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Abstract

This study analyzed meteorological constraints on winter wheat yield in the northern Japa-

nese island, Hokkaido, and developed a machine learning model to predict municipality-

level yields from meteorological data. Compared to most wheat producing areas, this island

is characterized by wet climate owing to greater annual precipitation and abundant snow-

melt water supply in spring. Based on yield statistics collected from 119 municipalities for 14

years (N = 1,516) and high-resolution surface meteorological data, correlation analyses

showed that precipitation, daily minimum air temperature, and irradiance during the grain-fill-

ing period had significant effects on the yield throughout the island while the effect of snow

depth in early winter and spring was dependent on sites. Using 10-d mean meteorological

data within a certain period between seeding and harvest as predictor variables and one-

year-leave-out cross-validation procedure, performance of machine learning models based

on neural network (NN), random forest (RF), support vector machine regression (SVR), par-

tial least squares regression (PLS), and cubist regression (CB) were compared to a multiple

linear regression model (MLR) and a null model that returns an average yield of the munici-

pality. The root mean square errors of PLS, SVR, and RF were 872, 982, and 1,024 kg ha−1

and were smaller than those of MLR (1,068 kg ha−1) and null model (1,035 kg ha−1). These

models outperformed the controls in other metrics including Pearson’s correlation coefficient

and Nash-Sutcliffe efficiency. Variable importance analysis on PLS indicated that minimum

air temperature and precipitation during the grain-filling period had major roles in the predic-

tion and excluding predictors in this period (i.e. yield forecast with a longer lead-time)

decreased forecast performance of the models. These results were consistent with our

understanding of meteorological impacts on wheat yield, suggesting usefulness of explain-

able machine learning in meteorological crop yield prediction under wet climate.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0258677 October 18, 2021 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Murakami K, Shimoda S, Kominami Y,

Nemoto M, Inoue S (2021) Prediction of

municipality-level winter wheat yield based on

meteorological data using machine learning in

Hokkaido, Japan. PLoS ONE 16(10): e0258677.

https://doi.org/10.1371/journal.pone.0258677

Editor: Shamsuddin Shahid, Universiti Teknologi

Malaysia, MALAYSIA

Received: May 29, 2021

Accepted: October 3, 2021

Published: October 18, 2021

Copyright: © 2021 Murakami et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All yield statistics

data are available from the Hokkaido Regional

Agricultural Administration Office (https://www.

maff.go.jp/hokkaido/toukei/kikaku/sokuho/

r2kouhyou.html). All meteorological data are

available from the Agro-Meteorological Grid Square

Data system (https://amu.rd.naro.go.jp/).

Funding: This work was financially supported by

JSPS KAKENHI 19H00963 to KM. The funders had

no role in study design, data collection and

https://orcid.org/0000-0001-8150-9535
https://orcid.org/0000-0003-2989-6966
https://doi.org/10.1371/journal.pone.0258677
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258677&domain=pdf&date_stamp=2021-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258677&domain=pdf&date_stamp=2021-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258677&domain=pdf&date_stamp=2021-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258677&domain=pdf&date_stamp=2021-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258677&domain=pdf&date_stamp=2021-10-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258677&domain=pdf&date_stamp=2021-10-18
https://doi.org/10.1371/journal.pone.0258677
http://creativecommons.org/licenses/by/4.0/
https://www.maff.go.jp/hokkaido/toukei/kikaku/sokuho/r2kouhyou.html
https://www.maff.go.jp/hokkaido/toukei/kikaku/sokuho/r2kouhyou.html
https://www.maff.go.jp/hokkaido/toukei/kikaku/sokuho/r2kouhyou.html
https://amu.rd.naro.go.jp/


1. Introduction

Crop yield prediction models are undoubtedly required for agricultural practices. Statistical

regression methods, including multiple linear regression, have been sometimes used for crop

yield prediction in earlier studies. Despite its intuitive clarity and ease of practical application

in agriculture, the use of this method requires caution because 1) the response of yield to cli-

mate variables may be nonlinear and 2) strong correlations among independent (predictor)

variables may provide biased interpretations [1, 2]. With increased available data sources and

predictor variables, studies have attempted to predict crop yield using machine learning

instead of the multiple linear regression method [3]. Several earlier studies applied artificial

neural networks for crop yield prediction. Jiang et al. [4] developed an artificial neural network

model with remotely sensed variables for wheat yield prediction in Henan province, China.

Alvarez [5] used a neural network model based on meteorological and soil data to predict

wheat yield in Argentine Pampas with a root mean square error (RMSE) of 450 kg ha−1 (mean

yield: 2,500 kg ha−1). Khashei-Siuki et al. [6] applied artificial neural network and adaptive

neuro-fuzzy inference systems to predict dryland wheat yields from meteorological data in

Iran, achieving an RMSE value of 151.9 kg ha−1 (mean yield: 415.1355 kg ha−1). More recently,

other machine learning approaches including deep learning have been examined to improve

model performance. Kamir et al. [7] compared several base learners including random forest,

support vector machine, and k-nearest neighbor algorithm using climate records and satellite

image time series to predict Australian wheat yield. In addition, Goméz et al. [8] compared the

performance of eight machine learning models to predict wheat yield at a municipal level in

Mexico. Wolanin et al. [9] applied a convolutional neural network, ridge regression, and ran-

dom forest to predict wheat yield in the Indian Wheat Belt. Wang et al. [10] proposed a model

consists of long short-term memory and convolution neural networks to predict winter wheat

yield at county level in China (RMSE: 721 kg ha−1). Cao et al. [11] built and compared yield

estimators for winter wheat using random forest and three deep learning models (deep neural

network, 1D convolutional neural network, and long short-term memory network) at county

and field scales in China. Machine learning techniques have also been utilized to predict yields

of other crops [e.g. 12, 13] and to monitor evapotranspiration for water resources engineering

[e.g. 14, 15]. Some of these studies have analyzed the importance of predictor variables to

improve models’ interpretability and predictive performance [7, 9, 11, 12]. In addition, several

studies used a hybrid approach to predict crop yield. Feng et al. [16] simulated plant biomass

using a plant growth biophysical model APSIM and combined it with meteorological data and

remotely sensed vegetation index as predictors of machine learning models to predict wheat

yield in south-east Australia. Shahhosseini et al. [17] also extended the APSIM model to calcu-

late various features related to plant growth and used them and other features as inputs for

machine learning models to predict corn yield in the US.

Although earlier studies used various models and succeeded in predicting yields of wheat

and other crops, these studies also suggested that base learners and predictors should be prop-

erly selected to enhance the performance of models. For example, Gouache et al. [18] devel-

oped models for departmental-level wheat yield prediction in France using a stepwise multiple

regression method. They selected predictor variables from candidates generated by phenologi-

cal and water balance models and found that the weights of selected variables varied depending

on the department [18]. Because most winter wheat-producing regions in the world are dry

(e.g., the Australian Wheatbelt, the Great Plains in the US, and the North China Plain), models

proposed in earlier studies may be optimized to wheat yield prediction under dry climate with

emphasis on yield loss caused by drought stress in these regions [e.g. 19]. Therefore, these

models and deduced meteorological constraints on winter wheat yield may not be valid in wet
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regions. Because global warming accompanies increases in global mean precipitation and

regional precipitation except for semi-arid areas [20], wheat production under wetter regions

will rise in the future. To hedge risks caused by climate change and to ensure global food secu-

rity, analyses on climatic effects on wheat yields and development of yield prediction models

are necessary for both dry and wet regions.

This study aimed to analyze meteorological constraints on winter wheat yield and to

develop a yield prediction model based on meteorological data, focusing on a Japanese north-

ern island Hokkaido. Hokkaido is a leading wheat producer in Japan and characterized by wet

conditions with annual precipitation greater than 1,000 mm in most areas and abundant

snowmelt water supply in spring. In this region, precipitation during the wheat growth period

has a negative influence on grain yield (see section 3.1). We collected municipality-level yield

statistics and meteorological data at a corresponding spatial resolution, analyzed relationships

between meteorological conditions and wheat yield, developed machine learning models, and

examined their predictive performance.

2. Materials and methods

2.1 Study domain and meteorological characteristics

The study area was Hokkaido prefecture located in northern Japan, covering approximately

83,000 km2 and producing 60% of the Japanese wheat crop. Hokkaido consists of 179 munici-

palities with a wide range of areas (40–1,400 km2). We categorized the municipalities into four

groups in this study—eastern, southern, central, and northern groups (Fig 1, Table 1, and S1

Fig in S1 File). The eastern group includes leading wheat production areas (Okhotsk and

Tokachi) and is characterized by relatively smaller precipitation and snowfall in Hokkaido.

The amounts of annual and growth-period precipitation were still greater than major wheat-

producing areas around the world. A large fraction of agricultural areas in the southern and

central groups are occupied by paddy fields, and a substantial fraction of wheat fields were for-

merly used as paddy fields, suggesting poor drainage. The amounts of snowfall are small and

great in the south and central, respectively. The northern group is characterized by harsh win-

ter with severe snowfall, and the area of upland fields is small.

2.2 Dataset

We collected statistical yield records of winter wheat (Triticum aestivum L.) at each municipal-

ity from 2007 to 2020 in 119 municipalities in Hokkaido (N = 1,516; Fig 1) from a Japanese

governmental statistical survey by Hokkaido Regional Agricultural Administration Office

(Ministry of Agriculture, Forestry and Fisheries; URL: https://www.maff.go.jp/hokkaido/

toukei/kikaku/sokuho/r2kouhyou.html; accessed on 2021 March 31). Because some munici-

palities were merged during this period, we aggregated their records according to the latest dis-

trict boundary. A dominant winter wheat variety changed from ‘Hokushin’ to ‘Kitahonami’

around 2010, and a new variety ‘Yumechikara’ has covered approximately 10% of the area

basis after 2014.

We sourced the Agro-Meteorological Grid Square Data system [21] to collect meteorologi-

cal data at each municipality. This system provides daily surface-level meteorological data at a

grid-spacing of approximately 1 km over Japan. In this study, we used five meteorological ele-

ments: minimum and maximum air temperatures (Tmin and Tmax), precipitation (Rain), global

solar irradiance (Irad), and snow depth (Snow) (Table 1). We used meteorological data from

grid cells with 10% or more upland fields to extract in situ environmental conditions in upland

fields. The land usage information was also provided by the Agro-Meteorological Grid Square

Data system.
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2.3 Machine learning

We used R statistical software (ver. 3.6.2; [22]) for machine learning with a framework imple-

mented by the caret package [23]. This package provides a consistent interface for various

models that were developed using other packages in R. To obtain a suitable model, we trained

models with the following base learners; multiple linear regression (lm function implemented

in base R), model-averaged artificial neural network (avNNet function based on the nnet pack-

age; [24]), random forest (rf function based on the randomForest package; [25]), cubist regres-

sion (cubist function based on the Cubist package; [26]), support vector machine (svmRadial

Fig 1. Spatial distribution of municipality-level winter wheat yields used in this study. The number on each municipality (separated by thin lines) indicates the

number of years with yield records. Four area groups (separated by thick lines) consist of three or four subprefectures (separated by dashed lines). The inset shows a

histogram of the yield (N = 1,516). Yield data are published by Hokkaido Regional Agricultural Administration Office (Ministry of Agriculture, Forestry and Fisheries;

URL: https://www.maff.go.jp/hokkaido/toukei/kikaku/sokuho/r2kouhyou.html; accessed on 2021 March 31). The boundaries are published by National Land

Information Division, National Spatial Planning and Regional Policy Bureau (https://nlftp.mlit.go.jp/ksj/index.html, accessed on 2021-04-06).

https://doi.org/10.1371/journal.pone.0258677.g001
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function based on the kernlab package; [27]), and partial least squares regression (pls function

based on the pls package; [28]). The artificial neutral network consists of layered artificial neu-

rons connected to each other with certain weights. This model has been applied in earlier stud-

ies for crop yield prediction [e.g. 4–6]. Random forest is an ensemble learning method that

creates independent decision trees and returns an average output of these trees [29]. This

method requires less computational resources and some studies have adopted random forest

in crop yield prediction [e.g. 7, 9]. Cubist regression is a rule-based method that is an extension

of Quinlan’s M5 model tree [30]. This is a hybrid approach of decision tree and multiple

regression because a tree is grown where the terminal leaves contain linear regression model.

Support vector machine constructs a hyperplane in high-dimensional space that robustly sepa-

rates data into groups by using a subset of training data representative of the groups [31]. In

regression analysis with support vector machine, a hyperplane (i.e. no-linear regression

model) was determined by minimizing residuals of data outside of an certain margin of errors

to avoid overfitting. Partial least squares regression is a statistical method in which linear rela-

tionship between projected predictor and predictand matrices in new space [32]. This method

was designed to confront the situation that there are many, possibly correlated, predictor vari-

ables, and relatively few samples [28].

The predictand was municipality-level yield, and predictors were 10-day mean meteorolog-

ical data (referred to as early, mid, and late, respectively) and an average yield at the corre-

sponding municipality. We did not use 10-day mean Snow data between May and October

because they were typically zero. We developed models using yield statistics of municipalities

with five or more years (N = 1,502).

Models with 10-day meteorological data during various periods between early October

(soon after sowing) and late July (just before harvest) were trained and evaluated. The dataset

was centerized and scaled before model training to facilitate efficient model tuning. Leave-

one-year-out cross-validation was adopted to evaluate the performance of models as follows.

We trained models using records of 13 out of 14-year records. Hyperparameters of models

were determined by grid search using the train function from the caret package, adopting

10-fold cross-validation using the 13-year dataset (S1 Table in S1 File). Trained models were

tested with the remaining 1-year data, and compared to select best combinations of the hyper-

parameters and input variables. We defined the best model as a model that exhibited the small-

est RMSE value among the combinations. The relative importance of the predictor variables

was calculated using the varImp function from the caret package. We repeated this procedure

Table 1. Meteorological statistics of municipalities between 2007 and 2020 in four regional groups.

Region N Tmean Tmin Tmax Rain Irad Snow
[˚C] [˚C] [˚C] [mm] [MJ m−2] [cm]

Central 37 13.1 8.5 18.5 323 2,107 124

(12.8–13.6) (8.0–9.0) (17.9–19.0) (234–407) (2,016–2,185) (91–152)

Eastern 36 11.9 6.8 17.6 346 2,038 74

(11.4–12.4) (6.3–7.3) (16.8–18.3) (270–407) (1,977–2,089) (56–92)

Northern 27 12.7 7.5 18.2 320 2087 111

(12.3–13.2) (7.0–8.1) (17.4–19.0) (246–384) (2,020–2,160) (84–130)

Southern 19 12.9 8.5 17.3 406 2,031 63

(12.3–13.3) (7.8–9.2) (17.6–18.0) (307–497) (1,957–2,094) (38–83)

Number of municipalities (N), means and interquartile ranges of mean, minimum, and maximum daily air temperatures (Tmean, Tmin, and Tmax) and total values of

precipitation and irradiance (Rain and Irad) during the growth period (April to July) and maximum snow depth (Snow) are snow.

https://doi.org/10.1371/journal.pone.0258677.t001
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for 14 times (i.e., for all years) and obtained 14 RMSE values, root mean squared percentage

error (RMSPE), Pearson’s correlation coefficient (R), Nash-Sutcliffe efficiency (NSE) [33] and

relative importance.

RMSE, RMSPE, and NSE were calculated as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

ðŶ

s

� YÞ2;

RMSPE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

100

N

XN Ŷ � Y
Y

� �2
s

;

and

NSE ¼ 1 �

P
ðŶ � YÞ2

P
ðY � �Y Þ

;

where Ŷ and Y represent the predicted and observed wheat yield at a certain year and munici-

pality, respectively, �Y represents an average yield calculated from all records, and N represents

the number of records. We calculated a relative yield normalized to an average yield of a given

municipality as follows:

relative yield ¼
Yi;t
PNi

t
Yi;t

Ni

;

where Yi,t is an absolute value of wheat yield at municipality i and year t and Ni is the number

of records at the municipality.

3. Results and discussion

3.1 Historical and regional variations in winter wheat yield and

meteorological constraints

Municipality-level winter wheat yields ranged from 100 to 8,200 kg ha−1 and the mean value

was 4,050 kg ha−1 (N = 1,516). The yield fluctuated depending on the year and region (Fig 2).

For instance, in 2015 and 2019, the yield tended to be high in all regions. On the other hand, in

the eastern region, the yield dropped sharply in 2010 due to a national-scale heatwave during

summer. In most southern and central regions, the smallest yields were recorded in 2009 or

2018 with heavy summer rain. These data indicate that winter wheat yield should be affected

by regional-scale meteorology.

Correlation analysis revealed that various environmental factors could be related to the

yield (S2 Fig in S1 File). We briefly investigated effects between late June and mid July. This

term largely corresponds to the grain filling period before the harvest in most regions in Hok-

kaido. Rain was negatively correlated with the yield in broad regions (Fig 3). During this

period, intensive and prolonged rainfall events sometimes induce preharvest sprouting, which

degrades grain quality and decreases salable yield [34]. This is contrasting with other wheat-

producing regions around the world, where drought often reduces the yield. For example,

drought stress during the grain-filling period reduced grain yields in the US [35], Iran [36],

and China [37]. Based on data collected at several branches of a local agricultural research

institute, Tanifuji [38] performed a correlation analysis and reported that winter wheat yield

was not correlated with precipitation. Typically, scientific research institutes are at sites
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preferable for crop production and their fields are maintained carefully, leading to a climate-

robust field condition. This could explain why there was no correlation between precipitation

and yield in the report. On the other hand, commercial farmers’ fields may not always be

located in suitable sites or be managed well, particularly in low-yield regions. Negative aspects

of rainfall before the harvest may be intensified in those fields and resulted in the negative cor-

relation in the present dataset (Fig 3), suggesting techniques for improving soil drainage (e.g.,

installation of culverts and use of subsoilers) increase wheat yields particularly in low-yield

regions. In addition, the present analyses indicate that certain relationships deduced from the

‘elite’ dataset should not be generalized.

As well as precipitation, Tmin was negatively correlated with the yield (Fig 3), as reported in

earlier studies [e.g., 38–40]. It has been generally accepted that a higher air temperature short-

ens the duration of grain filling, reduces the photosynthetic gain, and results in a smaller grain

yield [e.g. 41]. A clearer correlation between Tmin and yield than that between Tmax and yield

Fig 2. Historical trend of municipality-level winter wheat yield in Hokkaido. Vertical lines represent years with low yields due to a national scale heatwave (2010)

and severe rainfall events in summer (2009 and 2018).

https://doi.org/10.1371/journal.pone.0258677.g002
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suggests the importance of nighttime temperature on the physiology and growth of wheat

plants [42]. Although the trend was unclear as found in the Rain and Tmin, Irad was positively

correlated with the yield (Fig 3). This should be attributable to an increase in photosynthetic

gain.

While aforementioned environmental elements seemed to affect wheat yield irrespective of

regions, Snow in early winter and spring (November and March) had contrasting effects on

the yield in a site-dependent manner. While more snowfall and thicker snowpack in northern

and central regions could decrease wheat yield, snowfall in the eastern and southern regions

does not seem to affect wheat yield (Fig 3). In their mesoscale meteorological analysis, Shi-

moda et al. [40] also reported similar site-dependent relationships between environmental fac-

tors and winter wheat yield. They focused on the Okhotsk and Tokachi regions, which were

Fig 3. Relationships between the municipality-level yield of winter wheat and total precipitation [Rain, mm], mean value of daily minimum air temperature

[Tmin, ˚C], and total solar irradiance [Irad, MJ m–2] during the grain-filling period (mid June to early July), and mean value of snowpack depth [Snow, cm] in

November and March. Pearson’s correlation coefficients and statistical significance (���: P< 0.001, ��: P< 0.01, �: P< 0.05, n.s.: not significant) are shown. Filled

symbols in the top-left panel correspond to 2009 and 2018 with severe rainfall events during summer, whereas those in the top-right panel correspond to 2010 with a

national-scale heatwave during summer.

https://doi.org/10.1371/journal.pone.0258677.g003
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the leading producing areas categorized as the eastern group in the present study (Fig 1) and

found that high temperatures from mid June to mid July decreased wheat yield particularly

when sunshine duration was shorter than 4.5 h and that contrasting patterns of summer sun-

shine duration in these regions differentiated yearly yield fluctuations [40]. Such site-depen-

dent relationships between environments and crop yield frequently necessitate the

development of empirical models tailored to specific regions. In the present study, we adopted

machine learning techniques to develop a versatile model for whole regions of the Hokkaido

island.

3.2 Prediction of municipality-level wheat yield using machine learning

techniques

We first determined the input period that minimizes the RMSE in predicted yields by varying

the start and end of the period (S3 Fig in S1 File). Although there were slight differences

among models, models that used meteorological features during the growth period, from

April to July, exhibited smaller RMSE values. Because a longer input period (e.g., early October

to late July) did not reduce RMSE values (S3 Fig in S1 File), meteorological elements during

winter may have smaller effects on year-to-year yield fluctuations compared to those during

the growth period. We then compared the prediction performance of models to select the best

models, i.e., models that exhibited the smallest RMSE values with respective base learners (Figs

4 and 5, Table 2). Among the models with different base learners, models based on partial least

squares and support vector machine showed smaller RMSE values and higher R and NSE val-

ues, followed by random forest. These models outperformed the null model and multiple lin-

ear regression model. While the cubist and neural network models outperformed the multiple

linear regression model, their predictive skills were inferior to the null model. Judging from

these metrics, the present models were less accurate compared to some latest studies. For

example, Wolanin et al. [9] developed machine learning models for wheat yields in the Indian

Wheat Belt with a NSE of 0.757–0.868. However, the NSE score for their null model was as

high as 0.812, suggesting a smaller year-to-year yield fluctuation in the study domain. It is not

always useful to compare metrics of models developed to predict different regions.

Although several studies have used linear regression or correlation analysis to discuss envi-

ronmental effects of meteorological factors on crop yields, several studies have highlighted

potential problems [1, 2]. A simple approach with multiple regression should be limited by

multicollinearity because of correlations among explanatory variables. For example, there was

a strong negative correlation between Irad and Rain during the grain-filling period (S4 Fig in

S1 File). In addition, most biological responses to environments are expressed with nonlinear

functions. Other approaches are necessary to address these issues, and the present results

exemplified the usefulness of machine learning techniques. Note that these machine learning

models can now be examined easily thanks to open-source products and developers’ continu-

ous effort [e.g. 22, 26].

The partial least squares model predicted wheat yields reasonably well, even in low- and

high-yield years. For example, this model provided better estimates of high yields in 2015 and

2019 and low yields because of an extraordinarily hot summer (2010) and heavy rainfalls (2009

and 2018) (Fig 5). Although linear correlations between the predicted and actual yields were

observed in models based on support vector machine and random forest, the slope was smaller

than one (Fig 4). These models tended to return milder estimates and are similar to the null

model. A similar trend has been repeatedly reported in earlier studies [e.g. 43]. Continuous

data accumulation may improve prediction performance of models since the number of

extreme events were small in the training dataset. While the cubist model also showed
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sensitivity in low- and high-yield years, predictions in years with near-average yields were less

reliable. The neural network model exhibited relatively lower performance in terms of sensitiv-

ity and stability. As mentioned in the Introduction, a number of studies have applied machine

learning methods to predict crop yields and implied that a suitable model should be developed

based on purposes, crops, and applied regions. The present results again emphasized the need

for an appropriate model selection to improve the predictive performance. Because weather

and climate extremes are projected to become more frequent and intensified [44], year-to-year

crop yields will fluctuate more drastically. Considering the demand for predicting extreme

yields, the partial least squares model may be an optimal solution in the present study.

From a perspective of end users of yield prediction models such as local farmers and munic-

ipality administrators, an accuracy of predicted relative yields is of interest because their main

concern is to know yields are greater, smaller, or about the same compared to the normal year.

To assess the models from a practical perspective, we categorized the predicted and actual

Fig 4. Relationship between actual municipality-level winter wheat yields and predicted ones using machine learning models (N = 1,502). Years with high yields

(2015 and 2019) and low yields (2009, 2010, and 2018) are highlighted. Evaluation metrics are summarized in Table 2.

https://doi.org/10.1371/journal.pone.0258677.g004
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yields normalized to the average yield with a bin size of 20% to generate a multi-class confu-

sion matrix (Fig 6). Among the machine learning models, the predicted categories by the par-

tial least squares model were usually the same to or neighboring to the actual categories. The

machine learning models tended to overpredict yields in low-yield years and vice versa proba-

bly because of the smaller number of such conditions in the present dataset. Therefore, the pre-

dicted yields were less reliable when actual yields were apart from their average values. To

further improve interpretability, we analyzed a relationship between model accuracy and an

acceptable error (Fig 7). When we only accept an error of 5% in the predicted yield, the accu-

racy in all models was as few as 20%. On the other hand, when we accept an error of 25%, the

accuracy in the partial least squares model was higher than 75%. Because crop yields at a given

site are usually around an average yield at the site, it is natural that the null model exhibits a

reasonably high accuracy. Nevertheless, some models—partial least squares, support vector

machine, random forest, and cubist—achieved higher accuracy than the null model in most

Fig 5. Yearly RMSE values of models for winter wheat yield prediction calculated via leave-one-year-out cross-validation.

https://doi.org/10.1371/journal.pone.0258677.g005
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cases of acceptable error, indicating the potential usefulness of these models. Note that the

machine learning models usually outperformed the multiple linear regression model.

We also assessed the performance of models in terms of yield forecast (Fig 8). Fore-

casting crop yields can help stakeholders make economic decisions in advance. To

develop models that forecast crop yield before harvest, we trained models by masking

meteorological data for a certain period before harvest. An extension in the input period

decreased RMSE values in several models including models based on partial least squares,

support vector machine, random forest, and cubist. In these models, the decreased fore-

cast RMSE by the extension was marked until early July; it was less marked after mid July.

Because photosynthetic biomass accumulation of wheat plants should cease around early

July in the present study domain, the variables involved in this process after mid July

should have little effect on grain yield. Feng et al. [16] also reported that incorporating

predictor variables after flowering did not result in substantial increases in metrics. Con-

sidering relationships between growth-period meteorology and wheat yield reported in

earlier studies [e.g. 39–40] and shown in the previous section, it is reasonable that incor-

porating meteorological features around June and July improved model performance.

The RMSE values of the multiple linear regression model increased by the extension due

to the multicollinearity problem. This model did not show a smaller RMSE value even

when it was trained using full-span data (from early April to late July). Similar to the mul-

tiple linear regression model, RMSE values of the model based on neural network fluctu-

ated. This might originate from a simple architecture of the present neural network

model (a single hidden layer with several nodes), implying that a complicated network is

required for an accurate forecast. Because the other base learners such as partial least

squares demonstrated validity without meticulous tuning, we should use them for crop

yield prediction and forecast.

We then calculated the variable importance of predictors focusing on the partial least

squares model, which exhibited the best performance. Variable importance analysis implied

Table 2. Predictive performance of selected models and their input periods of meteorological data.

Model RMSE R NSE RMSPE Input period

[kg ha–1] [%]

Null model 1,035 0.64 0.412 16.2 -

(2–1,243) (0.354–0.769) (0.035–0.710) (1.8–53.8)

Multiple Linear 1,068 0.65 0.373 11.9 Late March–Early July

(614–1,515) (0.309–0.811) (-0.204–0.877) (1.6–36.6)

Partial Least Squares 872 0.76 0.583 12.6 Mid April–Early July

(527–1,160) (0.309–0.824) (-0.034–0.909) (1.3–41.7)

Support Vector Machine 982 0.70 0.470 15.0 Late March–Late July

(594–1,407) (0.277–0.760) (0.062–0.728) (1.6–45.5)

Random Forest 1,024 0.65 0.424 16.7 Mid April–Mid July

(544–1,560) (0.315–0.776) (0.118–0.696) (1.8–53.9)

Cubist 1,041 0.64 0.405 14.7 Early March–Early July

(625––1,510) (0.296–0.680) (-0.385–0.685) (1.9–47.8)

Neural Network 1,055 0.63 0.389 15.7 Mid April–Early July

(636–1574) (0.332–0.686) (-0.581–0.696) (1.8–51.2)

Root mean square errors (RMSE), Pearson’s correlation coefficient (R), Nash- Sutcliffe efficiency (NSE), and root mean square percent errors (RMSPE) are shown

(N = 1,502). Values in the parentheses represent ranges of metrics calculated via leave-one-year-out cross-validation.

https://doi.org/10.1371/journal.pone.0258677.t002
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that Tmin during the grain-filling period was the second most important environmental vari-

able next to the municipality-level average yield (Fig 9). A small peak in the importance of Irad
was found at the same period to Tmin. These elements may be involved in the duration of the

grain-filling period and photosynthetic gain. A slightly smaller and delayed peak compared to

that of Tmin was observed in the importance of Rain, suggesting a strong impact of preharvest

sprouting on wheat yield [34]. These results are consistent with our current understanding of

meteorological effects on wheat yield as discussed in the previous section. The present study

confirms that machine learning techniques are useful for prediction of winter wheat yields in

wet regions. Considering the remarkable weights of precipitation in the present model and its

negative effect on the yield (Fig 3), the present model should not be valid for yield prediction

in dry regions. For example, Cao et al. [11] analyzed variable importance for prediction of

Fig 6. Relationship between predicted and actual relative yields categorized with a bin size of 20%. Circles in orange and gray indicate correct and incorrect

classification, respectively. Numbers on and sizes of the circle indicate the number of records in each category.

https://doi.org/10.1371/journal.pone.0258677.g006
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winter wheat yields in China and found that air temperatures and precipitation during winter

had larger effects than those during the growth period because of their close relationships to

cold and drought stress on wheat plants. It has been projected that rainfall patterns will change

and that annual precipitation will increase in several wheat producing regions including east-

ern Australia, northern China, and northern Europe [20]. The present analyses and developed

models may be a helpful reference to investigate wheat production in these regions under the

future climate.

3.3 Concluding remark

In this study, we analyzed meteorological constraints of winter wheat yield in Hokkaido,

where meteorological conditions during the growth period were wetter than those in other

Fig 7. Accuracy of predicted municipality-level winter wheat yields as a function of an acceptable error. Each predicted value was regarded as a correct prediction

if | (predicted yield) / (actual yield) − 1| was smaller than the acceptable error.

https://doi.org/10.1371/journal.pone.0258677.g007
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wheat-producing areas worldwide. Our municipality-level analyses revealed an overlooked

negative effect of precipitation during the grain-filling period in this region. We developed a

machine learning model based on the partial least squares method that predicts and forecasts

wheat yield reasonably well. The present comparison among the base learners and input peri-

ods emphasizes that appropriate selection of these factors is necessary for developing a

machine learning model for crop yield prediction. The variable importance of model predic-

tors was consistent with our understanding of relationships between environmental factors

and wheat yield. This finding indicates the usefulness of explainable machine learning in mete-

orological crop yield prediction. Performance of the present machine learning models should

be assessed in combination with weather forecast. Latest weather forecast systems offer numer-

ical forecast more than 10 d at a high spatial resolution [e.g. 45]. In addition, use of deep learn-

ing techniques and multisource data such as satellite derived vegetation indices [e.g. 4, 7–11]

Fig 8. Performance of machine learning models for winter wheat yield forecast. Models use meteorological data from early April to different terms as shown on the

x-axis. Mean values and standard deviations calculated via one-year-out cross-validation are shown (N = 14).

https://doi.org/10.1371/journal.pone.0258677.g008
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and soil water management indices [e.g. 14, 15] should be examined to enhance model perfor-

mance in future works.
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