as a percentage of total cells. Values
are given as the mean � SD from three independent experiments performed in triplicate. *indicates significant difference as compared to the

untreated control group (P < 0.05).
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160 V/5 msec. square wave were adjusted until reaching the optimum.
After electroporation was completed, the cells were transferred to a

culture plate. We typically transfer each 150–200 ll electroporation

sample to a six-well tissue culture plate containing 2–3 ml RPMI

1640. Cells were incubated for 48 hrs at 37°C, then treated with b-
elemene for an additional 24 hrs.

Statistical analysis

All experiments were repeated at least three times. All data are
expressed as mean � SD. Differences between groups were assessed

by one-way ANOVA and significance of difference between particular treat-

ment groups was analysed using Dunnett’s multiple comparison tests

(GraphPadPrism 5.0 software, LaJolla, CA, USA). Asterisks showed in
the figures indicate significant differences in experimental groups in

comparison with the corresponding control. P < 0.05 was considered

statistically significant.

Results

b-elemene inhibited growth of human NSCLC
cells in the time- and dose-dependent manner

We first detected the effect of b-elemene on cell growth in
NSCLC cells by MTT assay. As shown in Figure 1A and B, b-
elemene decreased the cell viability in a dose- and time-depen-
dent manner with maximal dose of 40 lg/ml observed at 48 hrs
in A549 and PC9 cells. Similar results were also observed in
other NSCLC cell lines (Fig. 1C). To further examine the effects of
b-elemene on cell proliferation, cell cycle phase distribution of
NSCLC cells treated with increased doses of b-elemene for
24 hrs was analysed by flow cytometry after propidium iodide
staining. We showed that, compared with the untreated control
cells, b-elemene significantly increased the proportion of cells at
G0/G1 phase, while the proportion of cells at S phases reduced
(Fig. 1D) suggesting that b-elemene induced cell cycle arrest in
G0/G1 phase in A549 cells.

b-elemene increased phosphorylation of Akt,
ERK1/2 and AMPKa in the time-dependent fashion

We next tested the signalling pathways that mediated the effect
of b-elemene on cell growth. Phosphatidylinositol 3-kinase (PI3-
K)/Akt, ERK1/2 and AMPK signalling pathways have been shown
to be involved in cell growth depending on the cell types and
stimulus. We showed that b-elemene increased the phosphoryla-
tion of ERK1/2 and AMPKa, and unexpectedly, Akt in a time-
dependent fashion in A549 and PC9 cells (Fig. 2A and B). Note
that the expression of total ERK1/2, AMPKa and Akt proteins
had no significant changes (Fig. 2A and B).

b-elemene inhibited protein expression of
DNMT1 in the does-dependent fashion;
overexpression of DNMT1 reversed the effect of
b-elemene on cell growth inhibition

b-elemene showed to inhibit cancer cell growth through distinct
mechanisms in other reports [4, 15, 16]. In this study, we found that
b-elemene inhibited protein expression of DNMT1, a ubiquitous
nuclear enzyme that plays an important role in epigenetically regu-
lated gene expression, in the does-dependent fashion in both A549
and PC9 cells (Fig. 3A and B). Interestingly, the specific inhibitors of
ERK1/2 (PD98059) and AMPK (compound C) blocked b-elemene-
reduced DNMT1 protein expression in A549 and PC9 cells (Fig. 3C
and D). Similar results were also observed by using siRNAs methods
silencing of ERK1/2 and AMPKa (data not shown). Conversely, met-
formin, an activator of AMPK, further decreased DNMT1 protein
expression in the presence of b-elemene in A549 and PC9 cells
(Fig. 3E). Moreover, A549 cells exogenous expression of DNMT1
showed to reverse the inhibitory effect of b-elemene on cell growth
as determined by MTT assays (Fig. 3F). Overall, the results above
indicated that activation of ERK1/2 and AMPKa involved in the b-
elemene-reduced DNMT1 protein and that expression of DNMT1 was
required in the b-elemene-inhibited lung cancer cell growth.

While PD98059 or compound C had little effect
on influencing the effect of b-elemene on
phosphorylation of AMPKa or ERK1/2,
respectively; metformin reversed the effect of
b-elemene on phosphorylation of Akt

Interestingly, we found that, while PD98059 or compound C had little
effect on influencing b-elemene-induced phosphorylation of AMPKa
or ERK1/2, respectively (Fig. 4A and B), metformin reversed the effect
of b-elemene on phosphorylation of Akt in A549 and PC9 cells
(Fig. 4C). The findings indicated that a reciprocal signalling of ERK1/2
and AMPKa, and the inhibition of Akt by metformin may contribute to
facilitate the overall responses of b-elemene.

b-elemene inhibits transcription factor Sp1
protein expression, which was abolished by
either ERK or AMPK inhibitors

Previous studies reported that DNMT1 gene promoter contain tran-
scription factor binding sites including Sp1, which regulated the expres-
sion and function of DNMT1 in several cell systems [17–19]. This was
for this reason we tested the role of Sp1. We showed that b-elemene
inhibited Sp1 protein expression in a dose-dependent manner in A549
and PC9 cells (Fig. 5A and B). Furthermore, the ERK1/2 and AMPK
inhibitors abrogated the effect of b-elemene on Sp1 expression in A549
cells (Fig. 5C and D). Together, the results suggested that activation of
these kinases involved in regulation of Sp1 expression by b-elemene.
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While silencing of Sp1 showed no further effect,
exogenous expression of Sp1 overcame the
effect of b-elemene on DNMT1 expression and
cell growth

In addition, we found that, while silencing of Sp1 had no further effect
(Fig. 6A), exogenous expression of Sp1 transfected into the cells
resisted to the effect of b-elemene on DNMT1 expression (Fig. 6B)
and cell growth (Fig. 6C). As expected, we also showed that overex-
pression of DNMT1 had no effect on b-elemene-reduced Sp1 protein
expression (Fig. 6D). Collectively, these results indicated that Sp1,
acted as an upstream of DNMT1, played a critical role in mediating
the overall responses of b-elemene in this process.

Discussion

The major advantages of b-elemene as an anticancer drug have
broad-spectrum anti-tumour effects in several types of cancer with
fewer side effects [3, 20, 21]. b-elemene emulsion injection as an
adjunctive treatment for human cancers, including lung, has been
reported in clinic studies, and the combination of chemotherapy with
b-elemene treatment has been shown to improve quality of life and
prolong survival of cancer patient [22, 23]. The dose ranges of b-
elemene used in human lung cancer study were mostly from 400 to
800 mg/m2 in combination with chemotherapeutics, while the infor-
mation for the serum and/or tissue concentration of b-elemene have
not been observed [23]. Nevertheless, the underlying mechanisms
associated with its efficacy in inhibiting human lung cancer remain to
be elucidated. In this study, we demonstrated that b-elemene inhib-
ited NSCLC cell growth in the time- and dose-dependent manner, with
an additional novel signalling pathway and potential molecular
targets involved in this process (see below). The concentrations of
b-elemene used here were consistent with or even lower than those
reported by others demonstrating substantial growth inhibition of dif-
ferent types of cancer cells [21, 24, 25].

Multiple signalling pathways and potential target genes that medi-
ated the overall response of b-elemene in inhibition of growth and
induction of apoptosis of lung cancer cells have been reported [3, 26].
Consistent with this, our results demonstrated that activation of not
only ERK1/2, but also, for the first time, AMPKa was involved in
the effect of b-elemene on inhibition of Sp1 and DNMT1 protein
expression. AMPK is the central component of protein kinase cascade
that plays a key role in the regulation of energy control. Reported data
showed that activated AMPK induced catabolic metabolism and sup-
pressed the anabolic state, thereby inhibiting cell proliferation and
potentially acting as a tumour suppressor [27]. Our current findings

suggested that the reciprocal ERK1/2 and AMPKa signalling pathways
contributed to the overall response of b-elemene in the control of
lung cancer cell growth. The activation and interaction of these kinas-
es signalling in mediating the physiopathological responses in regula-
tion of cancer cell growth have been reported in other studies
[28, 29] demonstrating the critical roles of the complicated kinase
networks in implication of gene expression and cancer cell survival.
Of note, recent studies suggested that AMPK could exert dual roles in
cancer biology depending on environment [30]. We reasoned that the
truly function of AMPK in suppressing tumour formation and growth
needs to be determined.

Unexpectedly, we showed that b-elemene induced phosphoryla-
tion of Akt, a downstream effector of phosphatidylinositol 3-kinase
(PI3-K), which was consistent with other report [26], suggesting that
Akt signal was also involved in b-elemene-induced apoptosis in lung
cancer cells [26]. As opposite results also observed in other studies
[31], we believed that more studies are required to better explore the
role of the Akt signalling pathway in response to b-elemene. On the
other hand, we demonstrated that metformin, which had anti-lung
cancer properties [32], antagonized the effect of b-elemene on phos-
phorylation of Akt. This synergy might result in an augmented effect
in the inhibition of lung cancer cell growth. Whether the AMPK-depen-
dent signalling pathway was involved in effects of metformin on Akt
required to be determined as AMPK-independent pathway was
reported in other cell system [33, 34]. Also, additional experiments
are warranted to further elucidate the combining response of these
agents in control of human lung cancer cells.

Interestingly, our results demonstrated a central role of DNMT1
expression that mediated the effect of b-elemene on NSCLC cell
growth suggesting the potential target of b-elemene and involvement
of DNMT1 in lung cancer cell viability, which were never been
reported before. Elevated expression of DNMT1 was found in various
cancers including lung and antagonized the functions of tumour sup-
pressor genes [8–10]. Thus, re-expression of methylation silenced
tumour suppressors via inhibition of DNMT1 has emerged as a poten-
tial therapeutic strategy against cancer. Reports demonstrated that
targeting DNMT1 may be of therapeutic benefit for patients with sev-
eral malignancies including lung cancer [10–13]. Our findings sug-
gested that DNMT1 may act as a potential new target that mediated
the anti-lung cancer properties of b-elemene. Study demonstrated
that DNA methylation was one of an early step in cancer development
and increased DNMT1 expression could be considered as a critical
step in the oncogenic transformation of lung epithelial cells [10].
Thus, overexpression of DNMT1 results in epigenetic changes of
tumour suppressor genes and ultimately results in tumourigenesis
[17]. Further studies are needed to elucidate the detailed mechanism
by which regulation of DNMT1 controls NSCLC cell growth.

Fig. 2 b-elemene increased phosphorylation of ERK1/2 Akt and AMPKa in the time-dependent manner. A549 (A) and PC9 (B) cells were treated with

b-elemene (20 lg/ml) in the indicated times, and cell lysate was harvested and the expression of the phosphorylated or total protein of ERK1/2

(upper), AMPKa (middle) and Akt (lower), were measured by Western blot analysis using corresponding antibodies. GAPDH was used as loading
control. The bar graphs represented the densitometry results of p-ERK, p-Akt or AMPKa/GAPDH as mean � SD of at least three separate

experiments. *indicates significant difference from untreated control cells (P < 0.05).
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Intriguingly, our results also suggested the role of ERK1/2 and
AMPKa signalling pathways in mediating the effect of b-elemene
on inhibition of DNMT1 protein. Note that inactivation ERK1/2

signalling has been shown to be involved in the inhibition of
DNMT1 in other studies [35, 36], which was different from our
findings. On the contrary, one study showed that activation of
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ERK1/2 by b-elemene involved in the inhibition of lung cancer cell
growth [21]. The discrepancy remains unclear; different stimuli,
cell lines used and environment exposed may be account for this,
which need to be determined in the future studies. Furthermore,
our results demonstrated an additive effect in inhibition of DNMT1
expression in the presence of metformin and b-elemene. This was
for the first time we observed the down-regulation of DNMT1 by
metformin. There were no reports demonstrating the link of AMPK
signalling and DNMT1 expression. Our findings provided the

insight into the connection between AMPK signalling and this
oncogenic protein expression affected by b-elemene, and also
highlighted the tumour suppressor role of AMPKa that enhanced
the anti-tumour effect of b-elemene. More studies are required
to further elucidate the synergy of combining b-elemene with
metformin in this process.

Furthermore, our results indicated the causative role of Sp1
transcriptional factor in mediating the effects of b-elemene on
DNMT1 and cell growth, suggesting that Sp1 was an upstream of
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DNMT1. Previous data showed that DNMT1 gene promoter
contained Sp1 binding sites, which regulated the expression and
function of DNMT1 in several cell systems [17–19]. Sp1 binds to
GC-rich motifs of promoters and regulates genes involved in
tumour growth, apoptosis and angiogenesis; thus, the functional
status of Sp1 may affect the therapeutic response of anti-angio-
genic strategies for human cancers [37]. We for the first time dem-
onstrated that b-elemene inhibited DNMT1 expression through
targeting Sp1 highlighted a unique role of this transcriptional factor
in this process. Nevertheless, the truly links and interactions of
Sp1 and DNMT1 need to further explore.

The DNA damage response (DDR) and reading frame (ARF)/p53
pathways have been recognized as important oncogene-provoked
anticancer barriers in tumourigenesis and cancer development lead-
ing to cellular senescence. Oncogenic stimulation triggers the DDR
and induces the ARF signalling, both of which can activate the p53
pathway and provide intrinsic obstacles to tumour progression [38,
39]. In this study, our results suggested that b-elemene inhibited the
NSCLC cells irrespective of p53 status. Limited data demonstrated
the links of b-elemene and p53 status, one study showed that target-
ing human lung cancer cells by b-elemene was reported through both
p53-dependent and -independent pathways [40]. Thus, more in depth
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experiments are required to further explore the true role of p53
involving in the anti-tumour effects of b-elemene.

Collectively, our results show that b-elemene inhibits NSCLC cell
growth via ERK1/2- and AMPKa-mediated inhibition of transcription
factor Sp1, followed by reduction in DNMT1 protein expression. Over-
expression of DNMT1 reverses the effect of b-elemene on growth of
NSCLC cells. The reciprocal ERK1/2 and AMPKa signalling pathways
contribute to the overall responses of b-elemene. In addition, block-
ade of Akt signalling and concomitantly inhibition of DNMT1 expres-
sion by metformin augment the effect of b-elemene (Fig. 6E). This
study reveals a novel mechanism by which b-elemene inhibits growth
of NSCLC cells.
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